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Preface

Human population genetics has grown tremendously in importance and in centrality to the broader
field of human genetics, particularly since the era of genomics. The Human Genome Project began
in 1990 and was declared essentially complete in 2003. However, having a genome sequence did
not immediately yield the medical and research benefits that were used to justify the project. It quickly
became apparent that these benefits required the study of variation: variation in the human genome,
variation in health status, variation in demographic histories, etc. As a result, additional projects
were spawned to create databases that focused on variation. Once the focus was on variation, human
population genetics became central to the medical and research goals of these projects. The reason is
simple: human population genetics is the science of human genetic variation: its past, its current
significance, and its evolutionary fate. Population genetics provides the principles and tools used by
many human geneticists in at least some aspects of their research programs. Many of these human
geneticists do not consider themselves population geneticists, but an effective and appropriate use
of these tools and principles requires some knowledge of population genetics. I have therefore written
this book not only for human population geneticists and their students but also for the broader human
genetics community. Moreover, because of the immense amount of knowledge and data about our own
species, humans have become an ideal model organism for population genetic studies. Many of the
techniques, both molecular and analytical, which were first developed for human studies are portable
to other species. Moreover, most of the principles of human population genetics are applicable to all
species and to a general understanding of evolution within a species. Hence, this book is relevant to all
population geneticists and not just those who focus mainly on humans.

Besides the advances in genetics and genomics that have propelled population genetics to its
increasingly central role in human genetics, there have also been tremendous analytical advances in
statistics, bioinformatics, and computational biology. Advances in these areas have not only allowed
us to handle large data sets, but also to make use of principles that have been central to population
genetics since its inception as a fielddoften in ways unimaginable to the originators of these princi-
ples. For example, the population genetic principle of identity-by-descent has played in a critical role
in much population genetic theory since the 1920s, but by coupling this old principle with modern
genomic data we can apply it powerfully to identify and localize genetic diseases, map risk factors
for common systemic diseases, study inbreeding and its consequences with or without pedigrees,
and identify genomic regions under natural selection and important for human adaptationsdjust a
few of the applications of this old concept. The pace of these molecular and analytical advances is
dizzying, so I have not written a “how to” book that would become almost immediately out-of-
date, but rather a “why and when” book. Computer programs implementing these old and established
principles of populations genetics are constantly being developed in new and more powerful ways, but
understanding the underlying population genetic principles will help researchers answer the questions
of why these programs do what they do and when they should be useddand perhaps more importantly,
when they should not be used. The why and when depends not only on an understanding of population
genetic principles, but also an understanding of fundamental statistical principles such as maximum
likelihood (developed in the 1910s) and Bayes theorem (from the 1700s). Despite the widespread
use of maximum likelihood and Bayesian statistics in human population genetics, there is still the
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need to understand the why and when of programs based on these and other statistical principles. Once
again, this is not a “how to” book in statistics, but rather a book designed to help the reader become a
more discerning and intelligent user of the programs and analytical techniques that are continually be-
ing developed and refined.

I wish to thank Charlie Sing (my graduate mentor in Human Genetics) and Ed Rothman (my grad-
uate mentor in Statistics) for giving me such an excellent grounding in two fields that have proven to be
remarkably synergistic in my subsequent research, as well as continuing my education in these fields
through collaborations after I left the University of Michigan. My love and interest of population
genetics was first whetted by Dr. Harrison Stalker, my undergraduate mentor at Washington
University, and Dr. Hampton Carson, both an undergraduate mentor at Washington University and a
postdoctoral mentor at the University of Hawaii, and memories of these two remarkable scientists
and human beings were in my mind repeatedly in the writing of this book. I also would like to thank
the many younger mentors who taught me so muchda large group of creative, highly intelligent, and
independent undergrads, graduate students, and postdocs who were in my lab over the years. I thank
the editors at ElsevierdChristine Minihane, Lisa Eppich, Peter Linsley, and Carlos Rodriguezdfor
their understanding of the many delays and interruptions encountered while writing this book and
for their unflagging support of the project despite those delays. Finally, I wish to thank my wife,
Dr. Bonnie Templeton, for her support and encouragement over the long process of writing this book.
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DEFINITION, SCOPE, AND
PREMISES OF HUMAN
POPULATION GENETICS

1
Population genetics is the science of genetic variation within populations of organisms. Population
genetics is concerned with the origin, amount, frequency, distribution in space and time, and
phenotypic significance of that genetic variation, and with the microevolutionary forces that influence
the fate of genetic variation in reproducing populations. Human population genetics is specifically
concerned with genetic variation in human populations and its evolutionary and phenotypic signifi-
cance. Although most population genetic principles are broadly applicable to many species, there are
many compelling reasons to focus on our own species. First, we are simply interested in ourselves; we
are curious about our origins and how we got to be who we are today. Population genetics can provide
insights into the roots of us all.

Second, all species are unique in some respect, but the human species is unique in many important
ways. As will be discussed in later chapters, our species has undergone several major range expansions
over the last two million years. These range expansions have made us one of the most widely
distributed species on the planet and these historical expansions have left a genetic signature on the
variation that we carry in our collective gene pool today. Starting about 10,000 years ago with the
invention of agriculture, our species has also sustained superexponential population growth, making us
one the most abundant large-bodied species on the planet. As we will see, this sustained population
growth over such a long period of time has strongly influenced our spectrum of genetic variation in a
manner found in almost no other species. Many species can define or shape the environments in which
they live to some extent, but our species has taken it to an extreme. Because of our intelligence, we
define our environments through culture, with our cultural environments changing at an increasing
rate. As we will see, there are strong interactions between genes and genomes with environments
(including culture), and these emerge as a unique aspect of our population genetics. Indeed, because of
our widespread geographical distribution, numerical abundance, and cultural impacts, the human
species can and is changing the environment at the global level, thereby making humans a keystone
species that influences the existence and evolutionary fate of many other species that coinhabit the
Earth with us. A final unique aspect of our species is our social behavior. Only a handful of species
have evolved advanced social behavior, and humans are one of that handful. Complex social
environments can also interact with genes, adding another dimension to human population genetics
and evolution.

A third reason for focusing on human population genetics is practical. We live in an era in which
genetics and genomics are increasingly having an impact on medicine and human health. Many of the
tools for these practical applications of genetics and genomics come from population genetics.
Medical research is often about variation within populations: why are some people healthy and others
not; why do some people get disease X and others not, etc.? Many of the basic tools for studying
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disease variation within populations come from population genetics, and the increasing use of genetic
and genomic tools in medical research has greatly augmented the relevancy and importance of
population genetics for human health. As will be shown in Chapters 8 and 14, modern studies in
genetic epidemiology (the study of the role of genes in determining risk or susceptibility to diseases)
can be regarded as applied population genetics. Finally, because we are an advanced social species, we
tend to pay much attention to our perceptions of variation within our species, whether it be physical,
behavioral, cultural, genetic, or a combination of interacting factors. Such perceptions can have real
social, legal, and economic impacts, as can be seen by the tendency of some cultures to subdivide
people into “races” on the basis of perceived variation. Population genetics can and does contribute
to our understanding of perceived variation and therefore helps redefine some of our basic
self-perceptions about variation in our species. For all these reasons, human population genetics is an
important area of study.

THE BASIC PREMISES OF POPULATION GENETICS
Population genetics is a science rich in theory and detailed mathematical modeling. Underlying this
rich theory are just three basic premises that deal with the nature and properties of DNA, the genetic
material. Although these premises can be stated simply, their implications are often quite profound
and deep.

PREMISE 1: DNA CAN REPLICATE
DNA has the remarkable property, essential for life, that it can replicate and make copies of itself. This
means that what was once just a single specific molecule or segment of DNA can be passed on to the
next generation and subsequent generations. Also, what was once a single specific molecule or
segment of DNA can come to exist as identical copies in several different individuals simultaneously.
These properties are illustrated in Fig. 1.1, which shows a pedigree of a human family with a mutation
in the Phosphoinositide 3-Kinase d autosomal gene that makes its bearers susceptible to recurrent
respiratory infections and bronchiectasis (Angulo et al., 2013). The original mutation apparently
occurred in the male (filled square box) at the top of Fig. 1.1. The replication of this original mutation
led to its passage through the generations and multiple individuals as illustrated through the filled or
partly filled squares (males) and circles (females) of this pedigree. Note that what was originally a
single copy of DNA bearing this mutation in generation I became three copies in generation II, and one
of those copies becomes copies at generation III and two of those copies are passed on to two
individuals at generation IV. This shows how the original mutation, through DNA replication, can be
passed on from generation to generation. All the individuals that bear the mutant DNAwill die, but the
DNA mutation continues to exist through time in this pedigree. Individuals cannot be at more than one
place at a given instant of time, but identical copies of DNA can exist at many places simultaneously
because they can be borne by multiple individuals. Hence, this mutation has an existence in both
space and time that transcends the individuals who temporarily bear it. This transcendent existence of
DNA in space and time is a major focus of population genetics.

The fate of DNA through space and time cannot be studied at the level of an individual. The
biological level at which DNA’s transcendent existence can be studied is minimally found in a
reproducing population of individuals. Individuals are born into this population and eventually die,
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so the individuals have no long-term continuity over time. However, by reproducing, new individuals
are born into the population such that the reproducing population does manifest a physical reality over
time. Moreover, a population consists of multiple individuals at any given time, and therefore occupies
some area of space that is greater than that occupied by any one member of the population. Hence, a
reproducing population is also transcendent over space and time in a manner concordant with DNA.
Reproducing populations are therefore the objects of study for population genetics. Evolution, in its
most basic sense, deals with the fate of genes over space and time. Therefore, a reproducing population
provides the spatial and temporal continuity that is necessary for evolution. Individuals do not evolve,
only populations.

There are many types and levels of reproducing populations. A deme is a local geographic
population of reproducing individuals that has physical continuity over time and space and in which
most of the acts of reproduction occur between individuals who are members of the same deme. Demes
are the lowest biological level that can evolve and the most basic unit of population genetic studies.
Only in Chapter 6 and afterward will more complicated types of reproducing populations be
considered.

In population genetics, demes are characterized by genotype frequencies. An individual’s
genotype refers to the specific alleles that he or she carries at one or more loci. Most loci in the human
genome have multiple alleles (alternative nucleotide states of the same gene). These multiple allelic

FIGURE 1.1

A pedigree of a family segregating for a mutation in the Phosphoinositide 3-Kinase d autosomal gene. Squares

indicate males, circles females. Partly filled circles and squares indicate heterozygotes for the mutant based on

respiratory symptoms. Fully filled circles and squares had respiratory symptoms and were molecularly genotyped

as carriers of the mutant. Open circles and squares are unaffected and do not carry the mutant. Slashes through a

circle or square indicate the individual was deceased at the time of the study.

Modified from Angulo, I., Vadas, O., Garçon, F., Banham-Hall, E., Plagnol, V., Leahy, T.R., et al., 2013. Phosphoinositide 3-Kinase

d gene mutation predisposes to respiratory infection and airway damage. Science 342, 866e871.
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states are called polymorphisms (literally, “many forms”). Because single nucleotides can take on five
distinct states (the four nucleotides symbolized by A, T, G and C, and the state of being deleted), even a
single nucleotide can be polymorphic and are known as SNPs (single nucleotide polymorphisms)
when due to alternative nucleotides and not a deletion. These multiple alleles at a gene or a nucleotide
can then be combined under sexual reproduction to form multiple distinct genotypes. For example, a
nucleotide in the promoter region of the vitamin D receptor (VDR) gene on chromosome 12 of the
human genome is an SNP (rs11568820, with rs numbers being a standardized labeling method
commonly used to uniquely identify the many SNPs in the human genome) with two allelic states:
C and T (Tiosano et al., 2016). These two alleles at this autosomal nucleotide define three diploid
genotypes: CC, CT, and TT. The genotypes for this VDR promoter were scored in 167 Ashkenazi
Jews from Israel with the following results:

Number with genotype CC: 102
Number with genotype CT: 56
Number with genotype TT: 9

These genotype numbers are converted into genotype frequencies simply by dividing the observed
number of each genotype by the total sample size; that is:

Frequency of genotype CC: 102/167 ¼ 0.611
Frequency of genotype CT: 56/167 ¼ 0.335
Frequency of genotype TT: 9/167 ¼ 0.054

These three genotype frequencies represent the essential description of this Ashkenazi Jewish
population for this SNP.

This same SNP was scored in 106 individuals from sub-Saharan Africa, with the following results:
5 CC genotypes, 16 CT genotypes, and 85 TT genotypes. In terms of genotype frequencies, the
sub-Saharan Africans were 0.047 CC, 0.151 CT, and 0.802 TT. Note that these two populations have
exactly the same alleles (C and T) and the same genotypes (CC, CT, and TT) at this SNP, but differ in
the frequencies of those genotypes. Genotypes are a biological state of individuals, but the DNA is our
main concern, not the individuals.

To focus on the DNA molecules, we define the gene pool as the population of DNA molecules that
are collectively shared by the individuals in the deme. Each piece of DNA found in these individuals
can be characterized by its allelic state at this SNP; that is, a DNA molecule either bears the state C or
the state T in this example. Just as the deme was characterized by the frequencies of genotypes
(the genetic state of individuals at the locus or nucleotide of interest), the gene pool is characterized by
frequencies of alleles (the genetic state of DNA molecules at the locus or nucleotide of interest). For
example, consider the gene pool defined by the 167 Ashkenazi Jews for the VDR promotor SNP.
Because this SNP is located on an autosome, all 167 individuals bore two copies of this nucleotide, for
a total of 334 copies of this nucleotide. The numbers of the two alleles, C and T, found in these 334
nucleotides are:

Number of C alleles: 102 � 2 þ 56 � 1 þ 9 � 0 ¼ 260
Number of T alleles: 102 � 0 þ 56 � 1 þ 9 � 2 ¼ 74

Note that the allele count is determined by the genotype numbers multiplied by the number of
copies of the allele of interest borne by individuals with a specific genotype. The gene pool is now
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described by the allele frequencies that are derived by dividing the allele counts by the total number of
sampled genes (or nucleotides, in this case):

Frequency of C allele: 260/334 ¼ 0.778
Frequency of T allele: 74/334 ¼ 0.222

These allele frequencies are the essential description of the Ashkenazi gene pool for this nucle-
otide. Similarly, the allele frequencies in the sub-Saharan African population are:
(5 � 2 þ 16 � 1 þ 85 � 0)/212 ¼ 0.123 for the C allele and (5 � 0 þ 16 � 1 þ 85 � 2)/212 ¼ 0.877
for the T allele.

An alternative definition of the gene pool is the population of potential gametes that can be
generated from the individuals of the deme. This definition is illustrated in Fig. 1.2 for the Ashkenazi
Jewish population. Starting with the population of diploid individuals as characterized by genotype
frequencies, the rules of inheritance are applied to each genotypic class to predict the probabilities of
all the types of gametes each genotype can produce. Assuming that there is no mutation and normal
meiosis, the CC homozygote will produce C-bearing gametes with a probability of 1, and T-bearing
gametes with a probability of 0. Similarly, the TT homozygote will produce C-bearing gametes with a
probability of 0 and T-bearing gametes with a probability of 1. Given no mutation and normal meiosis,
the only rule of inheritance that is relevant to the CT heterozygotes is Mendel’s first law of segregation,
which states that the probability of a C-bearing gamete is ½ and the probability of a T-bearing gamete
is ½. These meiotic probabilities assigned to each diploid genotype are transition probabilities; that is,
they describe the probabilities by which a given diploid genotype produces a given haploid gamete type
through the process of meiosis. The transition arrows shown in Fig. 1.2 illustrate this. The genotype
frequencies and the meiotic transition probabilities are sufficient to calculate the allele frequencies in
the population of gametes, as shown in Fig. 1.2. In general, gamete frequencies in the gene pool can be
calculated from the genotype frequencies in the deme and the meiotic probabilities by the formula:

gi ¼
Xn
j¼1

Gjtj/i (1.1)

where gi is the frequency of gamete type i in the population of potential gametes, Gj is the frequency of
genotype j in the deme, n is the number of genotypes, and tj/i is the meiotic transition probability of

FIGURE 1.2

An example of how genotype frequencies in the deme are related to allele frequencies in the gene pool as mediated

through meiosis and gamete production. The genotypes, alleles, and their frequencies are for SNP rs11568820 in

the VDR promoter region in a sample of Ashkenazi Jews.
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genotype j producing gamete type i. Eq. (1.1) applies both to single-locus allele frequencies and to
multilocus gamete types and genotypes.

Note that the allele frequencies in the gene pool defined as the population of potential gametes
given in Fig. 1.2 are identical to the allele frequencies calculated from allele counts when the gene pool
was regarded as the population of DNA molecules that are collectively shared by the individuals in the
deme. Generally, for calculating allele frequencies, it makes no difference which definition of the gene
pool is used. However, defining a gene pool as the population of potential gametes emphasizes the
genetic continuity over time that DNA replication allows. Gametes are the physical agents by which
genes and gene combinations are passed on from one generation to the next, and hence the gene pool
represents the transitional step between one generation and the next. Moreover, the gene pool as a
population of gametes has a universal equation for gamete frequencies (Eq. 1.1) that is applicable to all
genetic architectures, not just to single loci. Henceforth, gene pools will always refer to the population
of potential gametes of the individuals in a deme. The operational definition of evolution in this book
is a change over the generations in the frequency of a gamete type in the gene pool. Under this
definition, evolution is an emergent property of a reproducing population.

Another type of population that is important in human population genetics is a sample, a subset
of a larger population that is the object of inference. For example, the frequency of the C allele in the
sample of 167 Ashkenazi Jews discussed above is 0.778. However, suppose a researcher is interested
in inferring the frequency of C in the Ashkenazi Jewish population and not just specifically in these
167 Ashkenazi Jews. In this case, Ashkenazi Jews are the population of inference and the 167
Ashkenazi Jews actually scored for their genotypes at this VDR SNP is a sample from this population
of inference. There are many ways to sample a population of inference, and in this case the 167
Ashkenazi Jews in the sample are not known biological relatives and otherwise represent a random
draw from the larger Ashkenazi Jewish population. This is a common sampling design in human
population genetics, and is known as a random sample. However, whenever a sample of any sort is
taken, a degree of uncertainty is introduced in making inferences about the larger population from
which the sample was drawn. As shown above, the frequency of the C allele is 0.778 in the sample.
But suppose a different sample of 167 Ashkenazi Jews had been drawn. Would the frequency of C in
this new sample also be exactly 0.778? Most likely not. Similarly, suppose we sampled fewer or more
than 167 individuals. Would this affect the frequency of C in these new samples? Most likely yes.
Hence, when the population of inference is Ashkenazi Jews, the sample frequency cannot
automatically be equated to the frequency in the larger population. This uncertainty is why human
population genetics is interwoven with statistics, the science of inference under uncertainty. Almost
all inferences in human population genetics are drawn from samples rather than an exhaustive survey
of the population of inference. Statistics is therefore a crucial and necessary aspect of human
population genetic inference.

Statistics generally models the uncertainty inherent in a sample with a sampling probability
distribution that treats the observations (such as the number of C alleles in the sample) as a random
variable rather than a constant number. The properties of randomness in turn are a function of certain
parameters. There are many probability distributions, but the probability standardly used for a random
sample for counts of a two-state variable (in this case C and T) is the binomial distribution:

f ðxjp; nÞ ¼
�
n

x

�
pxqn�x (1.2)
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where x is the random variable (the number of C alleles in the sample in this case), n is the sample size,
p is the frequency of C in the population of inference, q ¼ 1� p is the frequency of T in the population
of inference, and �

n

x

�
¼ n!

x!ðn� xÞ! ; y! ¼ yðy� 1Þðy� 2Þ/ð1Þ (1.3)

In general, the probability distribution is a function of the random variable given some parameters.
In Eq. (1.2), x is the random variable and n and p are the parameters, which are treated as known
constants in the probability distribution. The sampling probability distribution ideally measures the
frequency with which the various values of x will be observed in a large number of independent
samples each of size n drawn from the same population of inference with allele frequency p. Because x
can take on different values from trial to trial, the sampling probability distribution measures the
amount of uncertainty in the number of C alleles found in a sample of size n given that the frequency of
C is p in the population of inference.

The essential problem of statistics is that once the sample is observed, there is no longer a random
variable x but rather an observed number X. Typically, one of more of the parameters of the sampling
distribution are unknown and are the object of inference. Hence, once the sample has been drawn and
observed, there has been an implicit transformation of variables and parameters: the original random
variables are now known numbers and can be treated as parameters or known constants; the original
unknown parameters are still unknown and can now be regarded as variables because of this lack of
knowledge. A statistic is a function of the realized values of random variables and known parameters.
Statistics are used to estimate the unknown parameters of the sampling distribution or to test hypotheses
about the population of inference.

There are many ways of making the transition from a sampling distribution with random variables
to an observed sample with known outcomes. Perhaps the simplest one is to equate the attributes of the
sample to the attributes of the population of inference. For example, in our sample of 167 Ashkenazi
Jews (a sample of n ¼ 334 genes), the number of observed C alleles is X ¼ 260. The frequency of the C
allele in the sample is 260/334 ¼ 0.778, as shown above. Note that X/n is a statistic that depends on the
observed outcome X and a known parameter, n. What is still unknown is p, the frequency of the C allele
in Ashkenazi Jews, the population of inference. The simple estimator of the frequency of C in
Ashkenazi Jews is the frequency of C in the sample:

bp ¼ X

n
(1.4)

where the hat above the p indicates that this is an estimator of p. To gain some insight into the properties
of this estimator, let us return to the sampling probability distribution. The sampling probability dis-
tribution measures uncertainty, but uncertainty is not the same as ignorance. Indeed, there is much
information contained in the sampling probability distribution, and that is why it is so critical to choose
the appropriate sampling distribution for the inference problem being addressed. One method of
extracting information from the sampling distribution is through the use of the expectation operator. Let
g(x) be some function of the random variable x. Then the expectation of g(x) is defined as:

E½gðxÞ� ¼
X
x

gðxÞf ðxjuÞ for a discrete random variable

E½gðxÞ� ¼
Z
x

gðxÞf ðxjuÞ dx for a continuous random variable
(1.5)
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where the summation or integration is over all possible values of the random variable x, and where u
symbolizes all of the parameters in the sampling distribution. When g(x) ¼ x, the expectation is called
themean of x, often symbolized by m. In the example of the Ashkenazi sample, the mean (or average)
number of C alleles expected in the sample is:

EðxÞ ¼
Xn
x¼1

x

�
n

x

�
pxqn�x ¼ np ¼ m (1.6)

As shown earlier, the frequency of the C allele in the sample is X/n. Note that E(x/n) ¼ E(x)/
n ¼ (np)/n ¼ p because n is a known number and not a variable. Hence, the expected value of the
frequency of C in the sample is equal to p, the frequency of C in the population of inference. The above
calculations show that the sample frequency statistic X/n on the average should be equal to the
frequency in the population of inference; that is, X/n is an unbiased estimator of p.

The expectation operator can also be used to measure the degree of uncertainty in a single number.
Letting g(x) ¼ (x�m)2, the expected value of this squared deviation from the mean for the binomial is
npq where q ¼ 1�p. The expected value of the squared deviation from the mean is called the variance
and is usually symbolized by s2. The variance is a measure of how tightly clustered the observations
will be around the mean; large values imply that there is much uncertainty and a large spread around
the mean, small values imply less uncertainty and a tendency for the observed values to be tightly
clustered around the mean. For the binomial distribution, the variance is s2 ¼ npq.

To calculate the variance of our sample frequency statistic X/n, note that g(x)/n2 ¼ (x/n � p)2, so
the variance of the sample frequency is npq/n2 ¼ pq/n. This equation for the variance of the sample
frequency imparts some important information: namely, as the sample size n increases, the observed
sample frequencies cluster ever more tightly around p. Hence, for making inferences about the
population of inference, the larger the sample the better. That is, as the sample size gets large, the
unbiased estimator X/n converges closer and closer around p.

There are many other methods for making the transition from a sampling distribution with random
variables to an observed sample with known outcomes. For now, only two additional onesdmaximum
likelihood and Bayesian analysisdwill be considered. These two methods are introduced now because
they are used extensively in human population genetics. It is therefore critical to understand these
methods to become an informed reader of the human population genetic literature.

Fisher (1912, 1922) devised the method of maximum likelihood to make the transition from a
sampling probability distribution to an observed data set by the simple expedient of redefining variables
and parameters in the sampling distribution. For example, in the binomial sampling distribution
(Eq. 1.2), once the sample is actually observed, there is no random variable x but rather an observed
value X. Also, although the value n is generally known, that of p is not. Hence, Fisher simply took the
same form of the sampling distribution but substituted X for x, which was now treated as a fixed constant
and not a variable, and p became a continuous variable (but not a random variable) over the interval 0 to
1, and was no longer regarded as a parameter. In general, the likelihood associated with any sampling
distribution has the same general form as the sampling probability distribution, but which has known
constants for the original random variables and regards the unknown original parameters as variables.
Hence, the likelihood for the binomial sampling distribution is:

LðpjX; nÞ ¼
�
n

X

�
pXqn�X (1.7)
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Superficially, Eq. (1.2) looks like Eq. (1.7), but the left-hand side of these two equations reveals that
they are in different mathematical worlds. In Eq. (1.2), p is a parameter; in Eq. (1.7) it is a variable. In
Eq. (1.2), x is a random variable; in Eq. (1.6) X is a constant, known number. In particular, because
there is no random variable in a likelihood function, likelihoods are not probability distributions.
Because of the similarity of Eqs. (1.2) and (1.7), many authors confused Fisherian likelihoods with
sampling probability distributions, treating them as synonyms. This was already a problem by 1922, so
Fisher (1922, p. 326) warned readers to keep “always in mind that likelihood is not here used loosely as
a synonym of probability..” Fisher then went on to discuss some of the mathematical differences
between likelihood and probability, concluding that “likelihood, as above-defined, is.fundamentally
distinct from mathematical probability” (Fisher, 1922, p. 327). Despite this explicit clarification, much
of the population genetic literature still treats likelihood as a synonym for the sampling probability
distribution. However, in this book, Fisher’s distinction will always be kept, but readers are warned that
this is not the case in much of the literature.

In maximum likelihood, the estimators of the unknown parameters are those values of the unknown
parameters that maximize the value of the likelihood function. There are many ways to find such
maxima, and the one that is most convenient to use varies from situation to situation. However, for a
simple likelihood function such as that given in Eq. (1.7), it is possible to find an analytical solution.
Fisher showed that it is often more convenient to maximize the logarithm of the likelihood function.
Taking the natural logarithm of Eq. (1.7) yields:

lnLðpjn;XÞ ¼ ln

�
n

X

�
þ Xlnpþ ðn� XÞlnð1� pÞ (1.8)

One method for finding the maximum of Eq. (1.8) is to take its first derivative with respect to the
variable p, set it equal to 0, and solve for p:

dlnLðpjn;XÞ
dp

¼ �X
1

p
þ ðn� XÞ 1

1� p
¼ 00ðn� XÞp ¼ Xð1� pÞ

np ¼ X

bp ¼ X

n

(1.9)

As shown by Eq. (1.9), the maximum likelihood estimator of the allele frequency p is the sample
allele frequency, which was discussed above. This estimator is unbiased, but sometimes maximum
likelihood estimators can be biased, so this is not a general property of maximum likelihood. Fisher
(1922, p. 323) was not satisfied with the mathematical rigor of simply transforming parameters into
variables and variables into parameters, so he primarily justified his method by deriving several optimal
statistical properties of maximum likelihood. Specifically, maximum likelihood estimators are:

• asymptotically efficient: as the sample size gets large, the error associated with this estimator
becomes as small as one can get with any other estimator.

• consistent: as more and more data are gathered, the estimator converges with probability 1 to the
true state.

• sufficient: all the information in the data about the parameter being estimated is used by the
maximum likelihood estimator.
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All of these highly desirable statistical properties hold true only if the correct sampling distribution
is chosen in the first place, reinforcing the need to use great care in defining the sampling probability
distribution.

In addition to estimation, maximum likelihood also allows one to test hypotheses. Suppose we have
two models of reality, one called U and the other called u, where u is a proper subset of U (that is, if U
has k parameters, then u has j parameters with j < k, with the j parameters all being part of U). Then,
the log-likelihood ratio test statistic of these two models is:

�2ln
LðbuÞ
L
�bU� ¼ �2

�
lnLðbuÞ � lnL

�bU��
(1.10)

where L
�bU�

is the likelihood function evaluated with the maximum likelihood estimators of the
k parameters in U, and LðbuÞ is the likelihood function evaluated with the maximum likelihood
estimators of the j parameters in u. Statistic 1.10 is asymptotically distributed as a chi-square
distribution with kej degrees of freedom under the null hypothesis that u is true. Hence, likeli-
hood ratios provide a general method of testing nested hypotheses against one another. For example,
as shown above, the maximum likelihood estimator of the allele frequency is simply the allele
frequency in the sample. The maximum likelihood estimate of the allele frequency of C for the
Ashkenazi Jews was 0.788, and likewise the maximum likelihood estimate of the allele frequency
for the sub-Saharan Africans was 0.123. Because these are two independent samples, the joint
likelihood function for both populations, with Ashkenazi Jews having allele frequency pj and the
sub-Saharan Africans having allele frequency ps, is the product of the two sample likelihoods. After
taking logarithms, the log-likelihood for the joint samples is the sum of the two individual sample
log-likelihoods:

lnL
�
pj; psjnj;Xj; ns;Xs

� ¼ ln

�
nj

Xj

�
þ Xjlnpj þ ðnj � XjÞln

�
1� pj

�þ ln

�
ns

Xs

�
þ Xslnps þ ðns � XsÞlnð1� psÞ

(1.11)

Eq. (1.11) is the log-likelihood under the hypothesis that Ashkenazi Jews and sub-Saharan Africans
have different frequencies of the C allele. Note that this model has two parameters (treated as variables
in Eq. (1.11)): pj and ps. Now consider the alternative hypothesis that Ashkenazi Jews and sub-Saharan
Africans have the same frequency of the C allele; that is, the hypothesis that pj ¼ ps ¼ p. The
log-likelihood under this hypothesis is:

lnL
�
pjnj;Xj; ns;Xs

	
¼ ln

�
nj

Xj

�
þ ln

�
ns

Xs

�
þ ðXj þ XsÞlnpþ ðnj þ ns � Xj � XsÞlnð1� pÞ (1.12)

The maximum likelihood estimator of p is the frequency of C in the combined Jewish and African
sample: bp ¼ ð260 þ 26Þ=ð334 þ 212Þ ¼ 0:524. The log-likelihood ratio test of the hypothesis
pj ¼ ps ¼ p is therefore:

�2½286lnð0:524Þ þ 260lnð0:476Þ � 260lnð0:778Þ � 74lnð0:222Þ � 26lnð0:123Þ � 186lnð0:877Þ� ¼ 244:6

There are two parameters in the model that allows Ashkenazi Jews and sub-Saharan Africans to
have different allele frequencies (pj and ps), and there is one (p) in the null model that they have the
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same allele frequencies. Therefore, the degrees of freedom are one (2�1). Under the null hypothesis
that there is only one common allele frequency, the probability that a value as large or larger than 244.6
can be evaluated from a chi-square distribution with one degree of freedom is obtained from standard
tables or statistical programs to be effectively zero. Hence, the null hypothesis that the Ashkenazi Jews
and sub-Saharan Africans share the same allele frequency is strongly rejected. Their respective gene
pools are quite distinct for this SNP even though both populations share the same alleles at this SNP.
Populations that share the same alleles and genotypes but that differ significantly in allele frequencies
are considered to be distinct demes in population genetics. Hence, the Ashkenazi and sub-Saharan
populations represent two different human populations.

An alternative statistical approach to maximum likelihood is Bayesian analysis, which lies fully
within the domain of probability theory and therefore has a solid mathematical basis, but does have
some other attributes that have led to much controversy. Like maximum likelihood, a Bayesian
analysis starts with the sampling probability distribution, so Eq. (1.2) would be the first step in a
Bayesian analysis. However, there is no transition to the nonprobabilistic likelihood Eq. (1.7)
(although it is common in the human genetic literature to call the sampling distribution in a Bayesian
analysis a “likelihood,” an egregious violation of Fisher’s definition). Instead, the unknown parameters
are regarded as random variables (recall that they are variables in likelihood equations, but not random
variables) and are assigned a probability distribution. The probability distributions assigned to the
unknown parameter(s) of the sampling distribution are called priors because they should ideally
incorporate prior information about the possible values that these parameters could take on. For the
example of estimating the allele frequency p in Eq. (1.2), a convenient choice for a prior is the beta
probability distribution:

f ðpja1;a2Þ ¼ Gða1 þ a2Þ
Gða1ÞGða2Þp

ða1�1Þð1� pÞða2�1Þ (1.13)

whereG designates a standardmathematical function known as the gamma function. The beta distribution
is a convenient prior for p because, like allele frequencies, the random variable ranges from 0 to 1.
Moreover, as will soon become apparent, the beta distribution and the binomial distribution go together
well mathematically. Finally, note that Eq. (1.13) by making the parameter p in Eq. (1.2) into a random
variable, introduces two additional parameters. It is these two parameters that allow the user to incor-
porate prior information about p. The two alpha parameters determine the mean and variance of p:

m ¼ a1

a1 þ a2

s2 ¼ mð1� mÞ
a1 þ a2 þ 1

(1.14)

Hence, by picking various values of the alpha parameters, the user can specify a broad range of
means and variances for p. The special case of a1 ¼ 1 and a2 ¼ 1 yields a uniform distribution that
specifies that all possible values of p are equally probable. This is known as a flat prior and represents
the case where there is no true prior knowledge.

The second step in the Bayesian analysis is to obtain the “marginal” distribution of x, that is, the
probability distribution of the allele count random variable that no longer depends on p. This is
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obtained by integrating the original sampling distribution over all possible values of p as weighted by
the prior probability distribution of p:

f ðxÞ ¼
Z1
0

f ðpja1;a2Þf ðxjn; pÞdp ¼
�
n

X

�
Gða1 þ a2ÞGða1 þ xÞGðnþ a2 � xÞ

Gða1ÞGða2ÞGðnþ a1 þ a2Þ (1.15)

Note that the right-most part of Eq. (1.15) no longer has p, but instead does have the alpha pa-
rameters that represent prior knowledge (or its lack if the uniform distribution is used).

The third step accomplishes the critical transformation of the random variable x into a known
constant X after sampling. This transformation is effected through the use of conditional probability.
The 18th century mathematician Thomas Bayes showed that if A and B represent two events to which
probability measures can be assigned, then:

PðA given BÞ ¼ PðAjBÞ ¼ PðA and BÞ
PðBÞ ¼ PðAÞPðBjAÞ

PðBÞ (1.16)

Eq. (1.16) is known as Bayes’ Theorem and gives Bayesian statistics its name. Appling Bayes’
Theorem to the problem of estimating allele frequency yields the probability distribution of p (now a
random variable) given X, the actual allele count in the sample and a known number:

f ðpjX; n;a1;a2Þ ¼ f ðpja1;a2Þf ðxjn; pÞ
f ðx ¼ XÞ ¼ Gðnþ a1 þ a2Þ

GðX þ a1ÞGðn� X þ a2Þ p
Xþa1�1ð1� pÞn�Xþa2�1 (1.17)

Eq. (1.17) is known as the posterior distribution of the parameters of the sampling distribution
given the data and prior, or just the posterior.

Once the posterior distribution is obtained, statistical inference for estimation or hypothesis testing
can be made using a multitude of tools available for probability distributions. For example, one simple
estimator of p would be the expected value of p in the posterior distribution (the Pitman estimator).
Noting that Eq. (1.17) is also a beta probability distribution with parameters X þ a1 and n � X þ a2,
Eq. (1.14) can be used to obtain the Pitman estimator as:

bp ¼ a1 þ X

a1 þ a2 þ n
(1.18)

Note that the Pitman estimator (and Bayesian estimators in general) is a function of both the data (X)
and the prior knowledge (a1 and a2). Assuming no prior knowledge (a1 ¼ a2 ¼ 1 to obtain a uniform
distribution over the interval [0, 1], see Fig. 1.3) and using the data from the Ashkenazi population
(X ¼ 260) in a sample of n ¼ 334, yields an estimate of p of 0.777, a value close to that of the maximum
likelihood estimator of 0.778. Similarly, the Pitman estimator assuming a flat prior for the sub-Saharan
African population is 0.126, as compared to 0.123 for the maximum likelihood estimator. Fig. 1.4 shows
that the posterior distributions associated with these estimators concentrate their probabilities very close
around the Pitman estimators, indicating much statistical confidence in the estimators.

Now consider the case in which prior information exists. In addition to these two populations, the
same SNP was scored in several other populations, with the sample frequencies shown in Table 1.1.
Although these human populations are widely scattered throughout the world, all have C as the most
common allele. Indeed, the mean frequency of C across these populations is 0.738 and the variance
is 0.004. Suppose this information on the frequency of C was available before the Ashkenazi and
sub-Saharan populations were examined. This information could then be used to define a prior.
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FIGURE 1.3

Priors on allele frequency [f(p)] used in the Bayesian estimation of the allele frequency p at SNP rs11568820. The

solid black line is a uniform prior over the interval [0, 1]. The dashed blue line is the prior obtained from a beta

distribution whose mean and variance are equal to the mean and variance of p across the populations shown in

Table 1.1. The dashed purple line is the prior obtained from a beta distribution whose mean and variance are equal

to the mean and four times the variance of p across the populations shown in Table 1.1. The solid red line is a

uniform prior over the interval [0.5, 1].

FIGURE 1.4

The posterior distributions of p given the data and the priors shown in Fig. 1.3. The solid/dash and colors

correspond to the marking of the priors. The data for the posteriors above 0.5 are for the Ashkenazi Jewish sample,

and the data for the posteriors at or below 0.5 are for the sub-Saharan African sample.



Indeed, there are many ways of deriving a prior from this information. One simple way is to regard the
information in Table 1.1 as an empirical distribution of p. The mean sample p across the populations
given in Table 1.1 is 0.738, and the variance of p across these populations is 0.004326. Equating the
sample mean and sample variance to the prior mean and prior variance of a beta distribution (Eq. 1.14)
yields a beta prior with a1 ¼ 32.229 and a2 ¼ 11.413. As shown in Fig. 1.3, this prior concentrates
most of the probability above a p of 0.5. The Pitman estimators for this prior are 0.774 for the
Ashkenazi population, which is once again very close to the sample frequency and maximum
likelihood estimate of 0.778. The posterior distribution in this case is virtually indistinguishable from
the posterior associated with the uniform prior, and once again its narrow range indicates much
statistical confidence in the estimator. In contrast, the Pitman estimator for the sub-Saharan population
is 0.295, which is far from the maximum likelihood and sample frequency estimators of 0.123 and the
Pitman estimator of 0.126 associated with a uniform prior. Despite this major displacement of p, the
posterior distribution still displays a rather tight distribution that typically indicates high statistical
confidence in this estimator. Indeed, 95% of the central probability mass (a 95% credible region in
Bayesian parlance) of this posterior lies between 0.179 and 0.281da range that does not even include
the sample frequency of 0.123. The reason for this disconcerting outcome is that the empirical sample
distribution from Table 1.1 is completely concentrated in the upper half of the possible p values.
Equating the empirical mean and variance of p to the mean and variance of a beta prior is equivalent to
placing a very high degree of confidence on the sample given in Table 1.1. However, this sample still
leaves out many potential human populations and major areas of the globe. Moreover, in some cases,
the sample sizes are rather small. These considerations indicate that less confidence should be placed
on these samples as indicators of the allele frequencies found in human populations across the globe.
The degree of uncertainty can be easily manipulated by altering the variance of the prior distribution.
For example, suppose the uncertainty in p is doubled in comparison to the empirical distribution shown
in Table 1.1. Because the variance is in units that are squared relative to the units measuring p, this
increased uncertainty can be modeled by quadrupling the empirical variance from 0.004326 to
0.017304, resulting in a1 ¼ 7.503 and a2 ¼ 2.657. This prior with increased uncertainty is shown in
Fig. 1.3, and as can be seen, this prior is much more spread out than the original prior with no enhanced

Table 1.1 The Sample Frequencies of the C and T Alleles at SNP rs11568820 in the VDR
Promoter Region

Population Frequency C Frequency T Sample Size (Genes)

Spain 0.766 0.234 154

Maghreb 0.646 0.354 164

Ameridian 0.825 0.175 40

India 0.721 0.279 68

Yamane 0.785 0.215 158

Egypt 0.660 0.340 100

Arab Muslim 0.705 0.295 122

Arab Christian 0.800 0.200 140

Data from Tiosano, D., Audi, L., Climer, S., Zhang, W., Templeton, A.R., Fernández-Cancio, M., et al., 2016. Latitudinal clines of the
human vitamin D receptor and skin color genes. G3: GenesjGenomesjGenetics 6, 1251e1266.

14 CHAPTER 1 DEFINITION, SCOPE, AND PREMISES



uncertainty. Still, most of the probability is concentrated above 0.5, and indeed there is still almost no
probability mass near p ¼ .123 for the sub-Saharan sample. Nevertheless, the Pitman estimators are
now 0.777 for the Ashkenazi population and 0.151 for the sub-Saharan population. Hence, the bias on
the sub-Saharan population has been greatly reduced. Indeed, the 95% credible region of the posterior
(Fig. 1.4) is now 0.107 to 0.201, which includes the sample frequency of 0.123.

Another popular method of using prior information is to use the prior information only to specify a
range of possible values. In this simple example, all steps of the Bayesian process can be done
analytically, but in general steps 2 or 3 are often mathematically intractable. However, with high-speed
computers, these steps can be done numerically through computer simulation, which has resulted in an
explosion of the use of Bayesian approaches in biology and human population genetics in particular.
Uniform priors are easy to specify and incorporate into such simulations. With this approach, a
reasonable prior from the data given in Table 1.1 would be a uniform distribution over the interval
[0.5, 1] as all the observations in Table 1.1 are well within this interval (shown in red in Fig. 1.3).
Fig. 1.4 shows the posteriors associated with this prior. As can be seen, the posterior for the Ashkenazi
sample is virtually identical to all the other posteriors, and the Pitman estimator of p is 0.778. In
contrast, the posterior for the sub-Saharan African sample is concentrated at the point 0.5, which is also
the Pitman estimator in this case. The Pitman estimator is now extremely incompatible with the
maximum likelihood estimator; yet, the posterior is narrow, implying much statistical confidence in the
value 0.5 for the sub-Saharan population. This obvious error occurs because the prior in this case
invokes absolute certainty that the allele frequency must be greater than 0.5; it places zero probability
on the possibility of being less than 0.5. The data are strongly pulling the posterior to the lower part
of the parameter space, but the prior boundary of absolute certainty at 0.5 prevents any posterior
probability mass being allocated below 0.5; hence, the probability mass piles up at the boundary. Note
also from Fig. 1.4 that the prior based on enhanced uncertainty of the data in Table 1.1 (the dashed
purple line) places almost no probability mass around the sample frequency of 0.123, yet the posterior
places most of its mass close to 0.123 with a modest bias upward. This shows that “almost zero” and
“at zero” (the uniform prior on [0.5, 1]) have completely different mathematical properties in a
Bayesian analysis. This is one of the reasons why the standard advice in the primary statistical
literature is to never use a uniform prior of restricted range unless one truly has absolute certainty that
the range is indeed restricted (Garthwaite et al., 2005). Unfortunately, this standard statistical advice
is frequently ignored in the human population genetic literature.

Fig. 1.4 shows that the priors had little effect on the posteriors or the estimates of the allele
frequency for the Ashkenazi sample. This is a relatively large sample, with the sample containing
much information about the allele frequency. Moreover, the prior information leads to prior probability
distributions that place most of their probability mass in the region where the sample frequency lies. As
a result, the sample dominates in determining the posterior distributions, and the priors have little
effect on the posteriors or the estimates of allele frequency. The same is not true for the sub-Saharan
sample. In this case, the estimates of allele frequency and the posterior distributions are very sensitive
to the priors. Part of this is due to the fact that this is a smaller sample, so the data make less of a
contribution to the posterior, but the main reason is that the prior information in Table 1.1 is misleading
about the frequency in the sub-Saharan population. The poor statistical properties of the Bayesian
estimator are easy to see in this simple case in which an analytical solution is possible, but when
dealing with more complicated models and complex situations, it is not so easy to see that the analysis
has gone wrong. The main controversy about Bayesian analysis relates to this sensitivity to the priors.
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Although uniform, uninformative priors worked well in this example, in other circumstances such
uniform priors can result in plainly unacceptable inference (Link, 2013). The main advantage of
Bayesian approaches is the ability to incorporate prior information. Increasingly in human population
genetics, much prior or parallel information is available. The statistician Bradley Efron (2013)
recommends that Bayesian approaches should only be used when genuine prior (or parallel)
information exists because invoking uninformative priors can lead to undesirable inference. As the
example of estimating allele frequency shows, even when prior information does exist, great care and
caution must be used in constructing the prior. The mathematical properties of the prior must also be
considered, as shown by the uniform prior with absolute certainty on the interval [0.5, 1] versus a prior
that has almost all of its mass above 0.5 but covers the entire [0, 1] interval. In general, priors of
absolute certainty are rarely defensible and should be avoided.

The sub-Saharan example shown in Fig. 1.4 illustrates a case in which maximum likelihood performs
better than a Bayesian approach, but examples exist in the population genetic literature in which
Bayesian procedures fare better than maximum likelihood (Beerli, 2006). Both of these approaches
should be in the statistical tool kit of any human population geneticist. Moreover, both of these
approaches are used extensively in human population genetics, so it is wise to be familiar with these
approaches and their differences. Both are essential for studying the fate of genes over space and time.

PREMISE 2: DNA CAN MUTATE AND RECOMBINE
If DNA replication were 100% accurate, there would be no evolution. The operational definition of
evolution is a change in gamete frequency (allele frequency in the single locus case), but this definition
requires that alternative gamete types exist in the gene pool; that is, there must be genetic variation,
alternative genetic states in homologous regions of DNA across the genomes in the gene pool. These
genetic alternatives come into existence only because errors occur during DNA replication and
meiosis. The errors that produce new genetic variants are called mutations. Mutations can take on
many forms. Most mutations in the human genome involve the substitution of one nucleotide for
another, as in the mutations that produce SNPs. Other mutations involve insertions or deletions of
nucleotides, which can vary from a single nucleotide to many thousands of base pairs (bp). Many genes
and nucleotide motifs exist in multigene families in which multiple copies of the same basic type of
gene or motif coexist in the genome, often in tandem arrays in a single region of a chromosome.
Insertions and deletions of gene/motif copies (operationally 50 bp or more, commonly in the
multikilobase pair range) in such a family produce copy-number variation (CNV) within the multigene
family. Errors can also occur at the chromosome level, resulting in gametes with either too many or too
few chromosomes, or chromosomes that have been altered by fusion with other chromosomes, or large
blocks of the chromosome being deleted or inverted. Population genetics deals with all types of genetic
variation and their fates over space and time.

The amount of genetic variation produced by the mutational processes is immense. On just dealing
with SNPs, 325.7 million reference SNPs are listed in the database dbSNP for humans as of February
3, 2017. Most of these SNPs are diallelic (that is, they are polymorphic for just two nucleotide states),
so conservatively; each one defines three genotypes, as shown by the example in Fig. 1.2. The potential
number of distinct genotypes at the entire genome level that could be defined by 325.7 million biallelic
SNPs is 3325,700,000 or about 1015,540,000. To put these numbers into perspective, it is estimated that
there are 1080 electrons in the universe (Aoyama et al., 2012), an extremely small number compared to
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the potential genotypic variation of current humanity. Given that the total number of humans is less
than 1010, the number of potential genotypes that is possible just from the existing variation in the
human gene pool is astronomically greater than the number of people. Hence, every fertilization event
in our species creates a completely novel and unique genetic individual; a person with a genome-wide
genotype that has never existed in the past and will never exist again in the future. The evolutionary
potential of humanity is truly immense.

The overall human genome-wide mutation rate for SNPs has been estimated to be 1.16 � 10�8 per
bp per generation (Campbell and Eichler, 2013). Given that the human genome is 3 � 109 bp, this
means that the average gamete bears about 30e35 new single nucleotide mutations. Of course, there
are many other types of variants, such as CNVs, whose mutation rate has been estimated as large as
3 � 10�2 for variants greater than 500 bp (Campbell and Eichler, 2013). Short tandem repeats or
microsatellites are an important category of small insertion/deletion mutations that are generally kept
separate from CNVs because the DNA motif subject to CNV is typically only 2e4 bp. Microsatellites
are scattered throughout the human genome and often show variation in the number of copies of the
short repeats, with a mutation rate of 2.7 � 10�4 per locus per generation for dinucleotide repeats and
1 � 10�3 per locus per generation for tetranucleotide repeats (Campbell and Eichler, 2013). The
mutation rate of small insertions or deletions (indels), often just a single bp long, is about 10�9 per
nucleotide per generation (Campbell and Eichler, 2013). Another source of mutational change in the
genome is due to transposable elements, which will be discussed in more detail in the next chapter.
These elements can insert into new locations in the genome, inducing yet another type of insertion
mutation, with a rate of 2.5 � 10�2 per genome per generation (Campbell and Eichler, 2013). This is
not an exhaustive list of all the types of mutations that can occur in the human genome, but it is already
obvious that new mutations are collectively quite common and virtually every genome borne by a
human gamete contains multiple new mutations. Hence, the raw material for human evolution, genetic
variation, is exceedingly abundant in the current human gene pool and is replenished every generation
by the mutational process.

One of the basic premises of the neo-Darwinian theory of evolution is that mutation is random with
respect to the needs of an organism in coping with its environment in terms of living, mating, and
reproducing. This randomness of mutation is frequently misinterpreted. Mutation at the molecular
level is anything but random, as will be shown in the next chapter. Mutation is strongly influenced by
many physicalechemical properties, resulting in a highly nonrandom distribution of mutations
throughout the genome. Moreover, the mutational process can be strongly influenced in both rate and
type of mutation by many environmental factors, such as exposure to radiation, various chemicals, and
other environmental stresses. Finally, mutation is strongly biased in terms of its effects on viability,
mating success, and fertility/fecundity. The mutations that are important in human evolution occur
mostly in the germ lines of individuals who are alive, mated, and fertile in the environments in which
they live. Hence, the genes these reproducing individuals bear have already demonstrated to some
extent that they are “fit” in the environments in which these individuals live. Making a random change
in such genes is far more likely to be deleterious than beneficial. This hypothesis can be tested directly
in organisms subject to experimental manipulation and control. One of the most exhaustive studies on
the fitness effects of new mutations was carried out for the poliovirus, as shown in Fig. 1.5 (Acevedo
et al., 2014). As can be seen, most mutations that cause a change in the amino acid sequence of a
protein are lethal, and most other nonsynonymous changes are deleterious, but a few are neutral and
even beneficial. The synonymous mutations show a similar pattern, but are far less likely to be lethal
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and are skewed toward neutrality and beneficial effects. Overall, the mutational process is strongly
biased against producing beneficial mutations (Fig. 1.5). Humans cannot be studied so directly for
the fitness impact of newmutations, but indirect estimators are consistent with these results (Kim et al.,
2017). The randomness of mutation in the neo-Darwinian perspective simply means that the
environment in which an organism is living does not direct the mutational process to produce
mutations that are beneficial to the offspring who will live in that environment. Mutation is a molecular
level process that occurs long before the mutation could possibly have an effect on the offspring’s
ability to live, mate, and reproduce in an environment yet to be experienced. Moreover, the phenotypes
affected by a new mutation are not inherent properties of the mutation alone, but rather depend on
genetic background and environmental responses, as will be shown in the next section.

Mutation is the ultimate source of genetic variation at homologous sites, such as the alternative
alleles at a gene locus in classical Mendelian genetics. Given these alternatives, recombination and
allied mechanisms such as gene conversion can greatly amplify genetic variation by creating new
combinations of variants at nonhomologous sites. Fig. 1.6 depicts an initial gene pool that is
polymorphic with two alleles, A and a, at locus A due to prior mutation. However, there is no allelic
variation at the nearby B locus, at which all chromosomes bear the same allele, B. Fig. 1.6 then shows a
mutation occurring on one of the chromosomes bearing an a allele at the A locus and a B allele at the B
locus that creates a new B locus allele, b. Note that after mutation at the B locus, there are three
two-locus gamete types: AB, aB, and ab. Assuming that each mutation creates a new allele (the infinite
allele model), no other combinations involving these four alleles (A and a, B and b) would be possible.
However, if recombination occurred between the A and B loci, as shown at the bottom of Fig. 1.6, then

FIGURE 1.5

The fitness effects of new mutations in protein-coding genes in the poliovirus as a function of being non-

synonymous (causing an amino acid change) or synonymous (no amino acid change).

Modified from Acevedo, A., Brodsky, L., Andino, R., 2014. Mutational and fitness landscapes of an RNA virus revealed through

population sequencing. Nature 505, 686e690.
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the fourth allelic combination, Ab, could be created. This shows how recombination can create new
combinations of preexisting alleles, and thereby increase multilocus gametic diversity.

The ability of recombination to generate new associations between alleles at different sites can be
quantified through various measures of linkage disequilibrium (Zapata, 2013), all of which in some
manner measure the correlation of allelic states found at two different sites in the genome that are
present in the same gamete in the gene pool. The phrase “linkage disequilibrium” is unfortunately
misleading. All measures of linkage disequilibrium deal with the association of alleles at different loci
in gametes drawn from the gene pool. Linkage disequilibrium has nothing directly to do with genetic
linkage (loci on the same chromosome), and indeed, linkage disequilibrium can and does exist

FIGURE 1.6

The production of novel gamete types by recombination after mutation. The initial gene pool is illustrated as

consisting of one polymorphic site with two alleles, A and a, with a second site having no variation and only one

allele, B. Mutation at the second site creates a new allele, b, by chance on a chromosome with the a allele at the

first site. Some generations later, when there are multiple copies of the ab gamete type, a recombination event

occurs with an AB gamete to generate a new gamete type, Ab.
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between some loci that are unlinked (found on different chromosomes). Consequently, linkage
disequilibrium is a population (gene pool) measure, and not directly a measure of linkage or genomic
location. As will be shown in Chapter 3, high levels of linkage disequilibrium are associated primarily
with genetically tightly linked loci, but this is an evolutionary consequence of recombination and not
an inherent property of the definition of linkage disequilibrium. The word “disequilibrium” can also be
misleading, as one can have both equilibrium and nonequilibrium states of the disequilibrium
measures. The equilibrium status is not part of the definition of linkage disequilibrium measures, but
rather emerges from the evolutionary forces operating on the gene pool, so equilibrium status is also a
population phenomenon and not a genomic state. Because the phrase “linkage disequilbrium” is so
misleading, the alternative phrase “gametic phase imbalance” has been proposed. However, the
literature is dominated by the phrase “linkage disequilibrium,” so it will be used throughout this book
with the caveat that linkage disequilibrium is not a measure of either linkage or nonequilibrium status,
but rather is strictly a function of the frequencies of gamete types in a gene pool.

In the previous section, p was the frequency of gametes bearing a specific allele at a single locus in
the gene pool. Now let gij be the frequency of gametes bearing allele i at locus 1 and simultaneously
allele j at locus 2 in the gene pool. For the two-locus model with two alleles at each locus, as shown in
Fig. 1.6, there are four two-locus gamete frequencies: gAB, gAb, gaB, and gab.As with allele frequencies,
these four gamete frequencies always sum to one as they exhaustively cover all possible states of the
two-locus, two-allele model. The original definition of linkage disequilibrium is:

D ¼ gABgab � gAbgaB (1.19)

When alleles at different loci are brought together in the same gamete at random (no correlation),
the frequency of the two-locus gamete is simply the product of the single-locus allele frequencies. For
example, gAB ¼ pv in this case, where p is the frequency of the A allele at locus 1 (and 1 � p the
frequency of a), and v the frequency of the B allele at locus 2 (and 1 � v the frequency of b).
Substituting these allele frequency products into Eq. (1.19) yields D ¼ 0. Hence, D s 0 indicates a
nonrandom association of alleles in the same gamete in the gene pool.

In the case illustrated in Fig. 1.6, gAb ¼ 0 immediately after mutation at the B locus but before
recombination. Hence, D ¼ gABgab > 0. This is a general property of the mutational process.
Mutation not only creates a new allele at the site of mutation, but mutation also creates nonzero linkage
disequilibrium (associations) with alleles at the sites that were already polymorphic in the gene pool.
Consequently, the initial evolutionary state for any new mutation in the gene pool is to be in linkage
disequilibrium with preexisting variation. This initial nonzero linkage disequilibrium reflects the
historical evolutionary context of the initial mutation event; in the case of Fig. 1.6, the fact that the b
mutation occurred on a chromosome with the a allele such that initially all copies of the b allele are
only found in gametes that also bear the a allele. Once recombination occurs, gAb > 0 is possible, so
now the negative term in Eq. (1.19) is no longer zero and the magnitude of D is reduced. In this
manner, mutation creates new alleles and linkage disequilibrium, whereas recombination creates new
combinations of alleles and diminishes linkage disequilibrium.

D is sensitive to the allele labels that one assigns. For example, suppose in Fig. 1.6 the
initial allele at the B locus was designated b, and the new mutant B. This is a human decision with
no evolutionary or genetic significance, yet now the initial linkage disequilibrium created by
mutation would be negative, �gAbgaB. The sign of D is not usually of any biological significance.

20 CHAPTER 1 DEFINITION, SCOPE, AND PREMISES



Moreover, the range of possible values of D is strongly influenced by the single-locus allele
frequencies p and v such that

�minimum½pv; ð1� pÞð1� vÞ� � D � minimum½pð1� vÞ; ð1� pÞv� (1.20)

As a consequence of this range sensitivity, the same magnitude of D at two different pairs of loci
may reflect very different strengths of association if the single-locus allele frequencies are different for
each pair. To get around these two problems, a commonly used measure of linkage disequilibrium in
the human genetics literature is:

r2 ¼ D2

pvð1� pÞð1� vÞ (1.21)

The advantages of r2 are that it does not depend on the allele labels and it lies in the range 0e1.
However, r2 does not completely eliminate the dependence of the range on the single-locus allele
frequencies. From inequalities Eqs. (1.20) and (1.21), the maximum value of r2 takes on the general
form:

max r2 ¼ xy

ð1� xÞð1� yÞ and xy � ð1� xÞð1� yÞ (1.22)

where x can be either p or (1�p) and y can be either v or (1�v). A measure of linkage disequilibrium
that does eliminate this range dependency is the normalized linkage disequilibrium, D0, which is the
linkage disequilibrium divided by its theoretical maximum absolute value:

D0 ¼

8>>>><
>>>>:

D

minðpApB; papbÞ; D < 0

D

minðpApb; papBÞ; D > 0

(1.23)

This measure is always in the range �1 to 1 for all possible single-locus allele frequencies. To
eliminate the effects of how arbitrary allele labels can affect the sign, it is common to take the absolute
value of D0 as yet another measure of linkage disequilibrium that ranges from 0 to 1 for all pairs of loci
regardless of their single-locus allele frequencies.

D0 is a useful measure for characterizing the effects of newly arisen mutations and the initial
recombination events affecting them. Consider a situation such as that shown in Fig. 1.6. Assuming
that the initial frequency of the A allele in the gene pool was 0.6, and therefore a has a frequency of 0.4,
the initial two-locus gamete frequencies are 0.6 for AB and 0.4 for aB, with all other gamete fre-
quencies being 0. Because there is no variation at the B locus, all measures of linkage disequilibrium
are 0. Now suppose, as shown in Fig. 1.6, that a B allele on an aB chromosome mutates to the b allele to
create an ab gamete type. The frequency of this new mutation is rare initially, so suppose that after a
few generations the frequency of the ab gamete is 0.001, with the frequencies of AB being 0.6 and aB
being 0.399. Because no recombination has yet occurred, the frequency of Ab is still 0. For this two-
locus, two-allele gene pool, D ¼ 0.0006, r2 ¼ 0.0015, and D0 ¼ 1. The first two measures of linkage
disequilibrium are very close to zero because the frequency of the b allele is very small, only 0.001.
The linkage disequilibrium created by the act of mutation is virtually invisible to D and r2. In contrast,
D0 is at its maximum value, showing that the newly arisen b allele is in maximal disequilibrium with
the preexisting A/a polymorphism. When recombination occurs to create the Ab allelic combination
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(Fig. 1.6), the initial frequency of the recombinant gamete Ab will generally be even rarer than that of
the newly mutated gamete, ab. Assuming that the gamete frequencies shortly after the recombination
event are 0.5999 for AB, 0.399 for aB (that is, the two ancestral gamete types have had their gamete
frequencies only change in a minor way due to mutation and recombination), 0.001 for the mutant
gamete type ab, and 0.0001 for the recombinant gamete type Ab, then D ¼ 0.0006, r2 ¼ 0.0012, and
D0 ¼ 0.8485. Once again, D and r2 show little sensitivity to the recombination event, but D0 plummets
and is no longer maximal even though the frequency of the recombinant gamete type is very low.

One limitation of all these measures of linkage disequilibrium is that they give just one value of
association between the two loci even though we have four distinct allelic combinations. Thus, a D0 ¼ 1
tells you that you are at maximum linkage disequilibrium, but it does not tell you what allelic
combinations are driving this disequilibrium. The measure of Custom Correlation Coefficient (CCC)
solves this problem by returning a vector (a set of numbers) whose elements measure the degree of
association between each possible allelic combination. Given gamete frequencies, the general definition
of a CCC element is (Climer et al., 2014):

CCCij ¼ gijffiffj (1.24)

where gij is the frequency of the gamete bearing allele i at the first locus and allele j at the second locus
and ffi is a frequency factor correction for allele i and ffj is a frequency factor correction for allele j. For
the two-locus, two-allele models considered so far, the resultant CCC vector consists of four values,
one for each type of allelic combination AB, Ab, aB, and ab. Avariety of frequency factors can be used,
depending on the problem at hand. For investigating newly arisen mutation and recombination events,
a useful frequency factor correction is ffk ¼ 1/pk where pk is the frequency of allele i in the gene pool;
that is,

CCC0 ¼ fgAB=ðpvÞ; gAb=ðpð1� vÞÞ; gaB=ðð1� pÞvÞ; gab=ðð1� pÞð1� vÞÞg (1.25)

Using the allele frequency symbols given in the example above. Note that for CCC0, the frequency
factor correction simply divides the gamete frequencies by the product of the allele frequencies that
make up that gamete type; that is, the gamete frequencies are divided by their expected value if there
were no association at all. Applying CCC0 to the hypothetical gene pool influenced by a recent new
mutation with the new mutation gamete ab gamete having a frequency of 0.001 and the older gamete
types having frequencies of AB being 0.6 and aB being 0.399, the resulting vector is {1.001, 0, 0.9985,
2.5}. Note that the elements for the two older gamete types AB and aB are both very close to 1,
indicating that these alleles occur together as frequently as expected by random, independent
associations. In contrast, the new mutant gamete type, ab, is 2.5 times more likely than expected under
a hypothesis of random association of the two alleles. Hence, CCC0 makes it clear that mutation has
created the linkage disequilibrium that exists in this system, and all the other measures of linkage
disequilibrium are being driven by the mutant gamete alone. Now consider the gene pool after a
recombination event has created the Ab allelic combination such that gAB ¼ 0.5999, gAb ¼ 0.0001,
gaB ¼ 0.399, and gab ¼ 0.001. The CCC0 vector is now {1.001, 0.1515, 0.9986, 2.2727}. The two older
gamete types still have CCC0 elements close to one, indicating that they are still making virtually no
contribution to linkage disequilibrium in this system. The new mutant ab still has a CCC0 element
much greater than one, indicating that the a and b alleles are still associated in great excess over
random association expectations, but the degree of association has been reduced after the recombi-
nation event. The recombinant gamete Ab has a CCC0 element much less than one, indicating that this
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new allelic combination created by recombination is much rarer than expected under random asso-
ciation. In this manner, the CCC0 measure makes it clear that mutation creates linkage disequilibrium
that is specifically driven by the new mutant allele in association with the previously existing allele at
the other locus that happened to be on the same gamete at the time of mutation, and that recombination
diminishes linkage disequilibrium by bringing the new mutant gamete frequency closer to random
expectations by creating new recombinant allelic combinations that are well below the expected
random association frequencies. Hence, both mutation and recombination create deviations from
random expectations, but in opposite directions, with mutation increasing linkage disequilibrium and
recombination reducing linkage disequilibrium.

When a new mutation occurs, the newly created mutant allele typically arises on a chromosome
with many polymorphic sites, not just one preexisting polymorphic site. The new mutant allele is
therefore in linkage disequilibrium with all the specific alleles that happened to be on the same
chromosome on which the mutation occurred at all of the preexisting polymorphic sites. These
multilocus associations are best visualized through haplotypes, a segment of DNA that is simulta-
neously characterized by the allelic states at two or more polymorphic sites. Haplotypes can consist of
just two sites, as in the two-locus, two-allele example, but more commonly haplotypes refer to DNA
segments characterized by allelic states at several, sometimes thousands, of polymorphic sites. For
example, a 9.7 kb region within the human Lipo-Protein Lipase (LPL) locus was sequenced in 71
humans (142 chromosomes), and 88 variable sites were confirmed by resequencing. Excluding a
microsatellite region with variation in the number of a 4-nucleotide tandem repeat and several
singletons (that is, only one individual had a variant), the 69 remaining variable sites determined a
total of 88 distinct haplotypes (Templeton et al., 2000a). In addition to mutations at these 69 sites, the
haplotype diversity in this region was influenced by some 29 statistically significant recombination or
gene conversion (an event in which a small segment of one chromosome replaces its homologue on its
sister chromosome and that often represents an alternative outcome to the molecular events that also
yield recombination) events (Templeton et al., 2000a,b). Twenty-nine of these haplotypes had no
significant evidence of a recombination or gene conversion event in their evolutionary history, so this
subset of the haplotype diversity was due solely to the accumulation of mutations in different DNA
lineages. However, all the other haplotypes emerged from a combination of mutational events,
recombination events, and gene conversion events, as shown in Fig. 1.7 (from Templeton et al.,
2000b). Fig. 1.7 is called an ancestral recombination graph that depicts the recombination events
that occurred during the evolutionary history of a DNA region and how those recombination events
have affected modern haplotype diversity. Fig. 1.7 also portrays the mutational events that occurred
in the various haplotype lineages after recombination occurred. As can be seen, mutation and
recombination acted together to produce most of the diversity found in the LPL gene observed in
living humans. Some haplotype have many recombination events in their history. For example,
haplotypes 63N and 71R have seven recombination events in their history, as well as the accumulation
of many mutations (Fig. 1.7).

Mutation and recombination produce genetic diversity, the raw material of all evolutionary change.
The human gene pool already contains astronomical levels of variability produced by past mutation
and recombination events, and more is added every generation in our growing population. There is no
question that humans have an abundance of genetic variation, so the focus now turns to the impact of
this variation on phenotypes, the traits that we express.
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FIGURE 1.7

The ancestral recombination graph of 9.7 kb portion of the LPL gene. Current haplotypes are indicated by a

number followed by a letter (J, N, or R) and inferred ancestral haplotypes are indicated by “Node x” where x is a

letter or by T-#. The symbol “�” joins the two parental haplotypes that were the parental types in a recombination

or gene conversion event. Thick arrows point to the haplotype created by a recombination event, and a thin arrow

to a haplotype created by a gene conversion event. Lines broken up by small circles with a number by them

indicate mutational events that accumulated in various DNA lineages, where the number indicates which of the 69

variable sites mutated.

From Templeton et al. (2000b).



PREMISE 3: DNA AND THE ENVIRONMENT INTERACT TO PRODUCE PHENOTYPES
The information encoded in DNA is always expressed in the context of some environment, so the
environment is always a potential modulating factor in going from DNA to phenotype. This is true
even for Mendelian genetic diseases, the textbook exemplars of genetic determinism. For example,
consider the genetic disease of sickle-cell anemia. Sickle-cell anemia is a type of hemolytic anemia
(that is, the red blood cells tend to lyse) that can lead to a variety of deleterious clinical effects and
early death. Sickle-cell anemia is associated with a single nucleotide substitution in the sixth codon of
the protein-coding gene Hemoglobin b-Chain (Hbb) that substitutes a valine (the S allele) for a
glutamic acid (the A allele) in the sixth amino acid position in the protein product, the b-chain of
hemoglobin (Gong et al., 2013). The adult form of the hemoglobin molecule (abbreviated by Hb) is a
tetramer consisting of two b-chains and two a-chains (coded for by a different, unlinked gene). Each of
the four chains contains a heme group that can bind oxygen molecules. The hemoglobin molecules are
tightly packed in red blood cells. Hemoglobin normally binds oxygen molecules as the red blood cells
pass through the lungs and encounter an oxygen-rich environment. When the red blood cells are
transported to other parts of the body and encounter environments with low oxygen tension, the
hemoglobin molecules tend to lose their oxygen molecules, which then become available to the cells
in the low oxygen environment. Low oxygen environments can be accentuated by pregnancy
(the fetus has a form of hemoglobin with a higher oxygen affinity than adult hemoglobin), high
altitudes, and cells near capillaries that are oxygen depleted. When a hemoglobin molecule looses an
oxygen molecule in one of its four chains, there is an allosteric shift (a change in the 3-dimensional
configuration of the chains) that facilitates all of the chains to loose their oxygen molecules,
thereby facilitating the efficiency of oxygen transport. The allosteric shift causes an outward shift of a
protrusion in the b-chains caused by the valine at position 6 that can then become inserted into a pocket
in an a-chain of an adjacent hemoglobin molecule, leading to long fibers or polymers of joined
hemoglobin molecules. These polymers in turn can distort the shape of the red blood cell, leading to a
sickle shape, the phenotype that gives the disease its name.

Sickling occurs under the environmental condition of low oxygen tension, so this trait arises from
the interaction of HbS (hemoglobin molecules bearing the S allele encoded b-chain) with this
environment. There is also an interaction with the genetic environment: that is, the phenotypic state
associated with a given allele depends on the genetic state of other alleles at the same or different loci.
A Hb polymer can only continue to grow if the Hb molecule at its tip bears an S type b-chain. In an AS
heterozygote, many of the Hb molecules in the red blood cell bear b-chains with glutamic acid, and
when such a Hb molecule is added to the polymer, it terminates further growth. Hence, AS hetero-
zygotes have shorter Hb polymers than SS homozygotes under comparable environmental oxygen
tensions. Indeed, the distortion of the shape of red blood cells in SS homozygotes can be so severe that
the red blood cell can lyse, causing hemolytic anemia. The spleen preferentially filters out these
distorted cells. Moreover, the strongly distorted red blood cells often cannot pass easily through
the capillaries, leading to clumping of cells and local failures of blood supply to peripheral tissues. The
anemia, filtering by the spleen, and local blockages can lead to a wide variety of clinically important
traits collectively called sickle-cell anemia (Fig. 1.8). These symptoms can be so severe that they often
lead to premature death.

Another environmental factor that can induce sickling in both AS and SS individuals is infection by
the malarial parasite, Plasmodium falciparum (Bunn, 2013). The malarial parasite spends part of its
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life history inside a red blood cell, where its oxygen consumption can lead to low oxygen tensions
inside the red blood cell, thereby leading to sickling. However, there is another phenotype or trait that
becomes obvious in an environment characterized by a malarial infection; namely, AS children
infected with malaria are 50%e90% less likely to progress to severe malaria or to die from malaria

FIGURE 1.8

The cascade of clinically important traits that can occur in SS individuals when their red blood cells are exposed to

an environment of low oxygen tension.

Modified from Neel and Schull, 1954. Human Heredity. Chicago, University of Chicago Press.
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compared to AA homozygotes. Exactly how the S allele interacts with a malarial infection to produce
the phenotype of malarial resistance is not known, but there are many hypothesis, some related to Hb
polymer formation and others involving other mechanisms that could occur in addition to the polymer-
associated mechanisms (Bunn, 2013).

Another trait that arises from the interaction of the genotypes at the Hbb locus with the environ-
ment is the phenotype of viability; that is, the ability to live or survive in an environment. In an
environment in which malarial infections do not occur, both the AA and AS genotypes are associated
with high viability, whereas the SS genotype has low viability due to deaths caused by sickle-cell
anemia. However, in an environment in which malarial infection is common, the AS genotype is
associated with high viability because of malarial resistance, whereas both the AA and SS genotypes
are associated with lower viabilities due to malarial susceptibility (AA) and sickle-cell anemia (SS).
Note that the same genotype can have very different phenotypes depending on the environment to
which to the individual is exposed. The phenotypes arise from how the information encoded in DNA
interacts with the environment. In general, the traits expressed by individual human beings should
always be thought of as arising from gene-by-environment interactions that cannot be partitioned into
separate genetic and environmental components. As will be shown in Chapter 8, a partition of
phenotypic variation into “genetic” and “environmental” components can be made at the population
level, but as will also be shown, this population-level partition is not a partition of an individual’s traits
into nature versus nurture.

NATURAL SELECTION AND THE INTEGRATION OF THE THREE PREMISES
DNA is often described as the blueprint of life, and there is a strong tendency toward genetic deter-
minism in both the scientific and popular literature that often uses the expression “the gene for X”
where “X” is some phenotype (a measureable trait) that can be “heart disease,” “belief in God,” etc.
(Bates et al., 2002). If genes truly did determine phenotypes rather than gene-by-environment in-
teractions, there would be no human life on this planet. To see why, consider the final phenotype
discussed above with respect to the S allele, viability.

Viability and a few other traits such as the ability to find a mate and fertility play a special role in
evolutionary biology. Contrary to the popular metaphor of the “selfish gene” (Dawkins, 1976), DNA in
nature is completely dependent on the individual bearing it for its replication. For DNA replication to
actually occur in natural populations, it is necessary that individuals be alive (viable), mated, and
fertile. Quite often the phenotypes of viability, mating success, and fertility are combined into a single
phenotype of reproductive success called fitness. Note that fitness as used in population genetics does
not refer to how healthy or strong an individual may be, but rather fitness is a measure of the actual
number of gametes successfully passed on to the next generation. When different genotypes exist in
the population (arising from the variation produced by mutation and recombination, premise 2) that
interact with the environment to produce different fitness phenotypes (premise 3), then there can
be differential DNA replication (premise 1) such that those genes or gene combinations that tend to be
associated with the higher fitness phenotypes tend to be the most replicated. In this manner, the
concept of fitness unites all three premises of population genetics into an integrated whole (Fig. 1.9).

Natural selection is the differential replication of different gamete types due to differential
genotypic responses to an environment for the phenotype of fitness. In this way, the response of
individuals to the environment can influence which genes persist over time and spread over space.
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In particular, the genes that tend to be favored by natural selection are those associated with traits in
the environment that result in high viability, mating success, and/or fertility. Traits that enhance
reproductive fitness in the context of an environment are called adaptations to that environment. Not
all evolution is adaptive, but adaptive evolution through natural selection has played a central role in
evolutionary biology ever since Darwin. Indeed, without adaptive evolution, complex life forms such
as humans could have never evolved.

Fig. 1.9 provides a rationale for the organization of this book. In Chapter 2, the human genome will
be examined, the arena on which DNA replication, mutation, and recombination all occur. Chapters 3
through 7 explore how evolutionary forces other than natural selection can influence the fate of genetic
variation through space and time in a reproducing population or set of populations. Chapter 8 deals
with how the information encoded in DNA interacts with the environment to produce phenotypic
variation. At that point, natural selection can be addressed, and Chapters 9 through 13 focus on
adaptive evolution in humans. The final chapter focuses on the implications for human society of the
evolutionary principles and population genetic features discussed in the earlier chapters.
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THE HUMAN GENOME 2
A genome is a complete set of the chromosomes that are normally passed on through a gamete. The
human genome is the arena within which mutation and recombination occur. It is the physical location
of the genetic variation that is the focus of population genetics and on which microevolution occurs.
Humans actually have two very different genomes, reflecting an ancient symbiosis that occurred
during the Precambrian between two lineages that lead to the evolution of eukaryotes, of which
humans are just one species out of many. One of the human genomes is the nuclear genome that
resides inside the cell nucleus and consists of about 3 billion nucleotides distributed among 23
chromosomes: 22 autosomes plus one sex chromosome (either an X or a Y chromosome) (Fig. 2.1).
The second human genome is themitochondrial genome that consists of about 16,570 nucleotides on
a single circular chromosome residing inside the mitochondria in the cytoplasm of the cell. Both of
these genomes play an important role in population genetic studies. Because most of the studies in
human population genetics focus on the nuclear genome, it will be discussed first.

COMPONENTS OF THE NUCLEAR GENOME
GENES
The most studied component of the nuclear genome is genes, units of functional information encoded
in the DNA sequence. The more we have learned about genetics and genomics, the more difficult it has
become to precisely define a gene. One definition is a locatable, contiguous, genomic sequence,
corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions,
and/or other functional sequence regions (Pearson, 2006). Even this definition does not capture all the
complexity that molecular biology has revealed about the processes that extract information from a
potentially heterogeneous set of DNA sequences and transform those input sequences into an RNA or
protein target that possess functions traditionally assigned to a single “gene” (Krakauer, 2009).
Fortunately, most population genetic theory and applications do not depend on the precise definition of
a gene. Indeed, any variation anywhere in the genome can be the object of population genetic studies.

There are two major classes of genes in the genome: protein-coding genes and RNA-coding genes.
There are about 21,000 protein-coding genes in the genome (Ensembl Genome Brower, release 75,
Feb. 2014), accounting collectively for about 1.5% of the genome. This is about the same number of
protein-coding genes found in most vertebrate species, so humans are not special in the number of such
genes. A typical structure for a protein-coding gene is shown in Fig. 2.2. As can be seen, a single
protein-coding gene can have many different transcripts, and hence a single gene can code for more
than one distinct protein. Also note that the regulatory elements that are part of the definition of a gene
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given above, can be widely distributed, including the possibility of being closer to a nearby gene
(Gerstein et al., 2007). This illustrates an important problem in population genetics. Many population
genetic studies infer associations between some genetic marker and a phenotype of interest. There is a
tendency to go from association to causation by assuming that the gene closest to the marker is
somehow the causative agent. This is a dangerous assumption, as well as the fact that phenotypes are
rarely “caused” by a single gene but rather by interactions of genes with one another and with the
environment (Chapter 1). Association should never be confused with causation.

Fig. 2.2 illustrates another important feature of the structure of protein-coding genes: rarely is the
amino-acid coding portion a continuous DNA sequence; rather the amino-acid coding portions of the
DNA sequence (exons) are separated by intron sequences that do not code for amino acids. By making
DNA copies of processed messenger RNA (mRNA) transcripts in which the introns have been spliced
out, it is possible to sequence or study variation only in the amino-acid coding portions of the genes.
This amino-acid coding subset of the genome is known as the exome.

FIGURE 2.1

The human nuclear genome, consisting of 22 autosomal chromosomes and either an X or a Y chromosome. This

figure displays the chromosomes as an ideogram that shows their relative sizes and their characteristic banding

patterns. The constrictions within the chromosomes show the position of the centromere.

Courtesy of the National Human Genome Research Institute.
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In addition to the protein-coding genes, there are over 14,000 pseudogenes, DNA regions with
much sequence similarity to a protein-coding gene but which are nonfunctional for protein production.
Many of these pseudogenes originate from DNA copies of mRNA that get integrated back into the
genome. These are known as processed pseudogenes and lack introns and regulatory sequences,
particularly the upstream promoters. Another class of pseudogenes arises when a duplication event
occurs that makes a redundant copy of a gene. Such redundant genes are often neutral in terms of
reproductive fitness, and as will be described in Chapter 4, they will tend to accumulate mutations.
Because most mutations are deleterious to function (Chapter 1), these redundant copies tend to
eventually lose their protein functionality. Finally, a gene can become selectively neutral as
environments change, once again followed by the evolutionary accumulation of mutations that result
in loss of function, thereby creating a disabled gene or unitary pseudogene. For example, the enzyme
L-gulono-gamma-lactone oxidase catalyzes the terminal step in L-ascorbic acid (Vitamin C) biosyn-
thesis. When primates adopted a diet that provided Vitamin C, the gene coding for this enzyme was no
longer needed, and over time it accumulated many mutations, including two new stop codons that
make it functionally inactive in humans (Nishikimi et al., 1994).

FIGURE 2.2

The top shows the DNA sequence with exons (amino acid coding portions shown as black rectangles) of the

gene SHP-1 that codes for a protein tyrosine phosphatase, introns (noncoding sequences seperating exons

shown as narrow lines), and promoters of transcription (P’s shown by hollow rectangles). Below the DNA

sequence line are five known human RNA transcripts for which the narrow bent lines are processed out of the

final transcript. The size of the processed transcript is indicated in base pairs (bp) and the size of the resulting

protein is indicated in kilo-Daltons (kDa).

From Evren, S., Wan, S., Ma, X.Z., Fahim, S., Mody, N., Sakac, D., Jin, T., Branch, D.R., 2013. Characterization of SHP-1

protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Genomics

102(5e6), 491e499.
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In addition to protein-coding genes, there are RNA-coding genes for which the functional product
is some type of RNA. The RNA products of these genes are known as noncoding RNA to emphasize
that they are not mRNA that codes for proteins. Pseudogenes, mentioned above, are derived from
coding DNA, but can become RNA-coding genes that can regulate their coding ancestral gene through
various mechanisms, such as the ability to produce competitive endogenous RNA and participate in
microRNA (miRNA)emediated cross regulation (Karreth et al., 2014). The classic RNA-coding genes
include those that encode the transfer RNAs (tRNAs) and the various ribosomal RNAs (rRNAs).
However, with the advent of genomics, the number of these noncoding genes has exploded to about
23,000 (Ensembl Genome Brower, release 75, Feb. 2014). Some of the more important classes of these
RNA coding genes include miRNA and small interfering RNA (siRNA) that function as post-
transcriptional regulators of protein-coding gene expression (Djuranovic et al., 2011) and are active
both in development and in adult stem cell populations (Sun and Lai, 2013), circular RNA (circRNA)
that help regulate miRNA (Lukiw, 2013), small nuclear RNA that functions in the processing of pre-
mRNA transcripts in the nucleus and in the regulation of transcription factors, small nucleolar RNA
(snoRNA) that aids in the chemical modification of other RNAmolecules, small cytoplasmic RNA that
is found in the cytosol and rough endoplasmic reticulum associated with proteins that are involved in
the selection and transport of other proteins, large intergenic non-coding RNAs (lincRNAs) that
function in cellular homeostasis (Esteller, 2011) and one human specific variant that affects the
structure of the normal brain (Chen et al., 2013), long noncoding RNAs (lncRNAs) that affect
such processes as dosage compensation and genomic imprinting (Fatica and Bozzoni, 2014), and
piwi-interacting RNA that represses transposable elements (Lukic and Chen, 2011). More so than
protein-coding genes, these RNA-coding genes give the human genome a unique identity among
mammalian species. For example, most human miRNAs arose in just two periods of accelerated
evolution; one associated with the origin of the simian lineage and the more rapid one, accounting for
28% of human miRNAs, during the initial phase of the hominoid lineage (humans and the great apes)
(Iwama et al., 2013). Moreover, the miRNAs have stabilized the expression of some target protein-
coding genes specifically during primate evolution (Lu and Clark, 2012).

TRANSPOSABLE ELEMENTS
Transposable elements (TE, transposons, mobile genetic elements) are segments of DNA that have
the ability to move or make copies of themselves in different locations in the genome. More than half
of our genome consists of interspersed repeats resulting from replicative copy and paste events of TEs
or elements that were TEs in the past but have lost their ability to transpose (Burns and Boeke, 2012).
Just two element families constitute the bulk of these repeats and relictual copies in the genome. The
most abundant TEs in the human genome are the primate-specific Alu elements that are about 300 base
pairs (bp) long and are therefore regarded as short interspersed nuclear elements (SINEs). SINEs
emerged de novo many times through evolution by reverse transcription of available RNA molecules,
such as tRNAs (Kramerov and Vassetzky, 2011). Alu elements alone account for nearly 11% of the
human genome (Mustafina, 2013). Alu elements are a major source of genetic variation in the human
genome and continue to contribute to newly arising variation, as there is about one new Alu insertion
per 20 human births (Deininger, 2011).

The second common TE in the human genome is LINE-1, a type of retrotransposon belonging to a
family of elements known as long interspersed nuclear elements (LINEs). LINE-1s are the most
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active mobile elements in the human genome and generate much variation within the human genome
by their active transposition (Beck et al., 2010).

Some TEs have functional significance, depending on where they insert in the genome and if they
have been co-opted during the course of evolution. For example, many Alu elements have been
incorporated into protein-coding genes, often as regulatory elements but even into exons (Mustafina,
2013) and the formation of new exons (Shen et al., 2011). Other TEs contribute to the origin and
transcriptional regulation of lncRNA genes (Kapusta et al., 2013). In particular, newly evolved cis-
regulatory elements in the human genome are enriched for young TEs, including both LINEs
and SINEs, and these TEs play a primary role in the evolution of gene expression in primates
(Trizzino et al., 2017).

REPETITIVE DNA
Much of the human genome consists of nucleotide segments that are repeated, either completely or
partially, in other regions of the genome, a phenomenon called repetitive DNA. The TEs discussed
above represent one type of repetitive DNA that tends to be interspersed at multiple locations
throughout the genome. About another 8% of the human genome consists of tandem repeats (Knight,
2009), in which the repeated copies are adjacent to one another within the genome, although some-
times separated by spacer sequences. The largest tandem arrays are called satellite DNA that typically
spans over 100 kb to several megabases. Tandem repeated sequences of fewer than 10 (or 12 or 7 by
some alternative definitions) nucleotides and as short as 2 are called microsatellites or short tandem
repeats. Microsatellites tend to show much variation in the exact number of tandem copies, and indeed
all repeated elements can display copy number variation (CNV) in the human gene pool. Overall,
there is more CNV and other structural variation among human genomes than single nucleotide
variation (Alkan et al., 2011), and much of this variation has functional significance (Sudmant et al.,
2015). Microsatellites tend to be particularly enriched in CNV. The high levels of CNV in micro-
satellites have made them particularly useful in many population genetic studies, in which each copy
number state is treated as a separate allele. Trinucleotide repeats have been particularly important in
human genetics as CNV in many such repeats is associated with several genetic diseases. For example,
Huntington’s disease is a late onset neurodegenerative disease inherited as an autosomal dominant that
results from an expansion in the number of copies of a trinucleotide repeat (CAG) within the
Huntingtin protein-coding gene on chromosome 4. Another important microsatellite is the hex-
anucleotide repeat (TTAGGG) that is found in telomeres (the ends of the chromosomes in the nuclear
genome, Fig. 2.1).

Minisatellites refer to tandem repeats in which the repeated element varies from 10 (or 7 or 12)
nucleotides in length up to 100 nucleotides. Minisatellites tend to be more stable than microsatellites,
but nevertheless many of them also display CNV, and these polymorphic minisatellites are called
variable number tandem repeats (VNTRs). Historically, VNTRs played an important role in human
population genetics and forensics through DNA fingerprinting in which individuals could be
identified by a unique profile of VNTR polymorphisms. However, microsatellites and other types of
genetic markers have largely taken over this role.

Many genes, both those coding for proteins and for RNA, are members of multigene families in
which several copies (either identical or diverged) of a common ancestral gene can be either
dispersed or clustered. When clustered, there is typically some spacer DNA between the copies, unlike
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micro- and minisatellites. In some cases the gene copies are identical. For example, the gene that codes
for the a-chain of the hemoglobin molecule normally exists as two identical copies on chromosome 16
separated by about 3000 base pairs. Even this family of size 2 shows CNV in humans, and the CNV is
associated with a type of anemia known as a-thalassemia and with resistance to the malarial parasite
and other infections (Allen et al., 1997). The Hbb gene discussed in the previous chapter also rep-
resents a duplicate from a common ancestral gene with the Hba genes, but in this case the genes
diverged from a common ancestral gene some 450e500 million years ago (Knight, 2009) and are
found on different chromosomes. This shows that members of a multigene family can be either tightly
linked or unlinked, and can be identical or highly divergent, but still displaying their underlying
homology due to shared common ancestry. Currently, the Hba and Hbb genes have different functions
and roles in producing a functional hemoglobin complex. Functional divergence of duplicated copies
is a common feature in evolution and explains the creation of many novel gene functions (Long et al.,
2013). However, some new genes originate de novo, from the vast amount of noncoding DNA in the
genome. De novo origin can occur when a mutation in a noncoding region creates a new start signal or
a new regulatory motif (such as one derived by a TE) at or near a sequence that already has some gene-
like traits (Wilson et al., 2017), resulting in novel gene expression (Ruiz-Orera et al., 2015). Once the
region is expressed as a protein, it will be subject to natural selection, and if retained can acquire new
functions. Although de novo genes were once thought to be extremely rare, the vast amount of non-
coding DNA in the genome increases the opportunities for de novo origin, and indeed genomic studies
have revealed about 60 new protein-coding genes that originated just in the human lineage and are
expressed mostly in the cerebral cortex and testes (Wu et al., 2011; Ruiz-Orera et al., 2015). Another
source of novel genes is through the horizontal gene transfer of genes from another species into
the human genome. This origin of new genes exists but is rare in humans and other primates
(Crisp et al., 2015).

CG ISLANDS
Throughout the genome there are stretches of DNA, typically 300 to 3000 base pairs in length, which
have a frequency 55% or greater of the nucleotides cytosine (C) and guanine (G), and are enriched
for 50CpG dimers, which are relatively rare in the rest of the genome. Although the exact definition
can vary from study to study, these regions are called CG islands (CGI) (Koester et al., 2012). CpG
dimers are of particular interest because the C in such dimers can become methylated, an important
signal for gene expression. Approximately 40% of CGIs are found in the promoter regions of genes.
These CGIs tend to have nonmethylated CpG dimers and tend to recruit enzymes that chemically
modify histone H3, one of the major proteins that bind with DNA on chromosomes, destabilize
nucleosomes, and attract proteins that create a transcriptionally permissive chromatin state (Bird,
2011; Deaton and Bird, 2011). The binding of some of these proteins in nonmethylated CGIs is
influenced not only by the CpG motif, but other nearby nucleotides as well (Xu et al., 2011). In
contrast, methylated CpG dimers tend to silence genes by recruiting enzymes that deacetylate
histones and thereby modify the local chromatin state. However, most CGIs are located far from
known genes and promoters (Deaton and Bird, 2011). CGIs have also been associated with other
functionally-relevant genomic features, including recombination hotspots, the presence of TEs,
origins of replication, local mutational processes, and domain organization and nuclear lamina
interactions (Koester et al., 2012).
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CENTROMERES
Centromeres are the sites of spindle microtubule attachment that help ensure proper segregation of the
chromosomes during mitosis and meiosis. Centromeres consist of hundreds of kilobases or repetitive
DNA, with a major component being a-satellite DNA, a family of tandemly repeated DNA based on a
171 bp unit (Hayden, 2012). Although centromere function is highly conserved in evolution, the
centromeric sequences are not conserved, and there is considerable variation between individuals
(Hayden, 2012).

TELOMERES
Telomeres cap the ends of eukaryotic chromosomes and consist of DNA and protein (Riethman,
2008). Human telomeres consist of tandem repeats of the hexanucleotide TTAGGG, with the tandem
arrays spanning between 2 and 20 kb in somatic cells and greater than 20 kb in germ line cells. There is
much individual variation in the length of these repeat tracts. The number of repeats tends to be
reduced with each cell division, but the loss is also sensitive to environmental factors. However,
repeats can be added either enzymatically by telomerase or by a recombination-based mechanism. The
capacity of cells to replicate is associated with telomere length, with short telomeres associated with a
loss of replication capacity, cellular aging, and some age-related diseases. There are also subtelomeric
sequences adjacent to the TTAGGG repeat tracts. These subtelomeric sequences contain many repeat
families, CG islands, and genes coding for both proteins and noncoding RNAs, and there is much
variation in this region in the human gene pool. Subtelomeres are hotspots for DNA breakage and
repair, which is thought to lead to rapid chromosomal evolution in these genomic regions.

THE TRANSCRIPTOME
Population genetics is not just concerned about the type and amount of genetic variation found in the
genome, but also the fate of that variation over space and time. The functional impact (or lack thereof)
of the variation can have a profound effect on its evolutionary fate. Typically, the first step in extracting
the information encoded in the DNA for potential functional uses is the transcription of the DNA into
RNA by RNA polymerases. For protein-coding genes, the amount of transcription determines about
73% of the variance in protein abundance in humans (Battle et al., 2015). The parts of the genome that
are actually being transcribed are called the transcriptome. The transcriptome varies over develop-
mental stages, across cell types, across individuals, and is influenced by many environmental factors.
Hence, there is not a single human transcriptome, but many, and all are highly context dependent.

The first step in initiating transcription is often chromatin regulation. DNA is only one component
of a human chromosome. The DNA is packaged through interactions with a variety of proteins and
other factors. The most fundamental unit of packaging is the nucleosome that consists of a central core
of eight histone proteins, with the DNA wrapped around this core. Adjacent nucleosomes are inter-
connected by a short length of DNA (linker DNA), and these strings of nucleosomes are coiled into a
chromatin fiber. The state of the chromatin varies across the genome due to nucleosome occupancy
versus absence, chemical modifications of the histones in the nucleosomes, and the degree of
compaction of the coiled nucleosomes. All of these factors can influence the openness of the DNA to
the enzymes and other factors needed for transcription. The chromatin fibers can be organized into a
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variety of higher order chromatin structure, which in turn can influence the amount of transcription
(Chambers et al., 2013). Often, the chromatin is densely packed and does not offer access to RNA
polymerases. Chromatin remodeling is an enzyme-controlled process that opens the chromatin
structure to possible transcription.

One strong indicator of a functional role is evolutionary conservation; that is, a functional feature
tends to be conserved across species during the course of evolution. Such conservation occurs because
random mutations in a well-functioning unit tend to be deleterious, so natural selection in such cases
eliminates much mutational change and operates as a conservative evolutionary force that slows down
change. However, when a feature that is conserved across many species experiences rapid divergence
in one or a few species, it is often used as an indicator of positive natural selection favoring adaptive
change. These signatures of different types of natural selection will be discussed in more detail in
Chapter 10. Chambers et al. (2013) showed that much of the chromatin structure in mammalian
genomes is highly conserved, but about 10% of the mammalian genome does show strong divergence
across some species. Moreover, this divergence has in some cases been shown to affect transcription of
many hundreds of genes, and at least some of these genes have been directly implicated in evolutionary
innovations. The human genome has many of these divergent regions, often in long stretches of more
than 2 Mb in length. These changes at the DNA sequence level are important because many aspects of
chromatin structure and remodeling are under the control of specific genes and other DNA sequences
in the noncoding regions of the genome. For example, nucleosome occupancy plays a critical role in
regulating transcriptional activity, and the DNA sequence, often in noncoding regions, plays a strong
role in regulating nucleosome positioning (Sexton et al., 2014; Vavouri and Lehner, 2011). Prendergast
and Semple (2011) show that both positive and negative natural selections have operated on the human
genome to affect nucleosome positioning. Selection has acted on nucleotide substitutions to maintain
optimum GC compositions in both core and linker DNA regions, with recent human evolution being
characterized by high rates of C to T substitutions in linker regions but low rates of these substitutions
in core regions compared to other mammals. These selective patterns occur both in proximity to exons
and far away from exons, suggesting that correct positioning of nucleosomes is important both near
and far from coding regions.

Although chromosomes are generally portrayed in a linear fashion, in actual nuclei they are
organized into 3-dimensional structures involving long-range looping that can bring distant genes,
even on different chromosomes, into close physical contact that can lead to coordinated transcriptional
regulation (Bonev and Cavalli, 2016). As mentioned earlier with respect to multigene families,
functionally related genes are often clustered on a chromosome, but some are widely dispersed across
the genome, including on different chromosomes. Interestingly, Thévenin et al. (2014) showed that
there is a significant clustering of functionally related genes in the 3-dimensional space defined by
chromosomes in the nucleus, even for unlinked genes. This nonrandom clustering implies that the 3-D
structure of chromosomes in the nucleus has probably been shaped in part by natural selection
(Maeso et al., 2017).

Having the chromatin assessable to RNA polymerases does not ensure transcription. The
polymerases only transcribe DNA following the binding of proteins called transcription factors to
specific regulatory sequences in the DNA. There are two basic kinds of transcription factors: general
factors that are required for transcription by a particular type of polymerase, and specialized factors
that are tissue, developmental, and/or environmental specific and hence fine-tune the genomic areas
that are being transcribed. The specialized transcription factors can either be activators that stimulate
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transcription or repressors that inhibit transcription. There are additional proteins that bind to the
transcription factors, and these are called coactivators and corepressors depending on whether they
facilitate or imped transcription.

Corresponding to the various transcription factors and RNA polymerases are binding domains in
the DNA of the genome. These are short sequences of DNA nucleotides that ensure that the binding of
the transcription factor is strong and specific. Promoters are short sequence elements mostly located
in the 50 region of genes close to the transcription start site and help serve to initiate transcription.
Enhancers are positive transcriptional control sequences that increase the level of transcription. Both
promoters and enhancers can be located either near or far from the genes that they transcriptionally
regulate, and promotereenhancer interactions can be affecting by the 3-dimensional looping discussed
above such that genomic proximity is not a good predictor for such promotereenhancer interactions
(Sanyal et al., 2012). Silencers are motifs that reduce transcription levels and can be found both near
and far from the relevant promoters, and response elements help regulate transcription in response to
specific external stimuli and tend to be located close to the promoter elements (Strachan and Read,
2004). Insulators are regions of DNA, often 0.5e3 kb long, which terminate the influence of
enhancers, silencers, and response elements, and thereby help determine the genomic boundaries of
transcriptional units (Strachan and Read, 2004).

Many of these binding domains reside in TEs, and particularly Alu elements in humans. For
example, the p53 tumor suppressor protein helps regulate the expression of about 1000 human genes,
and more than half of its associated response elements reside in Alu elements (Cui et al., 2011), which
as noted earlier are primate-specific and particularly abundant in the human genome. When TEs-
bearing binding domains transpose to new locations in the human genome, there is the potential for
bringing a new gene into an established regulatory network, thereby inducing genetic variation in the
set of genes that are coordinately regulated. It has also been found that many of these binding domains
are found in exons, and about 15% of human codons also are part of binding domains (Stergachis et al.,
2013). Codons that code for both an amino acid and transcription factor binding are called “duons”
and undermine the common assumption that synonymous nucleotide substitutions (nucleotide
substitutions in a codon that do not change the amino acid due to the redundancy of the genetic code)
are without functional significance. Synonymous substitutions can also influence translation efficiency
through tRNA pools and mRNA stability (Brule and Grayhack, 2017). Stergachis et al. (2013) show
that 17% of single nucleotide variants within duons directly affect transcription factor binding and
appear to be a major driver of codon bias, the phenomenon in which certain codons within a
synonymous set are used preferentially in protein-coding genes. However, others find little evidence
for selection at duon sites (Xing and He, 2015).

Many binding domains are relatively short, typically between 6 and 10 nucleotides long and
can often bind several transcription factors. Moreover, any one transcription factor can often
bind more than one nucleotide sequence. For example, the mouse binding domain for the
transcription factor Foxa2 can tolerate 37% of the possible single nucleotide substitutions and
still bind Foxa2, thereby giving this binding domain a degree of robustness against mutation
(Payne and Wagner, 2014). Moreover, Payne and Wagner (2014) also found that the Foxa2-binding
domain was separated by a single mutation from sequences that bind 26% of 103 other mouse
transcription factors that they studied. This confers a high degree of evolvability, the ability to bring
forth novel adaptations, in this case by allowing many mutations to change transcriptional regulatory
patterns.
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Another factor that can affect the abundance of a particular type of transcript is CNV in multigene
families (Haraksingh and Snyder, 2013). As noted above, CNV is common in the human gene pool, so
this type of variation is a major contributor to transcriptome variation. When this variation is combined
with genomic variants influencing chromatin remodeling, transcription factors, binding domains, and
alternative splicing (Fig. 2.2), the amount of transcriptome variation among humans is immense
(Melé et al., 2015).

Transcription was initially thought to be limited primarily to genes, but The Encyclopedia of DNA
Elements (ENCODE) project mapped regions of transcription throughout the genome in 147 human
cell types and revealed that about 80% of the genome is transcribed (ENCODE Consortium, 2012).
Hence, the vast majority of transcription of the human genome involves noncoding DNA, and this was
interpreted to mean that 80% of the human genome was functional (ENCODE Consortium, 2012,
Djebali et al., 2012). Previously, much of the noncoding DNAwas regarded as having no function at
the individual level, but rather just being a consequence of molecular factors such as transposition,
duplication events, etc. As mentioned earlier, a strong indicator of a functional role is evolutionary
conservation, and in this regard only about 10%e15% (Ponting and Hardison, 2011) or even just 5%
(Kellis et al., 2014) of the human genome displays evolutionary conservation, depending on the
criterion used for conservation. A comprehensive study indicates that 8.2% of the human genome is
functional (Rands et al., 2014). Graur et al. (2013) pointed out this extreme discrepancy and argued
that just being transcribed does not automatically imply biological functionality. Kellis et al. (2014)
reinforced this argument by pointing out that the transcriptional machinery is quite noisy and that to
proofread this machinery to eliminate spurious transcripts would be quite costly. However, recall that
centromeric sequences are not evolutionarily conserved yet have functional significance, so the
proportion of the genome that is evolutionarily conserved places a lower limit on the proportion of the
genome that is functional but not an upper limit. Moreover, DNA sequence conservation is not the only
criteria for evolutionary conservation. For example, Smith et al. (2013) point out that the function of
many RNAs depends more on their secondary structure than their exact nucleotide sequence. Using
conserved RNA secondary structure as the criterion, they found that about 14% of the human genome
shows significant conservation, and 88% of this falls outside known RNA coding genes. This implies
that a substantial portion of the “noncoding” genome does have some function, but it is highly doubtful
that every transcript has a biological function (Graur et al., 2013; Kellis et al., 2014; Rands et al.,
2014). Nevertheless, Germain et al. (2014) defend the original ENCODE conclusions by arguing that
80% of the human genome is “engaging in relevant biochemical activities” that they feel are “likely” to
have functional importance. How likely or unlikely that this transcriptional activity has functional
significance is not yet clear.

THE EXOME, SPLICEOSOME, AND PROTEOME
Transcription is only the first step in the process of extracting the information encoded in the DNA of
the genome and transforming it into functional forms. The transcripts typically have to be processed by
additions, excisions, splices, and substitutions, and in the case of protein-coding transcripts, the
processed transcripts need to be translated from a string of nucleotides into a string of amino acids.
Even once translation is complete, the protein products can be modified by posttranslational processes.
All of these processes offer many additional opportunities for regulating the functional impact of genes
and for additional genetic variation to affect this regulation and evolution.
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The primary transcripts of genes are processed in many ways before a functional form is produced.
Consider first, protein-coding genes. As shown in Fig. 2.2, transcription often includes 50 sequences
before the coding region starts, and the coding region itself is typically interrupted by noncoding
introns. Moreover, many primary transcripts include more than one gene, with much intervening
noncoding DNA being transcribed in between the genes. Much of this noncoding DNA either needs to
be excised or spliced out, producing a mRNA that consists primarily of just the exons. In addition,
polyadenylation typically occurs on the 30 end of the processed transcript. The protein-coding tran-
script can also be modified by RNA editing in which another nucleotide is substituted for the original
nucleotide in the RNA molecule through the action of specific enzymes. Typically editing only alters
some of the transcripts, thus increasing transcriptome diversity by including both edited and nonedited
forms. One of the most common forms of RNA editing in humans is adenosine-to-inosine editing in
which an A nucleotide is enzymatically converted into an I nucleotide (inosine is only found in RNA,
not DNA), with the I nucleotide being interpreted as a guanosine (G) during translation (Paz-Yaacov
et al., 2010). A-to-I editing is induced by certain Alu repetitive elements when they insert in opposite
orientations, a phenomenon that can induce double-stranded RNA that is necessary for this type of
editing. A-to-I editing can affect gene expression by alternative splicing, mRNA stability, nuclear
retention (the failure to transport the transcript out of the nucleus, the site of transcription), through
interactions with miRNA (Paz-Yaacov et al., 2010). Because Alu elements are primate-specific and
abundant, A-to-I editing is very common in primates. Moreover, humans have higher levels of this type
of editing than nonhuman primates, including our closest relative the chimpanzee. Just looking at new
Alu inserts in humans and chimpanzees, Paz-Yaacov et al. (2010) found 165 new inserts shared by the
two species, 497 new inserts just in chimpanzees, and 1477 new inserts just in humans. Bazak et al.
(2014) estimated that there are over 100 million human Alu RNA editing sites, which means that RNA
editing increases the human transcriptome diversity more than alternative splicing (to be discussed
shortly). Moreover, these new Alu inserts and the associated A-to-I editing are significantly enriched
for genes expressed in the nervous system (Paz-Yaacov et al., 2010; Sakurai et al., 2014; Daniel et al.,
2014). Just as most mutations are deleterious and only a few beneficial (Chapter 1), Xu and Zhang
(2014) concluded that most RNA editing in the human genome is deleterious, although some edited
sites are clearly beneficial. This in turn has caused selection at the DNA level to alter A’s at edited
deleterious sites into G’s, thereby eliminating the editing at that site. In this manner, RNA editing that
only alters nucleotides at the RNA level also has an evolutionary impact on DNA sequences through
natural selection.

Another important source of diversity in the transcriptome is the existence of alternative promoters,
alternative splicing of introns, and alternative polyadenylation sites. As a result of these alternatives, a
single protein-coding gene can produce a variety of transcripts with different subsets of exons included
in the resulting mRNA (Fig. 2.2), a diversity sometimes referred to as the spliceosome. The actual
splicing is carried out by an RNAeprotein complex, and mutations in the genes controlling this
complex can result in severe disorders in humans (Pessa and Frilander, 2011). Splicing is also affected
by the state of the chromatin, particularly histone modifications, the transcription machinery, and
noncoding RNAs (Luco and Misteli, 2011). There is also much genetic variation in the amount and
type of alternative splicing, indicating that there is much regulatory variation in the human spliceo-
some (Battle et al., 2014; Haraksingh and Snyder, 2013). Some of this variation is due to inserts,
mostly from TEs (Kim and Hahn, 2011), but SNPs can also affect alternative splicing, particularly
when located near exon/intron borders (De Souza et al., 2011). Splicing patterns have evolved rapidly
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in mammals, suggesting that changes in splicing patterns often contribute to the rewiring of protein
networks (Merkin et al., 2012). Moreover, the complexity of alternative splicing patterns is much
greater in primates than in other vertebrates (Barbosa-Morais et al., 2012). Thus, although humans
have roughly the same number of protein-coding genes as most other vertebrates, humans have many
more types of proteins than most other vertebrates, and the increased variation due to alternative
splicing is found primarily in the human brain (Melé et al., 2015).

On translation, the diversity of mRNA transcripts created even from a single protein-coding gene
can result in many different protein products that are often expressed in different tissues or devel-
opmental stages. The totality of this expressed protein diversity is called the proteome. The amount of
alternative splicing is highly correlated with the complexity of eukaryotic organisms as assayed by the
number of cell types and appears to be a means of determining the genome’s functional information
capacity (Chen et al., 2014). The process of translation occurs on ribosomes, an RNAeprotein
complex, but many other gene products can influence the process of translation. There are several
classes of noncoding RNAs that help regulate translation, including miRNAs and siRNAs that can
cleave mRNA, repress translation, and destabilize mRNAs (Djuranovic et al., 2011), lncRNAs that can
stabilize or promote translation of mRNAs and compete with miRNAs (Yoon et al., 2013), and
circRNAs that can adsorb, and hence quench, miRNA functions and that are particularly abundant in
mammalian brain tissue and are associated with Alzheimer’s disease in humans (Lukiw, 2013).
Genetic variation in these RNA coding genes has been associated with variation in the expression of
their target genes (Lu and Clark, 2012). In addition to noncoding RNAs, translation can be influenced
by RNA-binding proteins that bind to specific regulatory sequences called RNA-binding domains
(Strachan and Read, 2004).

The initial protein product of translation often experiences posttranslational modifications that
are chemical alternation critical to protein conformation and activation states and are generally under
strong purifying selection (Gray and Kumar, 2011). Such modifications can also contribute to diversity
in the proteome (Strachan and Read, 2004).

The transcripts of RNA coding genes are also subject to RNA processing to yield functional forms,
but do not require translation. For example, human rRNA is coded for by a tandemly repeating
multigene family. Fig. 2.3 shows one of human rRNA repeat units. After the primary transcript has
been produced, various endonucleases and snoRNAs cleave the transcript at specific locations and
make some specific base pair modifications (Strachan and Read, 2004) to produce the mature 28S,
5.8S, and 18S rRNAs.

Overall, because of the various aspects of RNA processing, translation regulation, and post-
translational modifications, the number of functional molecules encoded in the genome is much larger
than the number of genes. Moreover, a single transcript unit can code for multiple genes, and a single
gene can code for multiple protein products that are expressed in different tissues, developmental
stages, or in response to different environmental signals. Hence, the genome is a flexible, dynamic
entity in going from encoded information to functional units.

EPIGENOME
As mentioned above, different genes and transcripts are expressed in different tissues, developmental
stages, or in response to different environmental signals. Because the DNA content in most nucleated
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human cells is virtually the same, there are obviously mechanisms by which this differential
gene expression is developed and maintained, particularly across multiple cell generations within
an individual, and perhaps across generations (Guerrero-Bosagna and Skinner, 2014; Heard and
Martienssen, 2014). Epigenetics refers to the development and maintenance of heritable states of gene
expression patterns that do not directly depend on the DNA sequence and that are typically reversible
(Bonasio et al., 2010); that is, the same DNA sequence can be associated with multiple patterns of
stable gene expression states. This does not mean that genetic variation in the DNA has no impact on
epigenetics; indeed, the mechanisms underlying epigenetics are often controlled by enzymes and
noncoding RNAs (Fatica and Bozzoni, 2014; Latos et al., 2012) that are in turn encoded in the DNA.
Hence, genetic variation in these genes does influence epigenetic phenomena (Kilpinen et al., 2013).
Epigenetic patterns can therefore evolve due to evolution at the DNA sequence level (Suzuki et al.,
2011; Molaro et al., 2011). In this sense, the epigenome of a cell (the genes that are being expressed in
that cell) can be regarded as a phenotype that is influenced by underlying genetic variation, and hence
is within the domain of population genetics. Like virtually all other phenotypes, nongenetic variation,
including random factors, can influence epigenetic variation (Deng et al., 2014) such that even
identical twins can come to have different epigenomes (Gervin et al., 2011).

Two of the major epigenetic mechanisms involve chemical modifications of the histones that are in
the chromatin and the methylation of cytosines at CpG dinucleotide in the DNA (Rivera and Ren,
2013; Won et al., 2013). These chemical modifications are stable yet reversible and can be copied
during the process of mitosis, thereby allowing their persistence over multiple cell generations.

FIGURE 2.3

The processing of human rRNA. The top shows the organization of a single repeat of human rDNA that is part of a

tandem, multigene family. The primary transcript includes an external transcribed spacer (ETS) and two internal

transcribed spacers (ITS1 and ITS2), as well as three rRNA forms, the 18S, 5.8S, and 28S rRNAs. A series of

reactions occur to eliminate the transcribed spacers and release the mature rRNA forms. DNA is shown in white

(spacers) and black (DNA encoding rRNAs), and RNA is shown in gray, with narrow lines indicating the spacers

and thick lines the rRNA forms.
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Methylation is the most studied epigenetic signal, with methylation generally turning off gene
expression. Most of the human genome in most tissues has 70%e80% of CpGs methylated, with the
major exceptions being CpG sites in CG islands and promoter regions (Schroeder et al., 2011; Ziller
et al., 2013). Looking over many individual genomes and tissue types, Ziller et al. (2013) found that
only 22% of CpGs in the human genome showed methylation variation across individuals and/or tissue
types and thereby potentially contributing to epigenetic variation. These dynamic CpGs colocalize
with gene regulatory elements, particularly enhancers and transcription-factor binding sites. Park et al.
(2012) refined the impact of methylation on gene expression regulation by also measuring the number
of transcripts generated per locus (which they called “gene expression level”) and how broadly each
transcript is found in different tissues (“gene expression breadth”). They discovered that promoter
methylation is a stronger indicator of expression breadth than of expression level, but that intron
methylation is a stronger indicator of level than of breadth. Hence, CpG methylation appears to be
playing multiple epigenetic roles depending on its genomic location.

THE MITOCHONDRIAL GENOME
Humans, like all eukaryotes, are a symbiotic organism. Today, the eukaryotes are one of the three
major domains of life, but more than 2 billion years ago there were only two domains: the Eubacteria
and the Archaebacteria. About 2.4 billion years ago the cyanobacteria lineage of eubacteria evolved
photosynthesis, the ability to capture energy from sunlight and store it in carbohydrates that can fuel an
organism’s activities (Price et al., 2012). The funneling of massive amounts of energy through this new
process created a serious pollution problem, the production of oxygen as a by-product of photosyn-
thesis. Soon, oxygen became abundant in the Earth’s atmosphere and oceans, and the other species
either went extinct or evolved methods of coping with this toxic substance that can rapidly degrade
organic molecules. One group of eubacteria evolved the ability to control this oxidation of organic
molecules to extract much more energy from them than through anaerobic metabolism, thus
turning this toxin into a beneficial molecule for life. It is generally believed that the eukaryotes arose
from a fusion event involving the eubacterial lineage that could control oxidation (the ancestor of
present-day mitochondria) and an archaebacterium (the ancestor of the present-day nuclear genome)
(Alvarez-Ponce and Mcinerney, 2011). Following this PreCambrian event, most of the eubacterium-
derived genes have been transferred into the archaebacterium-derived nuclear genome, so that the
current human nuclear genome is a mixture of genes derived from these two major preCambrian
domains of life (Alvarez-Ponce and Mcinerney, 2011). This gene transfer also resulted in the current
human mitochondrial genome being a small circular molecule (like other eubacterial chromosomes) of
just 16,600 base pairs that codes for only 37 genes, which cover about 80% of the mitochondrial
genome (Fig. 2.4).

Although the mitochondrial genome is small, most human cells contain 100e10,000 copies of
mtDNA but only two nuclear genomes. The human mitochondrial transcriptome, like the nuclear
transcriptome, is more complex due to posttranscriptional processing, maturation, and degradation
mechanisms, as well as methylation, RNA-binding proteins, and other processes that help regulate
gene expression (Rackham et al., 2012), with many of the genes controlling mitochondrial
transcriptome complexity being in the nuclear genome (Hodgkinson et al., 2014). Because most of
the mitochondrial genome is coding, it appears to be under strong purifying selection pressures,
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but despite this, mtDNA is also more polymorphic per base pair than nuclear DNA (Breen and
Kondrashov, 2010).

Human mtDNA is also unique in having a maternal pattern of inheritance; that is, mothers pass on
their mtDNA to their offspring but fathers do not. As a result, mtDNAmarks maternal lineages through
evolutionary time. In contrast, most of the nuclear genome is biparental in inheritance. The one
exception is the Y chromosome (Fig. 2.1), which is passed on from father to son and thereby marks
paternal lineages through evolutionary time. When surveyed together, mtDNA and Y-DNA can yield
much insight into the separate roles of females and males in human evolution.

FIGURE 2.4

The human mitochondrial genome. This genome encodes 22 tRNAs (purple), two rRNAs (orange) and 13 genes

coding for protein subunits essential for aerobic metabolism. The 13 subunits are seven subunits of Complex I

(NADH dehydrogenase, ND1eND6 and ND4L, shown in yellow), one Complex III subunit (cytochrome c

reductase, CYTB, shown in blue), three Complex IV subunits (cytochrome c oxidase, COX I, II and III, show in

red) and two Complex V subunits (ATPase6 and ATPase8, shown in green). The main non-coding region contains

the D-loop region, the origin replication for the H strand of the DNA (OH) and the promoters of transcription for

the H and L strands (HSP and LSP). The origin of replication for the L strand of the DNA (OL) is located

two-thirds of the genome downstream from OH.

From Sun and St. John (2016).
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The Y chromosome and mtDNA share other features in addition to unisexual inheritance. First,
much of the Y chromosome has no recombination because there are no corresponding homologous
regions on the X chromosome. MtDNA also displays no recombination but is inherited as an intact
unit. Hence, from a population genetics perspective, mtDNA behaves as a single locus and all the
different mtDNA sequences, regardless of where the variant sites are located, are the equivalent of
alleles. Second, because males are defined by a single Y chromosome, the Y chromosome is inherited
as a haploid element, whereas the autosomal chromosomes alternate between haploidy at the gametic
level and diploidy at the multicellular individual level. The X chromosome is diploid in females, but is
haploid in males, so it displays haploediploid inheritance. Although there are many copies of the
mtDNA in cells and they can display much genetic variability due to somatic mutation (Hodgkinson
et al., 2014), there is generally a severe bottleneck at the egg stage such that mtDNA is effectively
inherited as a haploid element.

MUTATION AND RECOMBINATION IN THE HUMAN GENOMES
MUTATION
As pointed out in Chapter 1, mutation and recombination (and associated processes such as gene
conversion) are the sources of genetic variation in the human gene pool and provide the raw material
for evolutionary change. Mutations can involve changes at the whole chromosome level, such as
trisomy for chromosome 21 that leads to Down’s syndrome, but the focus of this book will be upon
mutations that represent changes in the DNA. New mutations arise in single individuals, either in
somatic cells or in the germ line. Both somatic and germ line mutations will be considered, but the
primary focus will be on the germ line mutations that can be passed on from one generation to the next.
Three major classes of mutation at the DNA sequence level are (1) rearrangements, (2) insertions or
deletions of one or more nucleotides, called indels and including CNV in repeated sequence motifs,
and (3) nucleotide substitutions at single bases, also known as point mutations.

Rearrangements occur when breaks occur in chromosomes. Sometimes these breaks result in an
inversion in which the broken segment reanneals to the original chromosome but in an inverted
orientation, or translocations in which the broken segment anneals to a different, nonhomologous
chromosome. Other chromosomal rearrangements include large-scale duplications or deletions. Many
types of chromosomal rearrangements are deleterious in humans because of the problems they induce
during meiosis, but two classes of rearrangements are more common as contributors to variation in the
human gene pool and in divergence between humans and our sister species the chimpanzee. The first of
these are Robertsonian translocations that involve two nonhomologous acrocentric chromosomes
having their long-arms fused to form a single metacentric chromosome (Fig. 2.5). When such a
chromosomal mutation first occurs, the initial bearer will have one metacentric chromosome pairing
with two acrocentrics at meiosis. This situation has the potential for yielding unbalanced gametes, and
indeed fertility problems are common in Robertsonian translocation heterozygotes (Knight, 2009).
However, a detailed analysis of chromosome evolution in mammals and the monitoring of segregation
in translocation heterozygotes, including humans, suggests that there is nonrandom segregation in
female meiosis (De Villena and Sapienza, 2001). Unlike male meiosis, female meiosis is highly
asymmetrical, resulting in one haploid egg nucleus and three polar bodies. In Robertsonian hetero-
zygotes, the translocated chromosome only has one centromere, whereas the unfused acrocentrics that
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pair with it have two. There is a tendency for the spindle pole that is more efficient at capturing
centromeres to capture the two centromere pair, resulting in nonrandom segregation and increased
probability of balanced gametes. If the spindle pole that is more efficient at capturing centromeres is
associated with the egg side of meiosis, then the nonrandom segregation favors the acrocentric
chromosomes, as appears to be the case in mice. In contrast, in humans the more efficient spindle pole
is associated with the polar body side of meiosis, thereby favoring the translocation to be passed on
through the egg (De Villena and Sapienza, 2001). Such nonrandom segregation is called meiotic drive,
and it will be discussed in more detail in Chapter 11. For now, it is sufficient to note that meiotic drive
can be a powerful force for evolutionary change that can sometimes override the fertility difficulties
observed at the individual level. As a result, Robertsonian fusions have played a dominant role in the
evolution of the human karyotype. For example, one of the most striking differences between the
human and chimpanzee karyotypes is the fusion of the chimpanzee acrocentric chromosomes 12 and
13 to give rise to the human metacentric chromosome 2 (Keher-Sawatzki and Cooper, 2007).

The other common type of rearrangement in the human gene pool is an inversion in which the two
break points occur on the same chromosome arm, and the intervening chromosome segment reanneals
in an inverted configuration (Fig. 2.6B). Note that inversions do not change the content of the chro-
mosome, but this does not mean that they have no phenotypic consequences. Inversions in the human
genome have created conjoined genes (parts of two genes fused together), disrupted gene structure,
and created orientation errors (directions for transcription) (Pang et al., 2013).

Indels and CNV is another major class of mutations that leads to structural variation in the human
genome. Insertions and deletions can be as small as a single nucleotide or span many mega-bases.
Indels and CNV range from no discernible phenotypic consequence to drastic consequences (Cooper
et al., 2011; Almal and Padh, 2012; Zarrei et al., 2015). Even a single nucleotide indel can have
important phenotypic consequences by creating or destroying a binding or splicing site, or by causing a

FIGURE 2.5

A hypothetical Robertsonian translocation. The long arms of two ancestral acrocentric chromosomes, A and B,

fuse at their centromeres to form a single metacentric chromosome. The small arms of the original chromosomes

are generally lost, but this loss is rarely associated with phenotypic consequences.
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frameshift mutation in a protein-coding gene by altering the triplet reading frame of the codon
sequence.

Most of the structural variation described in the preceding paragraphs arise from a germ line
mutational mechanism called nonallelic homologous recombination (NAHR) that is mediated by
repetitive DNA, and particularly by recombination between two low-copy repeats (LCRs) (Gu et al.,
2008). LCRs are region-specific blocks of DNA typically 10e300 kb in size with more than 95%
sequence similarity between copies. Different copy regions can be on the same chromosome, even in
tandem, or on different chromosomes. An example of this mechanism is shown in Fig. 2.7.

The phrase “nonallelic homologous” may cause some confusion to evolutionary geneticists. In
molecular biology, the word “homology” is often used as a synonym for high sequence similarity, and
this is the sense being used in NAHR. In evolutionary biology, homology refers to traits derived from a
common ancestral condition. Traditionally, genetic homology referred to all the copies of a gene that
exist at a particular locus, literally a position in the genome. Because of transposition and other
mechanisms, DNA regions located in different positions in the genome can still be derived from a
common ancestral DNA region. Copies in these different regions are still homologous in the general
evolutionary sense as they are derived from a common ancestral condition, but they are not genetically

FIGURE 2.6

Different types of single chromosomal mutations. Part (A) shows the ancestral chromosome, with letters indi-

cating the ancestral sequence of genes or other features on the chromosome. Part (B) shows an inversion, in which

one segment (shaded gray) is found in the opposite order of the ancestral sequence. Parts (C and D) show a

deletion and a duplication (shaded gray) respectively.
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homologous in the traditional sense because they are located at different genomic positions. To solve
this problem, the concept of genetic homology has been extended to include orthology, the original
definition of genetic homology of all the copies of a gene or DNA region occupying the same locus,
and paralogy, sets of genes or DNA regions related by descent from a common ancestral DNA
sequence but that occupy different loci (positions) within the genome. Hence, NAHR is paralogous
recombination (Fig. 2.7). Depending on the orientation, location, and context of the paralogs, paral-
ogous recombination can lead to all the types of structural variation discussed so far. Other mecha-
nisms of generating this structural variation exist, but they are much less common (Gu et al., 2008;
Vavouri and Lehner, 2011). However, most small indels are due to DNA polymerase slippage
(Montgomery et al., 2013).

There is extensive variation in the mutation rate for structural variation in the human genome. For
example, nearly 50% of indel mutations occur in just 4% of the genome (Montgomery et al., 2013),
primarily in regions of open chromatin (Makova and Hardison, 2015). Most CNV is found in 5%e9%
of the genome (Zarrei et al., 2015). Despite this concentration of mutation into a small portion of
the genome, the rates in these structural variation hotspots are so high (around 0.01 per locus per
generation, Campbell and Eichler, 2013) that structural variation is the most common type of
polymorphism in the human gene pool (Li et al., 2011).

Point mutations or single nucleotide substitutions are less common than structural variants, with an
overall mutation rate around 10�8 per base pair per generation for the nuclear genome (Shendure and
Akey, 2015) and around 10�6 per base pair per generation for mtDNA (Scally and Durbin, 2012).
Nevertheless, single nucleotide substitutions are the focus of most population genetic studies. The
overall mutation rate is influenced by several organismal level and external factors. For example,

FIGURE 2.7

Examples of how nonallelic homologous recombination (NAHR) between two low-copy repeats (LCRs) on the

same chromosome can cause various types of structural variation through recombination. In part (A), paralogous

recombination between two LCRs in the same orientation can lead to deletions and duplications; in part (B),

recombination between two LCRs in opposite orientations can lead to an inversion.

MUTATION AND RECOMBINATION IN THE HUMAN GENOMES 49



the mutation rate is higher in males and increases substantially with paternal age (Shendure and Akey,
2015). Exposure to radiation, including ultraviolet (UV) radiation from the sun, can increase mutation
rates. This in turn interacts with skin color, as light skin is relatively transparent to UV. UV specifically
induces TCC to TTC mutations in vitro, and this type of mutation is also present in melanoma skin
cancers, thought to be induced by UV as well. Interestingly, Europeans, with light skin, have a much
higher rate of TCC to TTC mutations as compared to dark-skinned Africans (Harris, 2015).

Substitution mutations are subdivided into transitions and transversions. Transitions are changes
between purines (A and G) or between pyrimidines (C and T). Transversions are changes between a
purine and a pyrimidine. For nucleotides that are within a codon of a protein-coding gene, a mutation
that does not change the amino acid the codon codes for it is called a synonymous or silent mutation;
otherwise it is a nonsynonymous mutation. A nonsynonymous mutation that alters the amino acid
coded for by the codon is called a missense or replacement mutation. A nonsynonymous mutation
that changes an amino acid coding codon into a stop or termination codon is called a nonsense
mutation.

Just as structural variants display a highly nonrandom distribution of mutation rates in the genome,
so do single nucleotide substitutions (Zhu et al., 2017). In particular, several DNA motifs have been
identified in the genome that greatly increase the rate of mutation, thereby concentrating most single
nucleotide mutations into mutational hotspots. For example, 71 individuals had a 9.7 kb segment of the
Lipoprotein Lipase (LPL) gene resequenced and their haplotypes determined (Templeton et al.,
2000a). These DNA sequences were then searched for three previously identified mutagenic motifs in
the human genome: CpG dinucleotides, mononucleotide runs of five or more base pairs, and a DNA
polymerase a-arrest motif: TG(A/G)(A/G)GA. Under the assumption of neutrality, the amount of
variation observed at a site should increase with its mutation rate (Chapter 4). Table 2.1 shows the
proportion of variable sites at all of these sequence motifs. As can be seen, the CpG dinucleotides are
two orders of magnitude more variable than nonmotif sites, and the run and arrest sites are an order of
magnitude more variable. Testing the null hypothesis that all nucleotides have the same probability of
being variable yields a likelihood ratio test (Chapter 1) of 99.07 with 3 degrees of freedom, leading to a
strong rejection of the null hypothesis with a p-value of 2.5 � 10�21.

Table 2.1 clearly shows that mutations are not randomly distributed in this region of the human
genome, and the same is true for the genome as a whole. CpG dinucleotides are associated with about
40% of the SNPs found in the human genome despite the fact that CpG dinucleotides are underrep-
resented in the human genome, a consequence of being hypermutagenic. CpG dinucleotides are

Table 2.1 The Proportion of Sites Showing Variation in a Sample of 71 Individuals
Resequenced for a 9.7 kb Portion of the LPL Gene

Type of DNA Motif Number of Sites Proportion of Variable Sites

CpG dinucleotides 179 0.096

Mononucleotides runs �5 441 0.033

Polymerase arrest sites 256 0.030

All other nucleotides 8731 0.005
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susceptible to mutations when the cytosine is methylated, making a C to T transition highly likely, and
the vast majority of variation found at CpG sites is consistent with methylated cytosine transitions.
However, not all CpG sites are methylated, and there is a significant correlation between the extent of
germ line methylation and the substitution rates at CpG sites (Mugal and Ellegren, 2011). The extent of
CpG methylation also depends on the other nucleotide adjacent to the C, with a significant increase in
predicting the degree of methylation of the C as measured by the correlation between the predicted
versus observed going from 0.686 from a dinucleotide predictor to 0.822 with a trinucleotide predictor
(Zhou et al., 2012). The importance of the 50 nucleotide to a CpG pair was also confirmed by the
analysis of Baele et al. (2008). The influence of flanking nucleotides on the mutation rate of a specific
nucleotide is a general phenomenon of the human genome because the process of point mutations is in
essence a chemical reaction that is influenced by the local atomic environment facilitating or inhibiting
electron transfer, with nucleotide environments that enhance electron transfer being mutagenic
(Bacolla et al., 2013). Many other local genomic features, influenced or determined by the local
nucleotide sequence, also enhance mutation rates, such as nuclear lamina binding sites, methylated
non-CpG sites, nucleosome-free regions (Ananda et al., 2011; Chen et al., 2012), DNA editing by
APOBEC3 activity that is an antiviral mechanism that targets retrotransposons (Carmi et al., 2011),
closed chromatin regions (the opposite of structural variation mutation rates) (Makova and Hardison,
2015), and sequence-dependent DNA helix stability (Nakken et al., 2010). Moreover, mutation at one
site appears to make mutation at a nearby site more likely, leading to clusters of multinucleotide
mutations (Besenbacher et al., 2016).

The common theme of these mutational studies is that mutagenesis is generally a multi-
nucleotide process (even for environmentally induced mutations, such as those produced by UV
exposure) even if the product is only a single nucleotide substitution. This observation has pro-
found implications for human population genetics. As pointed out in Chapter 1, DNA replication
leads to the possibility that two separate DNA sequences observed in the present could be identical
copies of a common ancestral DNA molecule. Identity-by-descent occurs when two copies of a
DNA region are identical because neither DNA lineage experienced any mutations since tracing back
to their common ancestral molecule. In contrast, identity-by-state simply means that two copies of a
DNA region have the exact same sequence regardless of past history. Much population genetic
theory and analysis revolves around identity-by-descent, not identity-by-state, as will become
apparent in later chapters. Indeed, distinguishing or otherwise correcting for identity-by-descent
versus identity-by-state was and is a major concern in population genetics. Models of mutation had
to be developed to make such corrections. Interestingly, many thought this problem was solved when
DNA technology developed to the point that genetic variation could be studied at the nucleotide
level. The idea was simple: there are many, many nucleotides that could mutate, the probability of
any one of them mutating is very low, and the relevant evolutionary time scale for many population
genetic studies is so short that there is not sufficient time to accumulate many mutational sub-
stitutions. These presumed features were brought together into a simple mutational model: the
infinite sites model assumes that every mutation occurs at a different nucleotide site. Because every
mutation occurs at a different nucleotide, the only way a single nucleotide site can be identical in two
different molecules of DNA is through identity-by-descent. Hence, identity-by-state implies
identity-by-descent in the infinite sites model. This simplification is extremely useful in much
population genetic theory and in computer simulations, so the infinite sites model is widely used in
human population genetics.
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The infinite sites model is inconsistent with the reality of mutagenesis in the human genome in
which most mutation is concentrated into a very small subset of the genome. This concentration makes
it much more likely that the same nucleotide will mutate more than once, thereby undermining the
primary assumption of the infinite sites model. Moreover, many mutational mechanisms, such as
methylated CpG or UV-induced mutagenesis, not only concentrate mutations into a small number of
sites but also cause the same nucleotide substitution to reoccur (e.g., C to T transitions for methylated
CpG sites; TCC to TTC for UV-induced mutations). This increases the chances that parallel mutations
can occur independently in two different DNA lineages that result in the same nucleotide state. It is
also possible for the same nucleotide position to mutate more than once in a single DNA lineage, with a
second mutation reversing the effect of an earlier mutation. With either type of event, the orthologous
nucleotide state in two different DNAmolecules can be identical-by-state but not identical-by-descent.
Homoplasy occurs when there is identity-by-state that is not due to identity-by-descent. The infinite
sites model predicts that there is no homoplasy. However, with mutational events concentrated into just
a small subset of the human genome, homoplasy is a possibility that should become more common at
the mutagenic sites with the highest mutation rates. One method of detecting homoplasy is to estimate
haplotypes (Chapters 1 and 3) based on multiple polymorphic sites. When a parallel mutation occurs, it
is likely that it will occur on a different haplotype background, allowing the inference of a homoplasy
at the mutated site. This was done for the 71 individuals scored for a 9.7 kb region with the LPL gene,
and 45 of the 88 variable SNP sites (51%) showed homoplasy, even after apparent homoplasies due to
recombination or gene conversion (see Fig. 1.7) had been eliminated (Templeton et al., 2000b). This
procedure does not detect all homoplasies, so it is conservative for testing the infinite sites model. As
shown in Table 2.1, many of the sites in this region had mutagenic motifs that were associated with
significantly higher polymorphism rates. Subdividing the sites into those with a mutagenic motif as
indicated in Table 2.1 versus all other sites, there was a significant association of homoplasy with
mutagenic sites (Table 2.2). Contrary to the predictions of the infinite sites model, homoplasy is
common in the human nuclear genome and is strongly associated with the highly nonrandom nature of
the mutational process.

Sometimes a model can be based on unrealistic assumptions, but the predictions of that model may
still be good, indicating great robustness to violations of the unrealistic assumptions. Indeed, the next
chapter will discuss the Hardy-Weinberg model that makes many unrealistic assumptions yet yields
excellent descriptors of genotype frequencies in most human populations. Perhaps the same is true for
deviations from the infinite sites model. One commonly used test based on the infinite sites model is
the 4-gamete test for recombination (Hudson and Kaplan, 1985, Auton and Mcvean, 2012). The basis
of this test is shown in Fig. 1.6 from Chapter 1. That figure shows that variation existed at a locus with
two alleles, A and a. Now regard this locus as a single nucleotide, with A and a corresponding to two
different nucleotide states. A mutation at a second, linked nucleotide then creates two nucleotide states

Table 2.2 The Number of Homoplasies Found at Mutagenic and Remaining Sites in a Sample of
71 Individuals Resequenced for a 9.7 kb Portion of the LPL Gene.

Type of Site 0e1 Homoplasies ‡2 Homoplasies

Mutagenic 14 21

Nonmutagenic 27 7
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(B and b) at a second nucleotide site, with the b mutation occurring on a DNA molecule with the a
nucleotide at the first site. Once this mutation has occurred, there are three gamete types (ab, aB, and
AB). Recombination can then produce the fourth gamete type, Ab, as shown in Fig. 1.6. Under the
infinite sites model, the B/b nucleotide site cannot mutate again, so recombination is the only
mechanism that can produce all four gamete states. However, if the mutation B to b can occur more
than once, another mutation could occur on a DNA molecule with the A nucleotide at the first site,
thereby creating the Ab gamete through homoplasy. To test the robustness of the 4-gamete test to
violations of the infinite sites model, Templeton et al. (2000a) applied the 4-gamete test to a sample of
human mtDNA with 179 variable sites. 413 recombination events were inferred, evenly distributed
across the surveyed region of mtDNA. The trouble is, human mtDNA does not undergo recombination,
so all 413 of these recombination events were false positives. When applied to the nuclear LPL data,
the 4-gamete test also produced many false positives (Templeton et al., 2000a). Obviously, the
4-gamete test is extremely sensitive to the infinite sites model assumption and should never be applied
to human data, despite recommendations to the contrary (Auton and Mcvean, 2012).

Another example is provided by the computer programs IM and IMa that are widely used in human
population genetics to estimate gene flow (Chapters 6 and 7). Like all models, these programs make
many simplifying assumptions about recombination, population structure, gene flow patterns, linkage
among markers, natural selection, and other demographic parameters. These programs also allow only
two mutational models, one being the infinite sites model, and the other a simple single nucleotide
model that allows the possibility of some homoplasy. For nuclear data, the infinite sites model is
commonly used because of its computational efficiency. Strasburg and Rieseberg (2010) investigated
the robustness of IM and IMa inferences to violations of these assumptions through computer simu-
lations. They discovered that the inferences were indeed quite robust to most violations of the model,
with the exception being the nucleotide substitution model. Neither of the simple mutational models
allowed by these programs worked well when more complicated mutational models were simulated,
resulting in increased errors and biases. Similarly, Cutter et al. (2012) showed that inferences about
population structure and gene flow are sensitive to the infinite sites model, and that the infinite sites
model leads to false positive values of the Tajima D statistic (commonly used to infer both
demographic history and natural selection, Chapter 10). These studies indicate that inferences based on
the infinite sites model in human genetics should be viewed with skepticism unless robustness is
specifically demonstrated.

To avoid the problems of the infinite sites model, sequence data can be tested for a variety of
mutational models through a program called ModelTest (Posada, 2008). This is certainly an
improvement over simply using the infinite sites model because of convenience and computational
efficiency, but this procedure still has a major limitation: all of the models tested are independent-sites
models in which mutation is regarded as a single-site phenomenon. Such models can allow homoplasy,
but they do not incorporate information about multisite mutational motifs. The fact that such motifs
create large amounts of variation in the probability of mutation across sites in the genome is indirectly
taken in account by assigning, in some of the models, a probability distribution over sites for the
mutation rate, thereby indirectly modeling some sites as much more subject to mutation than others.
Does this black-box approach adequately deal with the biological reality that mutation at a single
nucleotide depends on the multisite context in which it is imbedded? The literature on this issue is
more limited, but many studies indicate that directly modeling the multisite context results in much
better fits to sequence data than the independent-site approach and can reduce biases and false
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positives in other evolutionary inferences, such as natural selection (Baele et al., 2008; Bloom, 2014;
Lawrie et al., 2011). The same is true for indel mutations (Kvikstad and Duret, 2014), which as
previously noted are also concentrated into just a small portion of the human genome. These results are
worrisome, particularly given that the infinite sties and independent-sites models still are frequently
used in human populations genetics because the more complicated, multisite, context-dependent
mutational models are often analytically intractable and greatly decrease computational efficiency.

RECOMBINATION
As pointed out in Chapter 1, orthologous recombination amplifies the genetic variability in the gene
pool by creating novel combinations of preexisting variation created by mutation. As pointed out in the
previous section, paralogous recombination can be regarded as a powerful mutational mechanism that
creates new variation at a rate even larger than that of nucleotide substitutions. Gene conversion,
mechanistically related to recombination, can place a small segment from one chromosome onto a
homologous chromosome (Fig. 2.8). If there were any heterozygous sites in the region, gene con-
version can place the allelic states at these heterozygous sites onto a novel chromosomal background.
Often, the converted segment is so small that only a single heterozygous site exists in the converted
region, in which case the outcome of gene conversion is indistinguishable from a nucleotide substi-
tution. Because only preexisting alleles can be placed on a new chromosome, such single site
conversions always result in an apparent homoplasy. Gene conversion can also occur between
paralogs, and converted tracts are found in 46% of duplicate gene families in the human genome
(Harpak et al., 2017). Gene conversion is therefore a major source of haplotype variation in humans, all
of which is affected by homoplasy.

Just as mutation is nonrandomly distributed in the human genome, so is recombination and gene
conversion. Recombination and gene conversion events are concentrated into recombination hotspots
scattered throughout the human genome that are separated by DNA regions of low recombination. An
example of such a hotspot is found in the middle of the LPL gene previously discussed for nonrandom
mutation (Templeton et al., 2000a). The recombination and gene conversion events detected in this
region with haplotype data (thereby avoiding the errors associated with the infinite sites model) have
already been show in Fig. 1.7, and all 30 significant events had their locations mapped into a small
region of the sixth intron of the LPL gene, as shown in Fig. 2.9. Note that the same region identified by
the detailed mapping of each recombination and gene conversion event also correspond to an area with
little to no linkage disequilibrium but is flanked by regions of high linkage disequilibrium. This is a
typical signature of a recombination hotspot that is separated from other hotspots by regions of little to
no recombination. As a consequence, most of the recombination/gene conversion hotspots have been
mapped from patterns of linkage disequilibrium (Wall and Stevison, 2016) rather than from the
reconstruction of actual recombination/gene conversion events, such as shown in Fig. 1.7 and Fig. 2.9.

Just like many mutational hotspots, recombination and gene conversion hotspots are strongly
affected by DNA sequence motifs (Pratto et al., 2014), including paralogous recombination hotspots
(Fawcett and Innan, 2013; Startek et al., 2015) and chromosome rearrangement break points (Pratto
et al., 2014). Chromosomal inversions can also reduce the amount of recombination in the hotspots
covered by the inversion (Wegmann et al., 2011; Farré et al., 2013). Recombination and gene
conversion are often initiated by the occurrence of double-stranded breaks in the DNA (Fig. 2.8) that
can be resolved either by a non-crossover gene conversion event or a crossover recombination event,
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with more than 80% of the double-stranded breaks being resolved as gene conversion events with no
crossing-over (Lynch et al., 2014). These events appear to be important in meiosis, with gene
conversion events facilitating homologue pairing and with crossover events physically
connecting homologues so they orient properly on the meiotic spindle. The ratio of these two types
of resolution of double-stranded breaks can show substantial interindividual variation in some

FIGURE 2.8

Gene conversion through repair of a double-stranded break. The two homologous DNA molecules are shown in

blue and red. The blue molecule then experiences a double-stranded break, which is repaired by synthesis-

dependent strand annealing. This process can result in a recombination event or a gene conversion event (bottom)

in which a small segment from the red strand is placed into the otherwise blue molecule.
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hotspots (Sarbajna et al., 2012), and there is also genetic diversity in the overall amount of recom-
bination, much of it gender-specific (Kong et al., 2014). The amount of recombination at a hotspot is
influenced not only by the DNA sequence motif but also by proteins that bind to these motifs. Genetic
variation at genes coding for these binding proteins induces variation among individuals for hot spot
activity (Berg et al., 2010). There is also much genetic diversity in hotspots between populations
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FIGURE 2.9

Recombination events in a 9.7 kb interval of the LPL gene. The middle diagonal line is map of the region, showing

the positions of exons (E4 through E9) in thick lines and introns in thin lines. The positions of the variable SNPs,

numbered 1 through 69, are shown by lines stemming from the main diagonal line and pointing to a column and

row that corresponds to the SNP. The diagonal matrix formed by the SNP column and rows indicates whether or

not significant linkage disequilibrium exists between two SNPs, indicated by a black box, nonsignificant linkage

disequilibrium, indicated by a white box, and samples too small for significance, indicated by a white box with a

dot. The lower diagonal portion of the figure indicates the number of statistically significant recombination or

gene conversion events that could have occurred in an interval defined by adjacent SNP pairs. The red diagonal

line indicates the smallest region where all 30 recombination and gene conversion events could have occurred, and

the red lines are extended into the linkage disequilibrium matrix. A plot of the number of possible recombination

events inferred from haplotype analysis lies below the diagonal and was zero outside the remainder of this

genomic region.
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(Hinch et al., 2011; Kong et al., 2010). Hotspots can evolve very rapidly, particularly because
recombination or gene conversion events can destroy the hotspot and new hotspots can arise de novo
from just a few base pair substitutions (Wahls and Davidson, 2011). However, sometimes gene
conversion can stabilize hotspots and extend their evolutionary lifespan (Fawcett and Innan, 2013).
This rapid evolution of hotspots was indicated by the lack of hotspot overlap between humans and
chimpanzees, our closest evolutionary relative (Lesecque et al., 2014), although other studies indicate
that there is more sharing than initially thought (Wang and Rannala, 2014; Trombetta et al., 2014),
with humans diverging more rapidly from the ancestral recombination state than chimpanzees
(Munch et al., 2014).

Crossing-over is mostly reciprocal, but gene conversion is often biased; that is, some alleles are
more likely to be converted than others. Gene conversion in the human genome is often biased to favor
G and C nucleotides (Duret and Galtier, 2009; Capra et al., 2013) and short indels (Leushkin and
Bazykin, 2013), particularly in the genomic neighborhoods of recombination hotspots (Katzman et al.,
2011).

Mutation, recombination, and gene conversion have produced an immense amount of genetic
variation in the human gene pool. Hence, there is more than ample genetic variation for human
population genetic studies and for the evolution of our species. Now the focus will shift to the
fate of that variation over space and time in human populations and the factors influencing
that fate.
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Farré, M., Micheletti, D., Ruiz-Herrera, A., 2013. Recombination rates and genomic shuffling in human and

chimpanzeeda new twist in the chromosomal speciation theory. Molecular Biology and Evolution 30,
853e864.

Fatica, A., Bozzoni, I., 2014. Long non-coding RNAs: new players in cell differentiation and development. Nature
Reviews Genetics 15, 7e21.

Fawcett, J.A., Innan, H., 2013. The role of gene conversion in preserving rearrangement hotspots in the human
genome. Trends in Genetics 29, 561e568.

Germain, P.-L., Ratti, E., Boem, F., 2014. Junk or functional DNA? ENCODE and the function controversy.
Biology and Philosophy 1e25.

Gerstein, M.B., Bruce, C., Rozowsky, J.S., Zheng, D.Y., Du, J., Korbel, J.O., et al., 2007. What is a gene, post-
ENCODE? History and updated definition. Genome Research 17, 669e681.
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SYSTEMS OF MATING 3
InChapter 1, we saw that it is possible to calculate the types and frequencies of the gametes in the gene
pool if given the genotypes and genotype frequencies in the deme. Is the inverse possible? That is, given
the gamete frequencies, is it possible to know the genotype frequencies of the deme? Consider a deme
scored for genetic variation at a single autosomal locus with two alleles, A and a. Suppose the genotype
frequencies were ¼ for AA, ½ for Aa, and ¼ for aa. Then, using Eq. (1.1), the allele frequencies in the
gene pool are½ for A and½ for a.Now consider a second demewith the genotype frequencies½ for AA,
0 for Aa, and ½ for aa. Using Eq. (1.1), the allele frequencies in the gene pool are½ for A and ½ for a.
Note that the two gene pools are identical, but the demes are not. Hence, just knowing the gene pool does
not allow one to predict the genotype frequencies. Obviously, more information is needed to predict the
genotype frequencies from the gamete frequencies. The reason that it was possible to predict gamete
frequencies from genotype frequencies was that the laws of meiosis are known, and these laws enter
directly into Eq. (1.1), as illustrated by Figure 1.2. These laws of meiosis describe the transition from the
diploid stage of life (the members of the deme) to the haploid stage of life (the gene pool, see Figure 1.1).
To go from the gene pool to the deme, rules or laws are needed that describe the transition from the
haploid stage of life to the diploid stage of life through the act of fertilization. In other words, we need to
describe the probability that two specific types of gametes will come together through fertilization to
form a diploid individual. Many factors can influence these probabilities of fertilization, including the
system of mating, the amount of genetic interconnection with other demes, the randomness associated
with the size of the deme, and the age structure of the deme. Collectively, these factors that influence the
probabilities of particular gametes coming together in a fertilization event are known as population
structure. All of these factors will be considered, but this chapter focuses on just the first one: the system
of mating.The system ofmating refers to the rules by which individuals from a deme choose mates with
respect to the genetic variation under consideration. To focus on the system of mating in this chapter, we
will only consider the case of an isolated deme with no input from gametes outside of the deme, with the
deme being of infinite size to eliminate any random effects on fertilization events, and with discrete
generations that eliminates any impact that age can have on mating probabilities. Although all of these
are unrealistic assumptions for human populations, many of the predictions based on these unrealistic
models nevertheless work extremely well for humans.

RANDOM MATING AND THE HARDYeWEINBERG LAW
The simplest system of mating is random mating in which individuals choose mates at random and
independently of the genotypes of interest; that is, the probability of two genotypes being mates is simply
the product of the frequencies of the two genotypes in the deme. The implications of this system of mating
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were modeled by Wilhelm Weinberg (1908), a German physician interested in Mendelian inheritance in
humans, and Geoffrey Hardy (1908), an English mathematician who was addressing the issue of the
frequency of a Mendelian trait in a human population versus Mendelian ratios in a particular family.
Despite the simplicity of the model they independently developed, it was and remains a cornerstone of
population genetic theory. Both modeled a single autosomal locus with two alleles, say A and a, with no
mutation, subject to the simplifying assumptions stated above and with all genotypes having equal
viability, mating success, and fertility (no natural selection). In addition, Weinberg assumed that all fre-
quencies were identical in males and females, and Hardy assumed that all individuals were self-compatible
hermaphrodites that were as likely to mate with themselves as any other individual in the deme.

Weinberg used a family model to derive what is now known as the HardyeWeinberg Law
(Table 3.1). His model assumes that the initial genotype frequencies (the same in both sexes) are GAA

for genotype AA,GAa for Aa, andGaa for aa. Table 3.1 shows all possible mating types from these three
genotypes, with the convention of putting the female first and the male second. The frequency of the
mating pair is simply the product of the respective genotype frequencies, as shown in Table 3.1.
Mendel’s first law is then used to calculate the probabilities of each type of offspring arising from each
type of mating pair (Table 3.1). To obtain the next generation’s genotype frequencies, say G0

ij where i
and j can be either A or a, Weinberg multiplied the Mendelian probability of a specific genotype from a
specific mating type times the probability of the mating type under random mating, and then took the
sum over all possible mating types for each offspring genotype. Thus, as follows from Table 3.1:

G0
AA ¼ GAA

2 þ 1

2
½2GAAGAa� þ 1

4
GAa

2 ¼
�
GAA þ 1

2
GAa

�2
¼ p2

G0
Aa ¼

1

2
½2GAAGAa� þ 2GAAGaa þ 1

2
GAa

2 þ 1

2
½2GAaGaa� ¼ 2

�
GAA þ 1

2
GAa

��
Gaa þ 1

2
GAa

�
¼ 2pq

G0
aa ¼

1

4
GAa

2 þ 1

2
½2GAaGaa� þ Gaa

2 ¼
�
Gaa þ 1

2
GAa

�2
¼ q2

(3.1)

Table 3.1 Weinberg’s Model of Random Mating

Mendelian Probabilities of Offspring
(Zygotes)

Mating Pair
Frequency of Mating
Pair AA Aa aa

AA � AA GAA � GAA ¼ GAA
2 1 0 0

AA � Aa GAA � GAa ¼ GAAGAa ½ ½ 0

Aa � AA GAa � GAA ¼ GAAGAa ½ ½ 0

AA � aa GAA � Gaa ¼ GAAGaa 0 1 0

aa � AA Gaa � GAA ¼ GAAGaa 0 1 0

Aa � Aa GAa � GAa ¼ GAa
2 ¼ ½ ¼

Aa � aa GAa � Gaa ¼ GAaGaa 0 ½ ½

aa � Aa Gaa � GAa ¼ GAaGaa 0 ½ ½

aa � aa Gaa � Gaa ¼ Gaa
2 0 0 1
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where the frequency of the A allele is p ¼ GAA þ ½GAa, as shown in Chapter 1. Note that the genotype
frequencies in Eq. (3.1) are solely a function of the allele frequencies, p and q ¼ 1 � p, in the gene
pool. These expected genotype frequencies of p2, 2pq, and q2 are called the HardyeWeinberg Law and
allow us to go from gene pool to deme given the rule of fertilization defined by random mating.

Hardy’s derivation was more abstract and is shown in Table 3.2. Hardy did not explicitly model the
possible mating pairs, but rather regarded random mating as equivalent to randomly drawing a gamete
out of the gene pool (which means the probability of drawing a gamete bearing a particular allele is the
same as the frequency of that allele in the gene pool), and then drawing a second gamete from the gene
pool at random and independently from the first. Both derivations end up with the same predicted
genotype frequencies and solve the dilemma of predicting the deme from the gene pool. The explicit
family model of Weinberg and the gene pool draw model are both useful methods of modeling
population genetic problems, with some problems more amenable to one approach than the other. Both
family models and gene pool draw models will be used in this book.

Note that Hardy’s model does not even use the original genotype frequencies, only the allele
frequency p. This means that irrespective of the original genotype frequencies, only one generation of
random mating is needed to obtain the HardyeWeinberg genotype frequencies. This can also be seen
from Weinberg’s model by noting that Weinberg made no assumptions about the initial genotype
frequencies. Once at HardyeWeinberg genotype frequencies, the deme stays at those frequencies. For
example, using the HardyeWeinberg frequencies as the initial genotype frequencies, the first equation
in 3.1 becomes

G0
AA ¼ p4 þ 1

2

�
4p3q

�þ 1

4
ð2pqÞ2 ¼ p4 þ 2p3qþ p2q2 ¼ p2

�
p2 þ 2pqþ q2

� ¼ p2 (3.2)

because p2 þ 2pq þ q2 ¼ 1 (the sum over all genotype frequencies is always 1). Thus, it takes only one
generation of randommating to establish HardyeWeinberg frequencies, and once there, all subsequent
generations will have HardyeWeinberg frequencies as long as random mating and the other as-
sumptions are true. The stability of the genotype frequencies also means that the gene pool is stable.

Table 3.2 Hardy’s Model of Random Mating

Male Gametes

Allele: A a

Frequency: p q

Allele Frequency

Female A p
AA

p × p = p2
Aa

p × q = pq

Gametes
a q

aA
q × p = qp

aa
q × q = q2

Summed Frequencies in Zygotes:
AA:  G’AA = p2

Aa: G’Aa = pq + qp = 2pq
aa:   G’aa = q2
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The frequency of the A allele in a HardyeWeinberg population is p2 þ½[2pq] ¼ p[p þ q] ¼ p as
p þ q ¼ 1 (the sum over all gamete frequencies is always 1). This stability of both genotype and allele
frequencies also means that the HardyeWeinberg frequencies are at equilibrium as long as the as-
sumptions are held, and that there is no evolution (no change in gamete frequencies in the gene pool).
These properties are illustrated in Fig. 3.1, which can be regarded as a multigeneration extension of

FIGURE 3.1

Starting with the observed genotype frequencies for the rs11568820 SNP in the VDR promoter region in a sample

of Ashkenazi Jews (Deme, generation 1), the laws of meiosis generate the gene pool, and then a model of random

mating is used for fertilization to generate a second-generation deme, which in turn generates a gene pool with

identical frequencies to that of the first generation.
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Figure 1.2 under the additional assumptions of the HardyeWeinberg model, using as an example the
rs11568820 SNP in the VDR promoter region in a sample of Ashkenazi Jews introduced in Chapter 1.

The HardyeWeinberg law is easily extended to multiple alleles. Let there be n alleles at a locus,
and let pi be the frequency of allele i. Then by drawing alleles at random and independently from the
gene pool, the frequency of a homozygote, say ii, is pi

2, and the frequency of a heterozygote, say ij
where is j, is 2pipj.

Another special case is when the initial allele frequencies are different in females and males. Let m
be the frequency of A in males, n the frequency of a in males, r the frequency of A in females, and s the
frequency of a in females. Then Table 3.2 becomes Table 3.3. Assuming a 50:50 sex ratio, the fre-
quency of A in the total gene pool is (m þ r)/2 ¼ p, and similarly q ¼ (n þ s)/2. If both sexes had the
same allele frequencies, then the expected frequency of AA individuals would be p2, as shown in
Table 3.2. But Table 3.3 shows that the frequency of AA individuals is now rm. The difference between
the observed frequency of AA individuals and that expected under HardyeWeinberg equilibrium is
rm � p2 ¼ rm � ¼(m2 þ 2mr þ r2) using p ¼ (m þ r)/2. After some simple algebra, this difference
reduces to �¼(m e r)2. Notice that if m ¼ r (both sexes have the same allele frequency), then there is
no deviation from HardyeWeinberg, as expected, given that this was an assumption of the original
model by Weinberg. However, when there is a sex difference in allele frequencies (ms r), then there
are always fewer homozygous AA individuals than expected under HardyeWeinberg (and likewise,
there is an excess of heterozygotes), with the deviations from HardyeWeinberg increasing as the
difference in allele frequencies between the sexes increases. Because an autosomal locus has inde-
pendent assortment from the X and Y chromosomes, which determine sex, in the next generation both
sexes will have the same frequency p of the A allele, the same situation shown in Table 3.2. Hence, the
impact of sex differences in allele frequencies is to delay the HardyeWeinberg equilibrium by one
generation. However, as we will see in Chapter 4, small population size can induce random changes in

Table 3.3 A Model of Random Mating With the Initial Allele Frequencies Differing in Females
Versus Males

Male Gametes

Allele: A a

Frequency: m n

Allele Frequency

Female A r
AA

r × m = rm
Aa

r × n = rn

Gametes
a s

aA
s × m = sm

aa
s × n = sn

Summed Frequencies in Zygotes:
AA:  G’AA = rm
Aa: G’Aa = rn + sm
aa:   G’aa = sn
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allele frequency from one generation to the next. The numbers of reproductive males and females in a
deme are even smaller, so in small human demes, random sampling often creates differences in the
frequencies of alleles between males and females every generation. Hence, small human demes are not
expected to be at HardyeWeinberg frequencies even if they are randomly mating, but rather are ex-
pected to show a heterozygote excess. This is but one example of how small population size affects the
probabilities by which gametes unite in a fertilization event, but a more detailed examination of the
role of finite population size will be delayed until the next chapter.

When dealing with an X-linked locus, the difference in allele frequencies between the sexes does
not go away after a single generation. Suppose the A locus is on the X chromosome. Then Table 3.3 is
applicable only to females, as they are diploid for the X chromosome. However, because males are
haploid for the X chromosome, there are only two male genotypes, A and a, and the genotype fre-
quencies are the same as the allele frequencies, m and n, respectively. In the next generation, Table 3.3
gives the genotype frequencies of the females, which show a heterozygote excess relative to
HardyeWeinberg expectations, but the genotype frequencies of the males in the next generation are r
and s because the males get their X chromosomes from their mothers. The frequency of the A allele in
the females in this next generation is rm þ½(rn þ sm) ¼ ½(r þ m). This makes sense because half of
the X chromosomes of these females come from their mothers and half from their fathers. In contrast,
all of the X chromosomes in the males come from the mothers of the previous generation; that is, the
allele frequency of A in the males is now r, the allele frequency in females from the previous gen-
eration. The initial difference in allele frequency between females and males is r � m ¼ d. The dif-
ference between females and males after one generation of random mating is ½(r þ m) �
r ¼ �½(r � m). By iterating this process, it is easy to show that the magnitude of the difference in
allele frequency between females and males is halved in each generation of random mating and the
sign of the difference flip-flops every generation. In this manner, the population gradually approaches
an equilibrium with the frequency of A going to p ¼½(r þ m) in both sexes.

Human populations do not satisfy the assumptions of the HardyeWeinberg model; yet, this model
accurately predicts the genotype frequencies for most loci in most human populations. This can be
seen in Fig. 3.1 for the Ashkenazi population scored for a VDR promoter SNP. The HardyeWeinberg
frequencies in the deme generated by random mating (generation 2) are extremely close to those in the
observed sample (deme at generation 1). The null hypothesis that the observed sample has Hardye
Weinberg frequencies can be tested in several ways, two of which will now be given. The first test is the
chi-square test of goodness of fit. This test requires the number of individuals with each genotype in the
sample, not the genotype frequencies, and the expected numbers under the HardyeWeinberg law. Let
ni be the observed number of individuals having genotype i, and let Exp(i) be the expected number for
genotype i that is obtained by multiplying the expected HardyeWeinberg genotype frequencies by the
sample size. For the case illustrated in Fig. 3.1, the sample size was 167 individuals and the number of
each genotype is (Chapter 1)

Number with genotype CC: 102 ¼ nCC
Number with genotype CT: 56 ¼ nCT
Number with genotype TT: 9 ¼ nTT

Fig. 3.1 shows the expected genotype frequencies under HardyeWeinberg, and multiplying them
by the sample size of 167 yields the expected numbers:
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Expected number with genotype CC: 167(0.606) ¼ 101.20 ¼ Exp(CC)
Expected number with genotype CT: 167(0.345) ¼ 57.60 ¼ Exp(CT)
Expected number with genotype TT: 167(0.049) ¼ 8.12 ¼ Exp(TT)

The chi-square statistic is as follows:

X
Genotypes

ðni � EXPðiÞÞ2
EXPðiÞ ¼ ð102� 101:20Þ2

101:20
þ ð56� 57:52Þ2

57:52
þ ð9� 8:12Þ2

8:12
¼ 0:130 (3.3)

If the null hypothesis of HardyeWeinberg were true, the above statistic should be distributed as a
chi-square probability distribution (a standard distribution in statistics). To convert the test statistic into
a probability statement under the assumption of a chi-square distribution, the degrees of freedom need
to be calculated. The general formula for this is the number of categories in the sum (3 in the case of
Eq. 3.3) minus 1 minus the number of parameters that had to be estimated from the data to generate the
expected value. In this case, one allele frequency, p, had to be estimated from the data (note that
q ¼ 1 � p, so q does not need to be estimated separately). Hence, the degrees of freedom in this case
are 3 � 1 � 1 ¼ 1. Standard probability functions then yield the p-value of the chi-square statistic in
Eq. (3.3) as being 0.72. In general, the null hypothesis is only rejected when the p-value �.05.
Obviously, this is not the case in this example, so the null hypothesis of HardyeWeinberg is not
rejected for this sample of Ashkenazi Jews at this SNP.

The null hypothesis of HardyeWeinberg can also be tested with a likelihood ratio test. The
standard sampling probability distribution for sampling the deme with three genotypes is the multi-
nomial distribution, an extension of the binomial distribution (Eq. 1.2):

f ðxCC; xCT jn;GCC;GCT Þ ¼
�

n

xCC xCT

�
ðGCCÞxCCðGCTÞxCT ð1� GCC � GCTÞn�xCC�xCT (3.4)

where n is the number of individuals sampled, xCC is the random variable corresponding to the number
of CC individuals that will be sampled, xCT is the random variable corresponding to the number of CT
individuals that will be sampled, n � xCC � xCT is the random variable corresponding to the number of
TT individuals that will be sampled, and�

n

xCC xCT

�
¼ n!

xCC!xCT !ðn� xCC � xCT Þ! (3.5)

Once the sample is taken and the random variables are replaced by their observed values, say ni for
the number of observed individuals with genotype i, the likelihood can be determined as follows:

LðGCC;GCT jn; nCC; nCTÞ ¼
�

n

nCC nCT

�
ðGCCÞnCC ðGCT ÞnCT ð1� GCC � GCT Þn�nCC�nCT (3.6)

By taking the logarithm of Eq. (3.6), taking the partial derivatives with respect to the variables (no
longer parameters in a likelihood equation) GCC and GCT, setting them equal to 0 and solving (exactly
like in Eqs. 1.7 and 1.8 in Chapter 1), the maximum likelihood estimators of the genotype frequencies
are simply

bGi ¼ ni
n

(3.7)
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Now suppose that the genotype frequencies obey the HardyeWeinberg law. Then, the likelihood
under this model is as follows:

Lðpjn; nCC; nCT Þ ¼
�

n

nCC nCT

��
p2
	nCC ð2pð1� pÞÞnCT



ð1� pÞ2

�n�nCC�nCT
(3.8)

which reduces to

Lðpjn; nCC; nCT Þ ¼ 2nCT
�

n

nCC nCT

�
p2nCCþnCT ð1� pÞnCTþ2nTT (3.9)

Eq. (3.9) is similar to the likelihood Eq. (1.6), and the maximum likelihood estimator of p, the only
parameter in the HardyeWeinberg genotype frequency model, is as follows:

bp ¼ 2nCC þ nCT
2n

(3.10)

The null hypothesis of HardyeWeinberg genotype frequencies can now be tested with the log-
likelihood ratio test, noting that the general model (Eq. 3.6) has a dimension of 2 (two genotype
frequencies need to be estimated) and the HardyeWeinberg model (Eq. 3.9) has a dimension of 1 (only
p needs to be estimated), so the degrees of freedom for the test is 1. Plugging the observed numbers
into these equations yields a log-likelihood ratio test of 0.128 with 1 degree of freedom, yielding a
p-value of 0.72. As with the standard chi-square test, the hypothesis of HardyeWeinberg is not
rejected, and indeed HardyeWeinberg fits the data very well.

The excellent fit to HardyeWeinberg in the above example is actually typical for most loci in many
human populations. Despite the many assumptions that are unrealistic for human populations, this
simple model works extremely well. Indeed, because the HardyeWeinberg law fits most loci in many
human populations, it is often used as a quality control when inferring genotypes through many scoring
techniques. For example, several thousand people were resequenced for an autosomal gene, and many
SNPs were inferred from the resulting sequence calls. For one SNP, polymorphic for A and G nu-
cleotides, the called genotypes were 3269 AA’s, 1309 AG’s, and 1283 GG’s. These genotype numbers
yield an estimated frequency of the A allele of 0.669, and a chi-square statistic of 1438.29 with 1
degree of freedom (p < .000001). This leads to an extremely strong rejection of the hypothesis of
HardyeWeinberg because of an extreme deficiency of heterozygotes (the expected number of AG’s
under HardyeWeinberg is 2594). Further studies revealed that much of the raw sequence data were of
poor quality, and that the computer program that was calling the genotypes incorrectly identified many
heterozygotes as homozygotes. This example also serves as a warning that sequencing technologies do
not generate genotypes or sequences of A, C, T, and G’s; rather, the raw data are light intensities at
different wavelengths, peak positions, etc., depending on the technology. The raw data and the pro-
grams that infer nucleotides or genotypes from the raw data are all subject to error, so an assessment of
data quality is essential. HardyeWeinberg often plays an important role in that regard.

The HardyeWeinberg model can also be extended to multiple loci. Consider the model with two
autosomal loci, each with two alleles: say, A and a at the first locus, and B and b at the second locus, as
shown in Fig. 3.2. The genotype frequencies in the initial deme are not shown because, as with the
single locus HardyeWeinberg population, random mating corresponds to randomly and independently
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drawing gametes out of the gene pool as weighted by their frequency. Hence, once given the gamete
frequencies of the initial gene pool, the genotype frequencies of the initial deme are irrelevant. The
random pairing of gametes drawn from this initial gene pool produces genotype frequencies in
the deme of the next generation that appear similar to those of single locus HardyeWeinberg. Let gi be
the frequency of a gamete bearing the allele combination i, then the frequency of homozygotes after
random mating is gi

2 and the frequency of a gametic heterozygote, say ij, is j, is 2gigj (Fig. 3.2). The
similarity to single locus HardyeWeinberg breaks down in going from the deme of the next generation
to its gene pool. Because of the assumption of no mutation, a genotype can only pass on the allelic
types it inherited. However, because of recombination between linked loci and assortment for loci on
different autosomes, double heterozygotes can produce all four gamete types (Fig. 3.2): the two
gamete types they received from their parents (the parental types) and the two remaining gamete types
produced by recombination or assortment (the recombinant types).

The introduction of recombination into the two-locus model creates novel outcomes not seen
in the single locus model. Using the meiotic arrows shown in Fig. 3.2 and their weights as

FIGURE 3.2

The two-locus HardyeWeinberg model. The arrows indicating the transition from the initial gene pool to the

deme of the next generation are black, gAB; dashed, gAb; gray, gaB; and dotted, gab. All these arrows are weighted

by their respective gamete frequencies. The arrows showing the meiotic transition from diploid genotypes to the

gametes in the gene pool of the next generation are blue from homozygotes, with meiotic probability 1; green from

single heterozygotes, with weight ½ (Mendelian segregation); and red from double heterozygotes, with weight
½(1 � r) where r is the recombination frequency for parental type gametes (dotted red lines), and weight ½r for
recombinant gametes (solid red lines).

RANDOM MATING AND THE HARDYeWEINBERG LAW 73



indicated in the figure legend, the frequency of the AB gamete in the next generation’s gene pool is as
follows:

g0AB ¼ 1� g2AB þ 1

2
ð2gABgAbÞ þ 1

2
ð2gABgaBÞ þ 1

2
ð1� rÞð2gABgabÞ þ 1

2
rð2gAbgaBÞ

¼ gAB½gAB þ gAb þ gaB þ ð1� rÞgab� þ rgAbgaB

¼ gAB½gAB þ gAb þ gaB þ gab� þ rgAbgaB � rgABgab

¼ gAB þ rðgAbgaB � gABgabÞ ¼ gAB � rD

(3.11)

where D is the original measure of linkage disequilibrium (Eq. 1.18). Likewise, the frequencies of the
three other gamete types in the next generation’s gene pool are as follows:

g0Ab ¼ 1� g2Ab þ
1

2
ð2gABgAbÞ þ 1

2
ð2gAbgabÞ þ 1

2
ð1� rÞð2gAbgaBÞ þ 1

2
rð2gABgabÞ ¼ gAb þ rD

g0aB ¼ 1� g2aB þ 1

2
ð2gABgaBÞ þ 1

2
ð2gaBgabÞ þ 1

2
ð1� rÞð2gAbgaBÞ þ 1

2
rð2gABgabÞ ¼ gaB þ rD

g0ab ¼ 1� g2ab þ
1

2
ð2gAbgabÞ þ 1

2
ð2gaBgabÞ þ 1

2
ð1� rÞð2gABgabÞ þ 1

2
rð2gAbgaBÞ ¼ gab � rD

(3.12)

Eqs. (3.11) and (3.12) show that the gamete frequencies in the next generation are not the same as
the gamete frequencies in the initial generation as long as r > 0 (that is, there is some recombination or
assortment) and D s 0 (that is, there is some initial linkage disequilibrium). Under these conditions,
the gamete frequencies (and hence the genotype frequencies) change across the generation; that is,
evolution has occurred. This is qualitatively different than the single locus model in which no evolution
occurs. These conditions for two-locus evolution are not restrictive. First, assortment between un-
linked loci occurs in every normal meiosis. In addition, nonzero recombination between linked loci is
expected in the nuclear genome unless both loci are located in a region between two recombinational
hot spots (see Chapter 2).

The amount of linkage disequilibrium in the next generation’s gene pool is as follows:

D1 ¼
�
g0ABg

0
ab � g0aBg

0
Ab

�
¼ ½ðgAB � rDÞðgab � rDÞ � ðgaB þ rDÞðgAb þ rDÞ�
¼ Dð1� rÞ.

(3.13)

Using Eq. (3.13) recursively, the linkage disequilibrium after t generations of random mating is
D(1 � r)t. Because r � ½, (1 � r)t gets smaller and smaller with increasing t, eventually going to 0 for
r > 0. Hence, as long as there is some recombination, the direction of evolution is always to decrease
linkage disequilibrium. Unlike the single locus models, the equilibrium with D ¼ 0 is gradually
approached under random mating, with the rate determined by 1 � r. However, if r ¼ 0, the two-loci
achieve equilibrium in a single generation of random mating. In this case, the two-locus system be-
haves as if it were a single locus with up to four alleles. Stated more precisely, the two-locus system
defines up to four haplotypes in permanent linkage disequilibrium due to a lack of recombination.
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The dependency of the evolution of a two-locus system on r makes linkage disequilibrium a useful
metric for many purposes in population genetics. First, one can scan the genome for patterns of linkage
disequilibrium, and these can be used to identify recombination hot spots and the blocks of DNA
between the hot spots that tend to contain large and stable haplotypes with much linkage disequi-
librium (Chapter 2). These blocks of no to little recombination are often called LD blocks (LD
standing for linkage disequilibrium). This property of linkage disequilibrium has already been illus-
trated in Figure 2.9, where a recombination hot spot in the LPL gene is identified as an area of little to
no linkage disequilibrium flanked by two LD blocks with no detectable recombination.

The scalar measures of linkage disequilibrium can help identify haplotype blocks of low recom-
bination in the genome, but they are of limited use in identifying the actual haplotypes. This is known
as the phasing problem, and it appears even at the two-locus level. For example, suppose the genetic
state at two loci is determined, with an individual being A/a at locus 1 and B/b at locus two. As shown
in Fig. 3.2, there are two types of double heterozygotes: AB/ab and Ab/aB. With many genetic survey
techniques, these two distinct types of double heterozygotes are indistinguishable, although some
survey techniques (Kuleshov et al., 2014; Chaisson et al., 2015) will provide phase information on
which alleles are on the same chromosome and which are not. Otherwise, phasing is done through
various statistical or algorithmic procedures (Templeton et al., 1988; Climer et al., 2010), although a
combination of molecular and statistical phasing is often done (Kuleshov et al., 2014). Efficient
algorithmic phasing can be done with the CCC measure of linkage disequilibrium (Eq. 1.23) because
that vector approach provides information about the association between specific alleles at different
loci. For unphased data, the exact gamete types borne by double heterozygotes are not known for
certain, as explained above. A computationally efficient assumption is simply to give equal weight to
all four gamete types that can be produced by double heterozygotes. This will bias the results, but the
actual phasing is not done using just a pair of markers, as will soon be explained, and there is little
impact of this assumption on the ultimate phasing. In addition, the frequency factor correction in Eq.
(1.23) in this case is set to ffi ¼ 1 � pi/1.5 where pi is the frequency of allele i, as this was found to be
useful for SNPs with intermediate allele frequencies (Climer et al., 2014).

Climer et al. (2015) calculated the CCC for all allelic pairs at 1,115,561 autosomal SNPs
throughout the human nuclear genome in four human populations from the HapMap database (http://
hapmap.ncbi.nlm.nih.gov/) and found several regions with high linkage disequilibrium. One was at the
Gephyrin locus, a highly conserved gene that is vital for the organization of proteins at inhibitory
receptors, molybdenum cofactor biosynthesis, and other diverse functions. Additional SNP data from
chromosome 14 (the location of Gephyrin) for 2504 individuals scored for 13,564 SNPs was down-
loaded from the 1000 Genomes Project (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/
20130502/). Linkage disequilibrium exists not just between pairs of SNPs, but can extend over many
SNPs. To deal with this higher order disequilibrium, all pairs of alleles were linked together as
weighted by the CCC value for that pair of alleles (not genes, as with scalar measures of disequi-
librium) using the program BlocBuster. The original data were then randomly permuted multiple times
to simulate the null hypothesis of no association between any allelic pair. In this manner, a threshold
value for CCC could be determined that would eliminate false positives. Eliminating all the links
between alleles below this threshold resulted in several disjoint networks of SNP alleles that repre-
sented phased haplotypes. Two of these haplotypes were defined by 284 SNPs spanning more than
1 Mb that included the Gephyrin locus plus about 300 kb upstream and downstream from that gene.
These two haplotypes constitute a yin-yang pair; that is, two haplotypes that differ at many SNPs but
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with most intermediate haplotypes missing from the population. This yin-yang haplotype pair is
prevalent across global human populations and is an order of magnitude larger than any other yin-yang
haplotype pair previously recorded (Climer et al., 2015). An earlier genome-wide scan using scalar
measures of linkage disequilibrium identified this region as having an exceptionally strong block of
linkage disequilibrium but did not detect the underlying yin-yang pattern responsible for this LD block
(Park, 2012). This illustrates the added information found in a vector measure of linkage disequilib-
rium versus a scalar measure.

The ability to determine or infer haplotypes is also useful in discriminating between identity-by-
descent (IBD) versus identity-by-state due to homoplasy. As shown in Chapter 1, when a new allele is
created by mutation, it occurs on a single chromosome and hence is associated with the particular
allelic states of all variable markers on its chromosome of origin. Because this initial linkage
disequilibrium decays only slowly or not at all for closely linked markers, the haplotype structure
surrounding a mutation of interest indicates the chromosome state on which it originated. If all copies
of that mutation have a common haplotype background, it indicates that all copies of that mutation are
identical-by-descent. If on the other hand, different copies of that mutation have highly different
haplotype backgrounds, it more likely indicates multiple mutational events to the same allelic state;
that is, homoplasy. This was the procedure used in the analysis of the LPL data on mutational motifs
and homoplasy discussed in Chapter 2. This idea has been in the population genetic literature for some
time. For example, one of the classic mutations in human population genetics is the sickle cell mu-
tation, S (Chapter 1). S is an A to T missense mutation in the second position of the sixth codon of the
gene (b-Hb) that codes for the b chain of adult hemoglobin and has important health consequences
(Chapter 1). Lapoumeroulie et al. (1992) and Oner et al. (1992) surveyed the genomic region con-
taining the b-Hb locus for restriction-site polymorphisms. Restriction enzymes cut specific DNA
sequence motifs, and polymorphisms are detected when some DNA molecules are cut and others are
not, making it the equivalent of a two-allele polymorphism, typically indicated by aþ for a cut and a�
for the absence of a cut. They determined the phase of the restriction site polymorphisms on many
chromosomes bearing the Smutation, with the results shown in Fig. 3.3. As can be seen, the Smutation
was found on five different haplotype backgrounds, implying that the same mutation at the sixth codon
that defines the S allele occurred multiple times in recent human evolution, at least four times in Africa
and one in Asia.

The decay of linkage disequilibrium as a function of recombination also makes linkage disequi-
librium a useful proxy for recombination and physical distance in the genome on a coarse genomic
scale (Fig. 3.4). However, when dealing with small genomic regions on the order of 5 kb or less (note
the absence of this scale in Fig. 3.4), recombination hot spots and LD blocks can create complicated
patterns of linkage disequilibrium that often do not accurately reflect base pair distances, as already
illustrated by the 1 kb region shown in Figure 2.9 in which some adjacent SNPs show no significant
LD, whereas some distant pairs of SNPs show high levels of LD. Indeed, within LD blocks associated
with regions of no or very little recombination, there is often no association with linkage disequi-
librium and physical distance. Instead, the magnitude of LD is determined more by evolutionary
history than physical distance in low recombination regions (this will be discussed in Chapter 5).
Moreover, as will be shown later in this chapter, other factors can create linkage disequilibrium, and
sometimes in a manner that does not reflect physical distance in the genome. Hence, linkage
disequilibrium should be used with caution as a proxy for physical distance.
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FIGURE 3.4

The decay of linkage disequilibrium with physical distance in the genome as measured in a human population

from the state of Utah.

Modified from Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., et al., 2001. Linkage disequilibrium in the

human genome. Nature 411, 199e204.

FIGURE 3.3

Haplotype backgrounds containing S alleles at the hemoglobin b chain locus. Restriction site polymorphisms in or

near several hemoglobin chain loci (b, ε, d, Gg, and Ag) and the pseudogene jb are indicated, with “þ” meaning

that the indicated restriction enzyme cuts the site on that chromosomal type and “�” meaning that it does not cut.

Data from Lapoumeroulie, C., Dunda, O., Ducrocq, R., Trabuchet, G., Monylobe, M., Bodo, J.M., et al., 1992. A novel sickle-cell

mutation of yet another origin in Africa - the Cameroon type. Human Genetics 89, 333e337; Oner, C., Dimovski, A.J., Olivieri,

N.F., Schiliro, G., Codrington, J.F., Fattoum, S., et al., 1992. Beta-S haplotypes in various world populations. Human Genetics 89,

99e104.



INBREEDING
Inbreeding occurs when biological relatives mate and reproduce. Biological relatives are individuals
that share one or more common ancestors from past generations. When mates share one or more
common ancestors, it is possible for DNA replication to cause identical copies of a DNA region from
a common ancestor to be passed on by both of the related mates to their offspring. Such copies from a
common ancestor are identical-by-descent, and the offspring of related mates can be homozygous due
to IBD. There are many ways of measuring inbreeding within this general concept of relatives mating,
and many of these alternatives are incompatible with one another both biologically and mathematically
(Jacquard, 1975). Unfortunately, most of the population genetic literature calls all of these various
measures by the same name and often uses the same symbol, leading to much confusion. In this book,
different measures will have different names and symbols. In this chapter, two of these many meanings
of inbreeding will be used: pedigree inbreeding and system-of-mating inbreeding (Templeton, 2006).

PEDIGREE INBREEDING
When two biological relatives mate, the resulting offspring is said to be inbred. Inbred offspring can
be homozygous due to IBD for those portions of their genomes for which they inherited identical
copies from a single ancestor from both their mother and father. The amount of inbreeding in this case
can be quantified by the pedigree inbreeding coefficient F, the probability of homozygosity due to
identity by descent in an individual at a randomly chosen autosomal locus. Alternatively, F can be
thought of as the proportion of the maternal and paternal autosomal genomes inherited by an individual
that is identical-by-descent.

Traditionally, F was calculated from pedigree data using Mendel’s first law of segregation. For
example, Fig. 3.5 shows a pedigree in which a female labeled “A” reproduced with two different males
(M1 and M2), having a male offspring (B) with M1 and a female offspring (C) with M2. The half-sibs
B and C then mated and produced the inbred male offspring D. The common assumption in a pedigree
analysis is that all individuals who are not common ancestors of both the father (B) and the mother
(C) are not related to each other or to any common ancestor. In this pedigree, these assumed unrelated
individuals are the two males M1 and M2. With this assumption, this pedigree has only one common
ancestor for both B and C, and that is female A. Another common assumption is that common an-
cestors that are in the deepest part of the pedigree (A in this case) are themselves not inbred; that is,
they have no loci that are homozygous because of IBD. The next step in calculating F is to invoke a
hypothetical autosomal locus, and the common ancestor is assigned two distinct alleles at this locus
because by assumption they are not identical-by-descent (they may be identical by state due to ho-
moplasy). In this case (Fig. 3.5), common ancestor A is assigned the genotype Aa at this autosomal
locus. Mendel’s first law says that the probability of individual A passing on an A allele to her son B is
½. Similarly, the probability that individual A passes on the same A allele to her daughter C is also ½.
For D to be homozygous for the A allele, both D’s father B and mother C must also pass on the A allele,
with these two meiotic events each having a probability of ½. Hence, the total probability that D is
homozygous AA due to IBD is (½)4 ¼ 1/16. However, D could also be homozygous due to IBD if he is
homozygous aa, which also has a probability of (½)4. Hence, F ¼ probability that D is homozygous
due to IBD at this arbitrary autosomal locus ¼ (½)4 þ (½)4 ¼ (½)3 ¼ 1/8. The inbreeding coefficient
F of an inbred individual from the half-sib mating shown in Fig. 3.5 is 1/8. In general, each pathway
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that connects an inbred individual to a noninbred common ancestor through n meiotic events con-
tributes a probability of (½)n�1 to F. These calculations can become quite complicated for complex
pedigrees, but the basic probabilities all stem from Mendel’s first law of segregation.

It is critical to note that F is assigned to an individual as a function of that individual’s specific
pedigree. Different individuals in the same deme can have very different pedigree inbreeding co-
efficients. The parents of some individuals might be unrelated, so these individuals will have F ¼ 0.
Other individuals might have parents that were first cousins, with F ¼ 1/16. Other possibilities exist, so
in general human populations consist of individuals that have unique and highly variable F values.
Because pedigree inbreeding is an individual value and not a population value, it is impossible to
measure a deme’s system of mating with F; there is no single F for the deme! Sometimes, the average F
across all individuals in the deme is calculated, say F. This average does convey some information
about the deme, but it is still inadequate as a system of mating measure. For example, because F is a
probability, F � 0, so F cannot measure avoidance of inbreeding, another common practice in human
systems of mating.

FIGURE 3.5

Pedigree inbreeding associated with the offspring D of a mating between two half-sibs (male B and female C) who

shared a common, noninbred mother (A) who reproduced with two different unrelated males (M1 and M2). The

common ancestor A is assumed to have two alleles, A and a, at a hypothetical autosomal locus.
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The distinction between system of mating and F is made clear by the study of Brennan and
Relethford (1983) who studied pedigree inbreeding in a human population on the island of Sanday in
the northern part of the Orkney Islands, Scotland. They used pedigree data to compute F for all the
individuals for three time periods according to the birth year of the husband: 1855e84, 1885e1924,
and 1924e64. F’s for these three time periods are given in Table 3.4. They then ran many computer
simulations to pair individuals realistically by basic demographic data (sex, age, etc.) but otherwise at
random. In this manner, they simulated a random-mating population, and then they used the pedigree
information on the individuals they paired in the computer to calculate Fr e the average F for all the
individuals in each time period created by simulated random mating. Note that random mating means
that individuals truly mate at random, given certain demographic constraints. Thus, if a male has a
sister in the appropriate age range, he is as likely to be paired with his sister as with any other female in
the appropriate age range. Randommating does not avoid mating between biological relatives, and as a
result random mating in any finite population will always result in some matings between biological
relatives. Hence, Fr > 0. However, suppose individuals in the real population chose mates in a
nonrandom fashion by relatedness (for example, by avoiding close relatives as mates), with the impact
of this nonrandom mate choice measured by the parameter fn. Brennan and Relethford (1983) showed
that the total average pedigree inbreeding is related to their measure of nonrandommating, fn, and their
simulated inbreeding due to random mating, Fr by

F ¼ fn þ ð1� fnÞFr (3.14)

Note that fn is not a probability, it is simply a parameter that is estimated from Eq. (3.14) given the
observed F and the simulated Fr . fn can be either positive (matings between relatives are more
common than expected under random mating) or negative (matings between relatives are less common
than expected under random mating). Table 3.4 gives these F/f values for the three time periods.
During the earliest time period, matings between cousins were often favored, although matings be-
tween closer relatives were avoided. Overall, this resulted in a positive fn, indicating that the deme
deviated from random mating by an overall favoring of matings between relatives. As time went on,
the average level of pedigree inbreeding declined, going to 0, but the random-mating level was more
stable. However, as time went on, fn declined and actually become negative, reflecting an increasing
avoidance of cousin marriages over time coupled with an increase of matings between individuals
borne at distant locations within the island and off the island as transportation became easier. Note that
F ¼ 0 does not imply random mating, but rather resulted from a system of mating that was nonrandom

Table 3.4 Components of Pedigree Inbreeding From a Simulated Random-Mating Analysis of
the Human Population on Sanday, Scotland

Birth Year of Husband F Fr fn

1855e84 0.00212 0.00120 0.00092

1885e1924 0.00091 0.00074 0.00017

1925e64 0.00000 0.00083 �0.00083

From Brennan, E.R., Relethford, J.H., 1983. Temporal variation in the mating structure of Sanday, Orkney islands. Annals of Human
Biology 10, 265e280.
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through the avoidance of mating with siblings and cousins. Moreover, random mating resulted in
pedigree inbreeding

�
Fr > 0

	
in all time periods. Hence, the average pedigree F is not a good measure

of the system of mating of the deme.
The calculation of F was based on the assumptions that the oldest parts of the pedigree consisted of

individuals who were not related and not inbred, and that any spouses that were not common ancestors
in the pedigree were also completely unrelated to any other individual in the pedigree. Normally,
pedigree information is available only for a few generations. Yet, all humans are related to all other
humans if you go far enough back in time. For example, computer simulations based on historical and
reasonable assumptions of humanity’s demographic history revealed that all humans living in 2004
share at least one common ancestor who most likely lived sometime between 55 CE (Common Era)
and 1415 BCE (Before the Common Era), and going back just a few thousand years before this most
recent common ancestor, each present-day human has almost the same set of genealogical ancestors
(Rohde et al., 2004). Obviously, the common assumptions made in calculating F from pedigree data
are violated in humans. Nevertheless, two factors make F based on pedigree information a reasonable
approximation in many cases. First, as shown above, the contribution of a specific common ancestor to
F is often (½)n�1, which declines exponentially with the number of generations. Hence, ancient an-
cestors make very small contributions. However, although the contributions of individual ancestors
become very small with increasing generations, the number of such ancestors is expected to increase.
This increasing number of genealogical ancestors does not compensate for the declining contributions
to F of individual individuals because of a second factordthe finite number of chromosome blocks
derived from a common ancestor. In each meiotic event, about half of a common ancestor’s genetic
contribution is not passed on to the next generation. Moreover, because of linkage, although F is
defined in terms of a single locus, stretches of chromosomes from a common ancestor are in actuality
passed down and not single loci. The size of these stretches also becomes smaller with time due to
recombination, but in reality there are always just a finite number of ancestor-specific chromosomal
segments segregating in the n meiotic events that define a pedigree loop to a common ancestor. With
time and increasing n, more and more of these chromosomal stretches from the original ancestor are
not passed on through all n meiotic events in a pedigree loop, and because there are only a finite
number of them, all of them can be lost just due to the random sampling of parental genomes during
each meiotic event (see Chapters 4 and 5). If nothing is passed on from the common ancestor in even
one of the n meiotic events in the pedigree loop, this common ancestor no longer contributes to
pedigree inbreeding because it is now impossible to be homozygous by descent for any genetic ma-
terial from that ancestor. Such genealogical ancestors whose genetic contributions to IBD have been
lost are called ghost ancestors (Gravel and Steel, 2015). Ignoring these ancient common ghost an-
cestors therefore has no impact on calculating F from pedigrees based on just a few generations.
Nevertheless, some potential ancestors that are ignored in pedigree-based calculations are not ghosts,
so the pedigree method of calculating F is most likely an underestimate.

Genomics provides a method for correcting this bias. By scanning the entire genome with many
SNPs, the amount of homozygosity by IBD can be calculated empirically. The simplest methods are
single-point methods that estimate inbreeding from the homozygosity levels of each SNP, often with
some sort of averaging across these single-point estimates. Such procedures tend to be poor estimators
of F (Gazal et al., 2014). Part of this poor performance is due to the fact that some single-point es-
timators are not estimating F, but rather the system of mating inbreeding coefficient that will be
discussed in the next section. As already shown in Table 3.4, a system of mating inbreeding coefficient,
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such as fn, can be quite different from F. A second reason for the poor performance of single-point
estimators is that homoplasy is very common among SNPs in the human genome, as shown in
Chapter 2. Single-point estimators frequently confound identity-by-state with IBD, but pedigree
inbreeding is concerned only with IBD. Hence, single-point estimators from SNPs should not be used
to estimate F. The solution to this problem has already been indicated in Chapter 2 and in
Fig. 3.3dlooking at haplotypes or other multi-locus measures. If a genome segment that spans several
SNPs is identical between two homologous chromosomes or shows a run of homozygosity (ROH) in
an individual, it is very probable that the segments are identical-by-descent and not identical-by-state.
There are many of these multipoint approaches, differing mainly in how they deal with phase infor-
mation or the lack thereof, tolerances for error in scoring SNPs, and in the number of SNPs or other
criterion (such as the physical size of the region) used to identify a sufficiently large segment of the
genome to ensure IBD, with no one method or settings being best for all samples and densities of
markers (Gazal et al., 2014; Rodriguez et al., 2015; Gauvin et al., 2014; Speed and Balding, 2015).
Gauvin et al. (2014) examined the performance of several estimators on some French Canadian
populations in which many individuals had pedigree information going back 5 to 10 generations. This
allowed a detailed examination of how well the genomic inferences fit the pedigree inferences. Instead
of measuring F, they estimated from the pedigree and SNP data the coefficient of kinship between two
individuals. The coefficient of kinship between two individuals is the probability of a randomly
chosen allele at an autosomal locus from one individual being identical-by-descent to a randomly
chosen allele at the same autosomal locus from the other individual. Note that the coefficient of kinship
is the same as the pedigree inbreeding coefficient F of a hypothetical offspring if these two individuals
were mates. Gauvin et al. (2014) used several multipoint methods, and Fig. 3.6 shows a plot of their
genealogically determined coefficient of kinship against the sum of the length of all the haplotype
segments in the genome that were inferred to be identical-by-descent using SNPs. As can be seen from

FIGURE 3.6

The relationship between the coefficient of kinship determined from pedigree data and the total length of chro-

mosome segments inferred to be identical-by-descent in some FrencheCanadian populations.

Modified from Gauvin, H., Moreau, C., Lefebvre, J.F., Laprise, C., Vezina, H., Labuda, D., et al., 2014. Genome-wide patterns of

identity-by-descent sharing in the French Canadian founder population. European Journal of Human Genetics 22, 814e821.
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Fig. 3.6, inferred IBD sharing was strongly related to the coefficient of kinship, explaining 85% of the
variance in the coefficient of kinship. Kardos et al. (2015) used computer simulations to compare the
performance of F estimated from 20 generations of pedigree data versus estimating the realized
portion of the genome that is identical-by-descent using genomic estimators based on a large number
of SNPs (�10,000 SNPs). They found genomic estimators gave a more precise estimate of true IBD
than the pedigree estimator, as long as large numbers of genetic markers are used. Other studies have
shown that estimators that use ROHs or other multi-locus or segment measures outperform both single-
point SNP estimators and estimators based on pedigree information (Ben Halim et al., 2015; Ram-
stetter et al., 2017; Wang et al., 2017). Hence, genomics provides a method for examining pedigree
relatedness and inbreeding even in the absence of pedigree data.

One important evolutionary implication of pedigree inbreeding in human populations is its asso-
ciation with inbreeding depression, a reduction of a beneficial trait (such as viability, preterm birth, or
some other health-related trait) with increasing levels of pedigree inbreeding. For example, there is a
3.5% excess in deaths among the progeny of first cousins (F ¼ 0.0625) compared to deaths in progeny
of unrelated individuals (Bittles and Black, 2010b). Fig. 3.7 shows the decline of height in children
born to various cousin matings and unrelated matings in Northern India (Fareed and Afzal, 2014),

FIGURE 3.7

Inbreeding depression in height of children in Northern India as a function of pedigree inbreeding, F. The thick,

vertical bars indicate the range of the observed values for the offspring from the indicated mating type. The thin

line displays the significant linear regression of height against F.

Modified from Fareed, M., Afzal, M., 2014. Evidence of inbreeding depression on height, weight, and body mass index: a

population-based child cohort study. American Journal of Human Biology 26, 784e795.
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showing a significant decline with increasing F. It has long been known that pedigree inbreeding in-
creases the incidence of autosomal recessive genetic diseases. For example, marriage between cousins
represents only 0.05% of the marriages in the United States of America in the 1940s, but 18%e24% of
albinos and 27%e53% of individuals with the lethal TayeSachs disease (both autosomal recessives) in
the United States come from cousin marriages (Neel et al., 1949).

Inbreeding depression can also be studied without pedigrees by looking for associations of health-
related traits to the proportion of the genome that displays runs of homozygosity or similar measures to
infer segments of IBD. For example, in a population of Finns, not known to have pedigree inbreeding,
the correlation between height and the length of genomic runs of homozygosity of 65 SNPs or more
was �0.083, which is significant at the 0.001 level (Verweij et al., 2014), thereby displaying an
inbreeding depression for height similar to that shown in Fig. 3.7, which is based on pedigree data.

Genomic studies are providing insight into the underlying genetic causes of inbreeding depression.
One of the most extensive studies involved the sequencing of whole genomes in 2636 Icelanders
(Gudbjartsson et al., 2015). 19,689,642 SNPs and 1,441,572 indels were found in these 2636 Ice-
landers. Out of these 21,131,214 polymorphisms, 6795 were inferred to have loss-of-function variants
and 125,542 were inferred to have moderate-impact variants. Indels were 41% of the loss-of-function
category even though they were only 7% of the polymorphisms, owing to their tendency to cause
frame-shift mutations. 62% of the alleles inferred to be loss-of-function mutations were rare
(frequency � 0.001) and 46% of the moderate-impact alleles. This implies that most of these alleles,
particularly the loss-of-function alleles, were deleterious. Moreover, most genetic diseases in humans
are associated with loss-of-function and moderate-impact alleles, but it often requires homozygosity
(or hemizygosity for X-linked traits) for the deleterious aspects of the disease to be manifested
(McKusick, 2007). Although most of these mutants are individually rare, there are so many of them
that the average sequenced Icelander carried 149 loss-of-function alleles, almost all in heterozygous
condition (Gudbjartsson et al., 2015). Given their overall rarity, it is unlikely that two Icelanders that
are not closely related would carry the same loss-of-function variants. However, if close biological
relatives mate, the amount of sharing of these loss-of-function genes is now quite large. For example,
first cousins would be expected to share 18.6 loss-of-function variants, and the probability that both
cousins would pass on the loss-of-function allele at one of these shared loci is ¼. Hence, the inbred
offspring of a first-cousin mating in this population would be homozygous for 4.7 loss-of-function
alleles on the average. Not all loss of function alleles are deleterious, but obviously the potential for the
inbred offspring to suffer some deleterious effects from homozygosity at one of more of these loci has
been substantially increased. The closer the relatedness of the mating individuals, the greater is this
probability of the inbred offspring being homozygous for a deleterious loss-of-function allele, thereby
producing the pattern of an inbreeding depression like that shown in Fig. 3.7. Similar results were
obtained in a British sample of people of Pakistani ancestry, who had an average of 140.3 loss-of-
function alleles per individual (Narasimhan et al., 2016). However, this sample of Pakistani ancestry
had much more pedigree inbreeding than the Iceland population, increasing greatly the incidence of
homozygosity for loss-of-function alleles. Overall, there was a 13.7% deficient of loss-of-function
homozygotes, indicating that these loss-of-function alleles are deleterious when homozygous on the
average. Nevertheless, many of the homozygotes for loss-of-function alleles had no detectable dele-
terious effects, indicating much functional redundancy in the human genome. Increased homozygosity
for predicted deleterious alleles has also been found in long runs of homozygosity in the genomes of
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inbred individuals from Qatar (Mezzavilla et al., 2015), further indicating that homozygosity for
recessive, deleterious alleles is a likely contributor to inbreeding depression.

The association of runs of homozygosity with genetic disease provides a method of mapping the
disease locus. Because of the randomness during meiosis of recombination and segregation, two inbred
affected individuals that share a common ancestor who presumably bore the genetic disease allele are
unlikely to share all runs of homozygosity from this common ancestor. If the disease is due to ho-
mozygosity for an allele at a single locus, then all the affected individuals in that kindred should share
an ROH that overlaps the disease-causing locus. Moreover, unaffected but inbred individuals from the
same kindred should not have an ROH for the genomic region that contains the disease locus.
Combining these two predictions, one can ideally identify a region of homozygosity shared by all
affected individuals and that is not homozygous in all nonaffected individuals in the kindred. This
approach is called homozygosity mapping. For example, the disease congenital generalized lip-
odystrophy is characterized by loss of subcutaneous fat, muscular hypertrophy, mental retardation, and
other deleterious symptoms. Genome-wide homozygosity mapping was performed on two affected
and one unaffected members of a Saudi family, leading to the inference of a single region on chro-
mosome 17 as the likely location of the disease-causing gene (Jelani et al., 2015). This region con-
tained a candidate gene, a gene whose known function can be related to the phenotypic variation of
interest. Sequencing of this candidate gene, PTRF, revealed a new nonsense mutation that would result
in loss-of-function of the protein through premature termination.

SYSTEM OF MATING INBREEDING
Pedigree inbreeding, F, is measured at the individual level, either through pedigree data or genomic
data. A single deme can consist of individuals with a wide range of F values. It is possible to take the
average of all these individual F values and assign that average to the deme, but even F is an inad-
equate measure of the system of mating of the deme. Some measure is needed that applies directly to
the deme as a unit that describes the rules by which gametes are drawn and united into a fertilization
event from the gene pool. Because random mating is a simple null model for a deme-level system of
mating, and as it is widely applicable to human demes, one way of measuring a deme’s system of
mating is to measure deviations from random-mating expectations. This was already done in Table 3.4,
where fn is defined only at the level of the deme (not individuals within the deme) and is measured as a
deviation from random-mating expectations of F through Eq. (3.14). This is easier to see by solving
Eq. (3.14) for fn:

fn ¼ F � Fr

1� Fr
(3.15)

Recall that Fr is the average probability of IBD in individuals produced by a simulated random-
mating population. If mating were truly at random, F ¼ Fr and Eq. (3.15) shows that fn would be
zero. When fn is positive, the deme has an average level of IBD that is greater than that expected under
random mating, and the system of mating is inbreeding. This occurred most strongly in the first time
period shown in Table 3.4 when cousin marriages were favored well above random-mating expecta-
tions. When fn is negative, the deme has an average level of IBD that is less than that expected under
random mating, and the system of mating is avoidance of inbreeding. This occurred in the last time
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period shown in Table 3.4 during which individuals often traveled far on the island or even off island to
find mates that were not closely related.

The quantity fn measures the system of mating of the deme as a deviation from random-mating
expectations for the average level of probability of IBD. More commonly, the system of mating of
the deme is measured as a deviation from the random-mating expectations for genotype frequencies.
The random-mating expectations for genotype frequencies are given by the HardyeWeinberg geno-
type frequencies (Table 3.2; Fig. 3.2). Table 3.5 gives a generalization of the random-mating model
shown in Table 3.2 for a one-locus, two allele model by incorporating a new parameter, l, that
measures deviations from the genotype frequencies being simple products of the gamete frequencies.
When l ¼ 0, Table 3.5 reduces back to Table 3.2, so l ¼ 0 corresponds to the special case of random
mating. However, when l > 0, there is a greater chance than expected under random mating for two
gametes to come together that have the same allelic state. This is said to be an inbreeding system of
mating and it results in an excess of homozygotes and a deficiency of heterozygotes relative to
HardyeWeinberg genotype frequencies. When l < 0, there is a greater chance than expected under
random mating for two gametes to come together that have different allelic states. This is said to be an

Table 3.5 The Multiplication of Allele Frequencies Coupled With a Deviation From the
Resulting Products as Measured by l to Yield Zygotic Genotypic Frequencies Under a System of
Mating That Allows Deviation From Random Mating. The Zygotic Genotype Frequencies Are
Indicated by G0

k

Male Gametes

Allele: A a

Frequency: p q

Marginal Allele 

Frequencies in the 

Deme

Allele Frequency

Female

Gametes

A p AA

p2+λ

Aa

pq-λ

(p2+λ)+( pq-λ) =

p2+pq = p(p+q) = p

a q aA

qp-λ

aa

q2+λ

(qp-λ)+(q2+λ) =

qp+q2 = q(p+q) = q

Marginal Allele 

Frequencies in the 

Deme

(p2+λ)+(qp-λ) =

p2+qp = p(p+q) 

= p

(pq-λ)+(q2+λ) =

pq+q2 = q(p+q) 

= q

Summed Frequencies in Zygotes:

AA:  G’AA = p2+λ

Aa: G’Aa = pq-λ + qp-λ = 2pq-2λ

aa:   G’aa = q2+λ
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avoidance of inbreeding system of mating, and it results in a deficiency of homozygotes and an excess
of heterozygotes relative to HardyeWeinberg genotype frequencies. The possible range of values of l
is constrained by the requirement that all genotype frequencies (which are also probabilities, Chapter
1) must be nonnegative, and this range is a function of the allele frequencies. It is therefore convenient
to scale l to a �1 (complete avoidance of inbreeding) to þ1 (complete inbreeding) range, and this is
accomplished by defining fhl=ðpqÞ. Hence, the genotype frequencies shown in Table 3.5 now
become

G0
AA ¼ p2 þ l ¼ p2 þ pqf

G0
Aa ¼ 2pq� 2l ¼ 2pqþ 2pqf ¼ 2pqð1� f Þ

G0
aa ¼ q2 þ l ¼ q2 þ pqf

(3.16)

With this rescaling, f ¼ 0 corresponds to random mating, f > 0 to inbreeding, and f < 0 to
avoidance of inbreeding. Both F and f are called the “inbreeding coefficient” in the general population
genetic literature, and moreover, both inbreeding coefficients are generally assigned the same symbol.
In this book, a capital “F” will always designate an “inbreeding coefficient” related to the probability
of IBD, and a small “f” to a deviation from random-mating expectations at the level of a deme. This
will avoid the confusion that often arises in the general literature and in other books. This distinction is
necessary because these two classes of inbreeding coefficients are totally different biologically (IBD in
individuals vs. deviations from randommating in demes) and mathematically (a probability that ranges
from 0 to 1 vs. a deviation parameter that ranges from �1 to þ1).

Table 3.5 shows that inbreeding and its avoidance do not alter allele frequencies, and hence
inbreeding is not an evolutionary force at the single-locus level. However, the effects of inbreeding and
avoidance of inbreeding on heterozygote genotype frequencies do have an impact on the evolutionary
dynamics of multi-locus systems. When there is inbreeding (f > 0), the genotype frequencies of
heterozygotes are less than those expected under HardyeWeinberg. As shown earlier, the linkage
disequilibrium, D, decays at a rate of 1-r under random mating because the two-locus gamete fre-
quencies are evolving in the direction of D ¼ 0. As shown in Fig. 3.2, all the change in two-locus
gamete frequencies comes from the gametes produced by the double heterozygotes: AB/ab and Ab/
aB. It is only in these double heterozygotes that recombination can create new gametic combinations
from the parental chromosomes. This is not to say that recombination is not occurring in the other
genotypes; it is, but it has no observable genetic consequence on the loci of interest. Hence, the double
heterozygotes play the critical role in the decay of linkage disequilibrium. Inbreeding will reduce the
frequency of double heterozygotes and hence diminish the rate of decay of D below 1 � r, the random
mating rate of decay. The ultimate equilibrium of D ¼ 0 is not changed (except potentially under the
case of 100% selfing (Karlin, 1969), which is impossible in humans). Hence, inbreeding causes a
genome-wide reduction in the effective amount of recombination (not the actual amount of meiotic
recombination), causing linkage disequilibrium to dissipate more slowly than under random mating.
Conversely, avoidance of inbreeding (f < 0) causes a heterozygote excess relative to HardyeWeinberg
and hence causes a genome-wide increase in the effective amount of recombination. Linkage
disequilibrium therefore dissipates more rapidly under avoidance of inbreeding than under random
mating.
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Most human populations deviate from random mating by avoidance of inbreeding; that is, in-
dividuals actively avoid mating with close biological relatives. This would result in f < 0. Yet, as
previously discussed, most human populations also fit the HardyeWeinberg genotype frequencies,
which implies f ¼ 0. This seeming contradiction is simply explained by population size. One of the
most common systems of mating in human populations is to exclude mating with siblings and first
cousins. From the point of view of an individual seeking a mate of the opposite sex, we can split the
population of the opposite gender into two groups: forbidden relatives for which there is no mating and
everyone else for which there is random mating. If the population is very large, the number of
forbidden relatives is extremely small compared with the number of everyone else, so excluding this
small number of relatives has little impact on deviations from random mating in the total population.
Jacquard (1974) has shown that in a stable population of size N that is avoiding mating with siblings
and first cousins but is otherwise randomly mating, then

f ¼ � V þ 2

2ð2N � 5V � 10Þ (3.17)

where V is the variance in family size (the mean is 2 because the population is assumed to be of stable
size). For example, if V ¼ 2 (a Poisson distribution for family size in which the mean equals the
variance), then f ¼ �1/(N � 10). Note that f is negative, reflecting the fact that the system of mating is
one of avoidance of inbreeding. However, the impact of avoidance of inbreeding on the magnitude of f
is strongly determined by the size of the population. If N ¼ 100, then f ¼ �0.01, but if
N ¼ 100,000,000 (not unreasonable for some human populations), then f ¼ �10�8. Most human
populations are much larger than 100 individuals, so avoidance of inbreeding typically has little impact
on HardyeWeinberg genotype frequencies. However, in some circumstances small human populations
do exist (and existed in the past), and in those cases avoidance of inbreeding can cause a significant
deviation from HardyeWeinberg genotype frequencies.

Although most human populations avoid inbreeding, matings between relatives (consanguineous
marriage) remains the choice of an estimated 10.4% of the global human population, although its
popularity is declining (Bittles and Black, 2010a). Fig. 3.8 shows the distributions of consanguineous
marriages throughout the world and indicates there is a strong preference for this system of mating in
Northern Africa, the Near East, the Middle East, and parts of India. Typically, matings with some close
relatives are avoided, but others, such as first cousins, are strongly preferred. In general, there are many
more cousins than siblings, so a strong preference for first cousin matings can lead to an overall
positive f. For example, Pemberton and Rosenberg (2014) determined the genotypes at 645 micro-
satellite loci in 237 human populations. Although they did not calculate f for these populations (they
looked at a molecular estimate of F), f can be calculated from their data on observed heterozygosity
(Ho) and expected heterozygosity under random mating (He) from the equation (easily derived from
the middle equation of 3.16):

f ¼ 1� Ho

He
(3.18)

Eq. (3.18) was used to calculate f for 26 populations that also had known rates of consanguineous
marriage, excluding one population that represented a recent admixture event (for reasons that will be
discussed in Chapter 6). The results are shown in Fig. 3.9. As can be seen, f increases with increasing
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FIGURE 3.8

The distribution of consanguineous marriage across the globe.

From Kaiser, J., 2016. When DNA and culture clash. Science 354, 1217e1221.

FIGURE 3.9

A plot of f versus percent of consanguineous marriages in 26 human populations.

Based on data from Pemberton, T.J., Rosenberg, N.A., 2014. Population-genetic influences on genomic estimates of the

inbreeding coefficient: a global perspective. Human Heredity 77, 37e48.



percentage of consanguinity, as expected. Also note that many levels of consanguinity yield similar f
values, but sometimes there are large discrepancies between the level of consanguinity and f. This
shows that f and F are not equivalent.

ASSORTATIVE MATING
Assortative mating occurs when mates are chosen to be more phenotypically similar than would arise
by chance alone. For example, humans tend to mate assortatively for height (Krzy _zanowska et al.,
2015; Stulp et al., 2017), resulting in a positive correlation between the height of the husband and the
height of the wife (Fig. 3.10).

Another example of assortative mating is for the phenotype of profound, prelingual deafness in
humans. In the United States, the incidence of this type of deafness is 1.86 per 1000 births (Morton and
Nance, 2006). Early-onset deaf children are often schooled together, can communicate with each other
more easily than with hearing individuals, and socialize together. These factors contribute to a high

FIGURE 3.10

Assortative mating for height from marriages in the United Kingdom.

From Krzy _zanowska, M., Mascie-Taylor, C.G.N., Thalabard, J.-C., 2015. Is human mating for height associated with fertility?

Results from a British National Cohort Study. American Journal of Human Biology 27, 553e563.
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incidence of assortative mating for the phenotype of profound, prelingual deafness, which is over 80%
in the United States, 92% in England, and 94% in Northern Ireland (Aoki and Feldman, 1994). 38% of
the cases of early-onset profound deafness are due to infections or other environmental causes, but
68% have a genetic basis (Morton and Nance, 2006). Some 115 genes have been implicated with
deafness, mostly autosomal but also some X-linked and mtDNA variants (http://
deafnessvariationdatabase.org). The alleles associated with deafness tend to be loss-of-function mu-
tations and behave primarily as autosomal recessives. 30%e50% of the genetic cases are due to loss-
of-function mutations at a single locus, GJB2, that codes for connexin 26, a gapejunction protein
expressed in the cochlea (Morton and Nance, 2006). Some 200 mutations at this locus have been
associated with deafness, with most showing an autosomal recessive pattern of inheritance (http://
deafnessvariationdatabase.org). A single deletion mutation (35delG) accounts for 57% of the copies
of these 200 alleles worldwide (Chan and Chang, 2014), with a frequency of about q ¼ 0.01 in United
States and European populations (Green et al., 1999; Storm et al., 1999). Under random mating, the
frequency of deaf individuals associated with this mutation should be q2 ¼ 0.0001, or about 1 in
10,000 births. The actual incidence is much higher at 3e5 in 10,000 births.

To see how assortative mating can increase the frequency of deafness in humans above random-
mating expectations, we first consider a simplified model in which all cases of deafness are attrib-
uted to homozygosity for the 35delG allele and mating is 100% assortative (for more general models,
see Karlin, 1969). This simple model is presented in Table 3.6, in which A symbolizes a functional,
wild-type allele at the GJB2 locus, and a the 35delG allele. Within a phenotypic class, mating is
assumed to be random, and we assume no gender effects.

The genotype frequencies after one generation of assortative mating can be calculated from
Table 3.6 by summing over all mating types for each genotype the product of the Mendelian

Table 3.6 100% Assortative Mating for the Phenotype of Profound, Prelingual Deafness Due to
a Single Autosomal Locus With Two Alleles With a Being the Recessive Allele for Deafness

Assortative Mating
Subset and Frequency

Genotypes of Mating
Pair

Relative Frequency of
Pair in Subset

Mendelian
Probabilities of

Offspring

AA Aa aa

Hearing (1 � Gaa) AA � AA
�

GAA

1�Gaa

�2 1 0 0

AA � Aa 2GAAGAa

ð1�GaaÞ2
½ ½ 0

Aa � Aa G2
Aa

ð1�GaaÞ2
¼ ½ ¼

Deaf Gaa aa � aa 1 0 0 1

The frequency of genotype i is indicated by Gi.
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probability times the relative mating pair frequency times the frequency of the assortative mating
subset to obtain

G0
AA ¼

�
GAA þ 1

2
GAa

�2

1� Gaa
¼ p2

1� Gaa

G0
Aa ¼

GAa

�
GAA þ 1

2
GAa

�
1� Gaa

¼ GAa
p

1� Gaa

G0
aa ¼

1

4
G2
Aa

1� Gaa
þ Gaa

(3.19)

where p is the frequency of the A allele in the initial generation. Note from Eq. (3.19) that the fre-
quency of the a allele in the next generation, given that it is q ¼ Gaa þ ½GAa in the initial generation is
as follows:

q0 ¼ Gaa þ
1

4
G2
Aa

1� Gaa
þ 1

2

GAa

�
GAA þ 1

2
GAa

�
1� Gaa

¼ Gaa þ 1

2
GAa ¼ q (3.20)

Eq. (3.20) shows that the allele frequency does not change from one generation to the next, so there
is no evolution in this simple one-locus model of assortative mating. Because no assumptions were
made about the initial genotype frequencies in Table 3.6, Eq. (3.20) is true for every generation. Note
from Eq. (3.19) that the frequency of the aa homozygote keeps increasing as long as there are het-
erozygotes, and as the frequency of aa gets larger, so does the frequency of AA. If the initial genotype
frequencies were in HardyeWeinberg, Eq. (3.19) would ensure that at every generation there would be
an excess of homozygotes and an observed f > 0. Equilibrium occurs when GAa(equil.) ¼ 0,
GAA(equil.) ¼ p, and Gaa(equil.) ¼ q. At this point, 100% assortative mating has split the population
into two noninterbreeding components: AA and aa, with f ¼ 1. If one were examining only this locus at
any single generation during this approach to equilibrium, it would resemble inbreeding because of the
deficiency of heterozygotes relative to HardyeWeinberg expectations. One major difference between
inbreeding and assortative mating is that inbreeding should cause a deficiency of heterozygotes at all
autosomal loci equally in terms of their deviation from HardyeWeinberg, whereas assortative mating
should cause a deficiency of heterozygotes only at those loci contributing to the phenotype for which
mating is assortative and for those loci in linkage disequilibrium with them or otherwise correlated
with the trait determining assortative mating.

Recall that the frequency of 35delG is about 0.01, so the frequency of 35delG homozygotes at
equilibrium under the model shown in Table 3.6 would be 1 in 100 compared with 1 in 10,000 under
random mating. The actual frequency of 35delG homozygotes is about 2 in 10,000 births (Chan and
Chang, 2014). This is a substantial excess of homozygotes above HardyeWeinberg expectations, but
still less than 1 in 100. There are several reasons for this lower excess of homozygotes relative to the
predictions of the model given in Table 3.6. First, assortative mating is high, but not 100%, and this
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would lower the deviation from HardyeWeinberg (Karlin, 1969). Second, the strength of assortative
mating in causing deviations from HardyeWeinberg depends on the strength of the correlation be-
tween genotype and phenotype. In the model given in Table 3.6, we assumed that only the 35delG
contributed to deafness, but as pointed out earlier, deafness is caused by environmental factors and
many other loci and alleles, which reduce the correlation between GJB2 genotype and the deafness
phenotype. Computer simulations indicate that indeed assortative mating has increased the incidence
of deafness due to this gene (Nance and Kearsey, 2004), but not the 100-fold increase predicted by the
simple model shown in Table 3.6.

Recall that the actual incidence of deafness in individuals bearing the 35delG allele is 3e5 per
10,000. Hence, the 2 per 10,000 due to increased homozygosity at this locus does not explain all the
cases of deafness associated with this allele. One reason for this discrepancy is that increased ho-
mozygosity is only part of the impact of assortative mating on the GJB2 locus. Although 35delG is a
recessive allele for deafness, 17.6% of the deaf individuals bearing this allele are actually heterozy-
gotes for 35delG and one of the other deaf-associated GJB2 alleles (Chan and Chang, 2014). Many
loss-of-function mutations do not complement one another, so from a functional point of view these
heterozygotes for two different deaf-associated alleles (called “compound heterozygotes” in this
literature) also lead to deafness. Indeed, as many as three different GJB2mutations have been found in
a single deaf family (Davoudi-Dehaghani et al., 2014). How do so many extremely rare alleles get
placed together in the same family? The answer again is assortative mating. This system of mating is
based on phenotype, not relatedness, so assortative mating tends to place together in the same families
independent mutations that lead to the same phenotype. If the allele category is defined as all
noncomplementary mutations associated with deafness, then the compound heterozygotes at the
molecular level can be regarded as homozygotes for this new allelic category. Hence, the compound
heterozygotes further increase the incidence of the 35delG allele in deaf births. This illustrates another
important difference between inbreeding and assortative mating. Inbreeding increases homozygosity
due to IBD; assortative mating increases homozygosity due to identity-by-state. Thus, mutations
arising at very different times and places can eventually be placed together by the phenotypically
nonrandom process of assortative mating.

However, the mystery of the high incidence of 35delG in deaf births is still not completely solved.
21% of all deaf individuals bearing the 35delG allele are called “simple” heterozygotes because they
are heterozygous with a functional allele and should therefore be able to hear (Chan and Chang, 2014).
Just as assortative mating brings together alleles at the same locus that have similar phenotypic effects,
so does assortative mating bring alleles at diverse loci together that have similar phenotypic effects.
For example, closely linked to theGJB2 locus is theGJB6 locus that codes for the connexin 30 protein,
also expressed in the cochlea and which forms heteromeric gapejunction channels with connexin 26
that are essential for hearing (Morton and Nance, 2006). Deafness can arise from homozygosity at the
GJB6 locus or from having mutations at both loci (Morton and Nance, 2006), even in the double
heterozygote state (Utrera et al., 2007; Braga Norte Esteves et al., 2014; Loeza-Becerra et al., 2014).
This implies some epistasis for the phenotype of deafness between these two closely linked loci, which
is not surprising given that both loci contribute to building the gapejunction channels. Some 8% of all
the cases of deafness associated with these two loci are due to mutations at both loci, indicating a high
degree of linkage disequilibrium for alleles that are extremely rare in the general population.

The ability of assortative mating to generate high linkage disequilibrium is not restricted to closely
linked loci. For example, an mtDNA mutation 1555A>G is associated with hearing loss in some Asian
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populations, but there is great variation in the severity of hearing loss. The individuals that tend to have
worse hearing were those bearing the mtDNA mutation and being simple heterozygotes for a GJB2
mutation, and this combination had a high prevalence, indicating a cyto-nuclear linkage disequilibrium
(Lu et al., 2009) and epistasis. Using next-generation sequencing technology, Vona et al. (2014)
screened 22 deaf individuals and 8 controls for 80 genes known to cause deafness. Eight of the deaf
individuals had an autosomal dominant type of deafness, but actually carried an average of 4.5
potentially damaging variants among the 80 deafness genes. Five individuals with autosomal recessive
deafness bore an average of 3.6 potentially damaging variants, and the controls had an average of 1.4
potentially damaging variants among the 80 deafness genes. Thus, many deaf alleles at multiple loci
that are rare in the general population were significantly concentrated into individuals who were deaf
even though most of these loci were not the cause of deafness. For example, an individual could be a
simple heterozygote for the 35delG allele yet be deaf because of a different, unlinked locus. These
observations show the power of assortative mating to bring together alleles with similar phenotypic
effects into the same individual and family, thereby generating much linkage disequilibrium even for
unlinked genes. This disequilibrium also increases the incidence of deafness in matings between two
deaf individuals. Even if the mates are deaf for different genetic reasons, they have an increased
probability of sharing deaf alleles at other loci due to this disequilibrium or for being a heterozygote
for a deaf allele at a locus for which their mate is homozygous. In general, theoretical modeling in-
dicates that assortative mating is a potentially strong evolutionary force in generating linkage
disequilibrium (Ghai, 1973). The deafness example and this theory illustrates another important dif-
ference between inbreeding and assortative mating: inbreeding can reduce the rate at which linkage
disequilibrium is dissipated but it does not generate linkage disequilibrium; assortative mating
actively generates linkage disequilibrium and is potentially a powerful evolutionary force that changes
multi-locus gamete frequencies by putting together nonhomologous alleles with similar phenotypic
effects.

DISASSORTATIVE MATING
Disassortative mating (sometimes called negative assortative mating) occurs when mates are chosen
to be more phenotypically dissimilar than would arise by chance alone. Disassortative mating is not
only the opposite of assortative mating in terms of the phenotypes displayed by mating pairs but also in
its evolutionary and genetic consequences. This can be shown by the simple one-locus, two allele
model of 100% disassortative mating given in Table 3.7. In this model, every genotype has a distinct
phenotype and mates at random only with those individuals with a different phenotype, with no gender
effects.

As can be seen from Table 3.7, this system of mating produces many heterozygotes and few
homozygotesdjust the opposite of assortative mating. For example, suppose we started out with
HardyeWeinberg genotype frequencies with p ¼ 0.25, with an initial heterozygote frequency of
0.375. Then in a single generation of disassortative mating as given by Table 3.7, the frequency of
heterozygotes would increase to 0.565. Unlike the assortative mating model, in this case the allele
frequency also changes from 0.25 to 0.326, so disassortative mating is a strong evolutionary force at
the single locus level. However, with p ¼ 0.326, the expected heterozygosity under random mating is
0.439, so there is still a heterozygous excess under disassortative mating with f ¼ �0.286. Hence,
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disassortative mating resembles avoidance of inbreeding, but unlike avoidance of inbreeding, it only
affects the loci contributing to the phenotype for which disassortative mating is occurring and loci in
linkage disequilibrium with them. In addition, unlike avoidance of inbreeding, disassortative mating
alters allele frequencies and tends to stabilize them at intermediate levels.

At the multi-locus level, disassortative mating can bring together into the same family alleles that
have opposite effects on phenotypes. This could potentially generate some linkage disequilibrium, but
by also causing excesses of heterozygosity, disassortative mating dissipates linkage disequilibrium
much more rapidly than random mating (recall, recombination only changes gamete frequencies in
double heterozygotes). Hence, disassortative mating is not as effective as assortative mating in
generating or maintaining linkage disequilibrium.

A potential example of disassortative mating in humans is the major histocompatibility complex
(MHC) (Laurent and Chaix, 2012a,b). MHC is a genomic region containing multiple genes coding for
molecules whose role is to present self- and nonself-derived peptide antigens to T cells, thereby
playing a critical role in immune response and in organ transplant success. MHC is a 3.6 megabase-
pair long region located on the short arm of chromosome 6 in the human genome. Many of these same
MHC genes influence body odor, and studies in other species and possibly humans indicate dis-
assortative mating at MHC mediated by olfactory cues (Havlicek and Roberts, 2009). As expected for
a region under disassortative mating, the MHC region shows a significantly higher level of hetero-
zygosity than other regions of the human genome (Laurent and Chaix, 2012b). However, many studies
do not indicate disassortative mating at MHC, and a metaanalysis of MHC effects on human mating
revealed both MHC-dissimilar and MHC-similar matings in various studies (Winternitz et al., 2017).
This seemingly contradictory pattern appears to be an artifact of population ethnic heterogeneity in
observational studies that tend to indicate assortative mating versus experimental studies with more
control over sociocultural biases that tend to indicate disassortative mating or mating for diverse MHC
mates (Winternitz et al., 2017). In many areas of the world, human populations from diverse
geographical areas and with different cultures have been brought together, as will be discussed in detail

Table 3.7 A Model of 100% Disassortative Mating at a Single Locus With Two Alleles, A and a,
With Each Genotype Having a Distinct Phenotype

Mating Pair Frequency of Pair

Mendelian Probabilities of Offspring

AA Aa aa

AA � Aa GAA�GAa

SUM ½ ½ 0

AA � aa GAA�Gaa

SUM
0 1 0

Aa � aa GAa�Gaa

SUM
0 ½ ½

Offspring Genotype Frequencies: 1

2
GAA�GAa

SUM

1

2
GAA�GAaþGAA�Gaaþ

1

2
GAa�Gaa

SUM

1

2
GAa�Gaa

SUM

SUM ¼ GAA � GAa þ GAA � Gaa þ GAa � Gaa is used to standardize the mating frequencies so that they sum to 1.
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in Chapter 6. North America is one such area, and many of the studies on MHC have been performed
on North American populations. Assortative mating by “ethnicity” has been historically quite strong
and reduces genetic admixture among the descendants of these historic populations, although assor-
tative mating by “ethnicity” has been diminishing with each successive generation (Sebro et al., 2017).
Although “ethnicity” is not a genetic trait per se, it is often associated with some degree of genetic
differentiation that reflects the historical origins of the parental populations that have been brought
together into a single geographic region (Chapter 6). Hence, assortative mating in North America by
“ethnicity” has resulted in deviations from HardyeWeinberg and linkage disequilibrium for those loci
that were differentiated between the parental population gene pools (Sebro et al., 2017), which in-
cludes the MHC cluster. When “ethnicity” and other sociocultural biases that influence mate choice are
not controlled, it appears as if there is assortative mating for MHC, but when these factors are
eliminated or controlled, it appears as if there is disassortative mating for MHC (Winternitz et al.,
2017).

COEXISTENCE OF MULTIPLE SYSTEMS OF MATING WITHIN A DEME
It is a mistake to talk about “the” system of mating of a deme as multiple systems of mating can
coexist. Most human demes are typically characterized by a system of mating of avoidance of
inbreeding, but because most human demes are large in size, this avoidance of inbreeding system is
usually indistinguishable from random mating. Some human demes are characterized by system of
mating inbreeding, but the frequency of this system of mating is declining. These systems of mating
are expected to affect genotype frequencies at all loci in the genome. However, overlaid on these
systems of mating with genome-wide effects are assortative and disassortative systems of mating. If
the traits influencing these latter systems of mating are genetic, these systems of mating can cause
deviations in genotype frequency from that expected under random mating or inbreeding, but only for
those loci affecting the trait and other loci that are in linkage disequilibrium with them. If the dis-/
assortative mating is for a trait, genetic or not, that is associated with population history in the context
of admixture, then all loci that had different allele frequencies in the ancestral populations will be
affected as well, both in terms of genotype frequencies and perhaps linkage disequilibrium. Therefore,
depending on the loci being surveyed and the population’s history, multiple systems of mating often
are needed to fully characterize the transition from gene pool to zygotes.
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GENETIC DRIFT 4
A true story. A distraught couple came to a hereditary clinic for genetic counseling. They had just
given birth to a baby afflicted with TayeSachs disease, an autosomal, recessive progressive neuro-
degenerative genetic disease that is usually fatal by age 2 or 3 years. They kept repeating that this was
not supposed to happen, and the interview with the couple quickly revealed that this was their second
baby with TayeSachs disease. Their family physician had diagnosed the first baby as having Taye
Sachs, and this was correct. He also told the couple that both of them must be heterozygote carriers of
the recessive allele that leads to TayeSachs, which is also correct. He then correctly told them that the
Mendelian expectation is three unaffected children to one affected in a cross between two heterozygote
carriers. Another correct statement. He then told them that since their first child had TayeSachs, then
the next three would be unaffected, thereby yielding the expected 3:1 Mendelian ratio. Here is where
the physician made a terrible mistake. A 3:1 Mendelian ratio does not mean that a cross between two
heterozygotes will have exactly three unaffected to one affected offspring; rather it means that the
probability of an affected offspring is one quarter independently for every conception. Thus, the
second child had a probability of one quarter of being affected by TayeSachs, not zero as the physician
incorrectly told this couple. All future conceptions by this couple would also have a probability of one
quarter of having TayeSachs, and this can cause deviations from Mendelian expectations whenever
the number of offspring is finite, as is always the case in a real family or population. Mendel’s own
work never yielded a single cross in which the expected ratios were exactly true, yet he felt that these
inexact ratios supported his model of inheritance because he realized that his “laws” were probabil-
ities, not exact ratios. The randomness of Mendel’s laws is well illustrated by the sex ratio. Human
males are heterozygotes for the X and Y chromosomes, and by Mendel’s first law of segregation,
sperm bearing X and Y chromosomes should be in a 1:1 ratio; that is, the probability of a sperm
bearing an X or a Y is one half. Yet, how many families have exactly the same number of boys and
girls? Most do not, even though the overall sex ratio in a large population is close to 1:1. The rules of
meiosis, shown in Figs. 1.2, 3.1, and 3.2 as governing the transition from the population of diploid
individuals to the gene pool of haploid gametes, are all actually probabilities (including r, the
recombination frequency) and not exact frequencies or ratios. In those figures, the gamete frequencies
predicted by the rules of meiosis coupled with the genotype frequencies of the deme were treated as
exact frequencies and not probabilities. However, whenever a finite number of gametes is sampled to
produce the next generation (as is true for all real populations), we expect that the gamete frequencies
could deviate from the expected values given in those figures just because of the random nature of the
rules of meiosis.

To model meiosis as probabilities, we need to redefine the outcome of meiosis not as fixed ratios or
laws but as a probability distribution. A convenient method for representing a probability distribution
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on a random variable that can only take on the values of a nonnegative integer is with a probability
generating function (pgf). Consider Mendel’s first law of segregation. A heterozygote at an autosomal
locus, say Aa, should generate A-bearing gametes and a-bearing gametes with equal probability; that
is, one half for each gamete type. Let the random variable x be the number of A’s on the gamete. Note,
if x ¼ 1, the gamete has an A allele, and if x ¼ 0, the gamete has an a allele. This simple probability
distribution can be represented by a pgf:

gðzÞ ¼ 1

2
z0 þ 1

2
z1 ¼ 1

2
þ 1

2
z (4.1)

where z is called a “dummy variable” and recalling that z0 is 1 by definition. The usefulness of z is that
the exponent of z is the random variable x, and the coefficient in front of the z term is the probability of
the random variable taking on that exponent value. Thus, the coefficient of z0 tells us that the
probability of an a-bearing gamete is one half, and the coefficient of z1 tells us that the probability of an
A-bearing gamete is one half: that is, Mendel’s first law stated as probabilities rather than an exact 1:1
ratio of segregation. In the TayeSachs example, both the mother and the father were heterozygotes,
say Aa where a will now be the symbol for the allele associated with TayeSachs disease. The pgf for
the sum of two independent random variables is simply the product of the pgf’s, so the pgf for the
offspring distribution from a mating of two heterozygotes is:

goffspringðzÞ ¼ gmotherðzÞgfatherðzÞ ¼
�
1

2
þ 1

2
z

�2

¼ 1

4
þ 1

2
zþ 1

4
z2 ¼ 1

4
z0 þ 1

2
z1 þ 1

4
z2 (4.2)

Note that 0 is the value of the random variable that corresponds to two a alleles (that is, the aa
genotype, which has 0 A alleles), 1 corresponds to Aa (1 A allele), and 2 to AA (2 A alleles in the
genotype). We can see from Eq. (4.2) that the probability of aa, a TayeSachs child, is one quarter.
Because every offspring represents independent meiotic events, the pgf of the random variable, the
total number of A alleles passed on to two offspring is:

g2offspringðzÞ ¼
�
goffspringðzÞ

�2 ¼ �
1

2
þ 1

2
z

�4

(4.3)

We could expand Eq. (4.3) to find out the coefficient of z0 in order to discover the probability that both
offspring had TayeSachs disease (that is, 0 A alleles in the two children; which is the same as 4 a
alleles: aa and aa for the two genotypes). However, an easier method is to set the dummy variable
z ¼ 0 keeping in mind that 00 ¼ 1.

g2offspringð0Þ ¼
�
1

2

�4

¼ 1

16
(4.4)

Hence, before the couple had any children, the probability that they would have their first two children
with TayeSachs disease was 1/16. Of course, after the first child was born with TayeSachs, that is no
longer a probability, and the probability of the second child having TayeSachs is one quarter, as seen
from Eq. (4.2). As this example shows, pgf’s allow us to model the rules of meiosis as probabilities and
not as fixed ratios or frequencies.

Genetic drift is random changes in gamete frequencies due to sampling a finite number of
meiotic events to produce the next generation. Because such random sampling often causes
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deviations from the previous generation’s gamete frequencies, genetic drift is an evolutionary force
that operates in all finite populations; that is, it is a universal evolutionary force affecting the transition
from one generation to the next as all real populations are finite.

THE FATE OF A NEWLY ARISEN MUTATION IN A LARGE POPULATION
We first examine the impact of genetic drift on the evolutionary fate of a newly arisen mutation. Let A
symbolize the group of all the old alleles at an autosomal locus, and let a be a newly arisen mutation at
this locus that is initially present in only a single individual with the new genotype Aa. We initially
regard this individual as a self-compatible, random-mating hermaphrodite (Hardy’s assumptions for
the HardyeWeinberg law) with normal meiosis and no subsequent mutations producing new a alleles;
that is, the a allele is unique in its mutational origin. The first step in the survival of this new mutant
allele is to be passed on to a gamete during meiosis, whose pgf has already been given in Eq. (4.1). The
chances for a surviving to the next generation also depend upon how many offspring the initial carrier,
Aa, has. Suppose that the initial Aa carrier has n offspring. Then, the pgf for the total number of a
alleles this individual passes on to the next generation is:

hðzjnÞ ¼
Yn
j¼1

gjðzÞ ¼ ½gðzÞ�n (4.5)

where gj(z) is the pgf for the meiotic event associated with offspring j. Eq. (4.5) reflects the fact that all
meioses are independent events with the same pgf, g(z). The problem with Eq. (4.5) is that it assumes
that we know n, the number of offspring born to the initial Aa individual that, in this simple model,
survive to adulthood in the next generation. At this point we encounter another level of sampling that
can contribute to genetic drift at the population leveldnot all individuals in general will have exactly
the same number of surviving offspring even if the environment is constant and every offspring has the
same probability of surviving. The random sampling of the number of surviving offspring produced by
an individual can also be described by a series of probabilities, say pn, that represent the probability of
having n surviving offspring. Eq. (4.5) is the conditional pgf given n, but now we can define the
unconditional pgf as

hðzÞ ¼
XN
n¼0

pnhðzjnÞ ¼
XN
n¼0

pn½gðzÞ�n (4.6)

Note that if we define a new dummy variable t ¼ g(z), then Eq. (4.6) becomes the pgf for the random
variable n, the number of surviving offspring produced by an individual. Hence, the pgf h(g(z))
incorporates the effects of sampling meiotic events and sampling the number of surviving offspring on
describing the total number of a alleles that survive into the next generation. For example, let us
assume that n is from a Poisson distribution, a commonly used distribution for family size in idealized
populations, as mentioned in Chapter 3. The pgf for a Poisson distribution is ek(t�1) where k is the mean
number of surviving offspring of an Aa individual and t is the dummy variable. In this special case of
Eq. (4.6), the pgf for the number of a alleles in the next generation is

ek½gðzÞ�1� ¼ e
k

�
1
2
þ1

2
z�1

�
¼ e

k
2
½z�1� (4.7)
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To find the probability of survival, it is easier to first find the probability of loss; that is, the probability
that there are 0 copies of a in the next generation. Recall that this is found simply by setting the dummy
variable to 0 to yield the probability of loss of the a allele in the next generation as e�k=2. If the total
population size is approximately stable and the a allele is neutral (that is, it has no effect on the
probabilities for the number of offspring), each of the individuals, including Aa, in this idealized
population has an average of k ¼ 2 offspring, and e�1 ¼ 0.367879. Note that over a third of all new
neutral mutants are lost by the very first generation after mutation just by the sampling processes
that contribute to genetic drift. The probability of surviving just a single generation is
1-Probability(loss) ¼ 0.632121.

To find the probability of surviving for just two generations, assume that n copies survived into the
first generation. Because mating is at random and if we further assume the population is very large,
these copies will almost certainly all be in Aa genotypes as the frequency of a is extremely rare (recall
the HardyeWeinberg law). Under these assumptions, each of the n copies of a that are in Aa
individuals will also produce a random number of a copies in the next generation as described by the
pgf given in Eq. (4.6); that is h(z). Because there are n carriers of a in the first generation, the total pgf
for the second generation given n is ½hðzÞ�n. However, n itself is a random variable described by pgf
h(t), and we need to incorporate this fact to get the unconditional pgf for the second generation.
Exactly like the derivation of Eq. (4.6), the unconditional pgf for the number of a alleles in the second
generation is h(h(z)); that is, the dummy variable for the second generation is the pgf from the first
generation. For the Poisson case, the pgf for the second generation is

e
k
2

�
e
k
2
½z�1��1

	
(4.8)

Setting z ¼ 0 and k ¼ 2, Eq. (4.8) yields the probability of loss by the second generation to be
0.531464, so the probability of surviving for two generations is 0.468536. Thus, by just two gener-
ations, more than half of all new mutant alleles are lost by genetic drift. The recursion used to generate
Eq. (4.8) can be repeated multiple times to obtain the pgf’s of later generations (Schaffer, 1970). For
example, the pgf for the third generation is h(h(h(z))). Table 4.1 shows the probabilities of loss of the
mutant allele for the first 10 generations in our idealized population. As can be seen, very few mutants
survive even just 10 generations of genetic drift.

The ultimate probability of survival (ups) can be found by solving the equation h(z) ¼ z for
0 � z � 1, and an approximation to this solution that incorporates the impact of meiosis (Eq. 4.1) is
(modified from Schaffer, 1970, which only deals with the haploid case):

upsz
k � 2

k þ v
(4.9)

where v is the variance in the number of offspring. For the Poisson case, k ¼ v, as mentioned in Chapter
3. Also, if k ¼ 2 as in our example of a neutral allele in a stable population, ups ¼ 0. This of course, is
an approximation, and we will see later that the actual probability of survival in our assumed large
population is extremely small in a large population but greater than 0.

Humans are unique among the large-bodied vertebrates in that we have had sustained population
growth for at least the last 10,000 years with the beginning of agriculture (Coventry et al., 2010). To
consider a growing population, Table 4.1 also presents the survival probabilities for a population in
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which the average number of surviving offspring per individual is 3. As can be seen, the probability of
survival is consistently larger under population growth. Moreover, the approximate ultimate proba-
bility of survival is (from Eq. (4.9) with k ¼ v ¼ 3) 0.1667.

Up to now we have assumed that all individuals in the population have the same average number of
offspring. However, other than the assumptions that the total population size is large and capable
of indefinite growth, the k in our model of offspring number only refers to the average number of
offspring by bearers of the new mutant a. Suppose the overall average number of offspring in the
growing population were four, then an average size of just three offspring would mean extremely
strong natural selection against the Aa individuals bearing the new, mutant allele (a 25% reduction in
number of expected offspring in the next generation). As will be shown in Chapter 9, strong selection
against a dominant mutant such as a would result in its rapid elimination when genetic drift and
population growth are ignored. As Table 4.1 and the ups of 0.1667 show, even a strongly deleterious
dominant allele can persist in the human gene pool. A recessive deleterious allele is even more
sheltered against the effects of natural selection (Chapter 9), so such recessive deleterious alleles will
have an even higher probability of persistence in the human gene pool. Indeed, deep sequencing
studies reveal that humans have many more rare variants that appear deleterious over that expected in a
constant-sized population (Coventry et al., 2010). Recall also from Chapter 3 the large number of rare
variants that individual humans carry that are loss-of-function mutations or otherwise predicted to be
deleterious (Gudbjartsson et al., 2015). The accumulation of deleterious mutations in the gene pool is
sometimes called the mutational load, and humans have a uniquely high mutational load (Lynch,
2010). The concept of mutational load was first introduced by Muller (1950), who won the Nobel Prize
for his work demonstrating that radiation can increase the mutation rate. Muller was concerned about
an increase in radiation levels due to nuclear testing and the threat of nuclear war increasing the
mutational load in humans, and Lynch was concerned with mutation rates and relaxed selection.
However, population growth, and therefore indirectly agriculture, has played a much more important

Table 4.1 The Probabilities of a New Mutant Surviving Over
the First Ten Generations After Its Occurrence as a Function
of the Average Number of Offspring Produced by Individuals
in the Population

Generation k[ 2 k[ 3

1 0.632121 0.776870

2 0.468536 0.688172

3 0.374082 0.643798

4 0.312080 0.619283

5 0.268077 0.605021

6 0.235151 0.596481

7 0.209548 0.588077

8 0.189050 0.586093

9 0.172255 0.584860

10 0.158235 0.584092
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role in increasing the mutational load in humans. Demography and genetic drift are major evolutionary
forces that have strongly shaped the unique nature of the human gene pool with its vast excess of rare,
deleterious variants.

GENETIC DRIFT IN A FINITE POPULATION
The model for the survival of a new mutant assumed a very large, random mating population capable
of indefinite growth. Although this has been a reasonable model for the global human population for at
least the past 10,000 years, in many cases we are concerned with local populations in which the
population size is small and the potential for growth is limited or nonexistent. Such a situation can also
be modeled with pgf’s. Consider a one-autosomal locus, two allele (A and a) model in a finite ideal
population with nAA AA individuals, nAa Aa individuals, and naa aa individuals. Assuming neutrality,
all genotypes have the same pgf for the number of progeny that survive into the next generation. Let

this be a Poisson distribution with mean and variance of k: gðzÞ ¼ ek½z�1�. Then the pgf for the total
number of gametes produced by all the individuals sharing the same genotype is

giðzÞ ¼
h
ek½z�1�

ini ¼ enik½z�1� (4.10)

where i indexes the three possible genotypes. In order to go from the adults in the deme at one gen-
eration to the gametes in the gene pool, we first note that since each individual contributes one gamete
to each surviving offspring, then Eq. (4.10) is also the pgf for the number of gametes that genotype i
contributes to the gene pool. Since both AA and aa produce only one type of gamete during meiosis
(assuming no mutation), Eq. (4.10) is also the pgf for the number of gametes bearing the specific allele
for which genotype i is homozygous. For Aa we have to substitute the meiosis pgf, Eq. (4.1), for zAa
into Eq. (4.10). Now let zA be the dummy variable that indexes the total number of A-bearing gametes
in the gene pool. Then the pgf for the number of A-bearing gametes in the offspring that survive to the
next generation is

enAAkðzA�1Þe
1
2
nAakðzA�1Þ ¼ e

�
nAAþ1

2
nAa

�
kðzA�1Þ

¼ eNpkðzA�1Þ (4.11)

where N ¼ nAA þ nAa þ naa, the total population size, and p is the frequency of the A allele in the
offspring that survive to the next generation. Similarly, the pgf for the number of a-bearing gametes in
the offspring that survive in the next generation is

enaakðza�1Þe
1
2
nAakðza�1Þ ¼ e

�
naaþ1

2
nAa

�
kðza�1Þ

¼ eNqkðza�1Þ (4.12)

where q is the frequency of the a allele. The pgf for the total number of gametes that contribute to the
next generation is

eNpkðz�1ÞeNqkðz�1Þ ¼ eNkðz�1Þ (4.13)

Using the equation for conditional probability (Eq. 1.15), Karlin and Mcgregor (1968) showed that
when you condition on the number of gametes that contribute to the next generation being exactly Nk,

106 CHAPTER 4 GENETIC DRIFT



then the probability distribution of the number of A alleles in the next generation induced by genetic
drift is the binomial distribution:

f ðxjp;NkÞ ¼
�
Nk

x

�
pxqNk�x (4.14)

which is the same type of sampling distribution we obtained when sampling from a population
(Eq. 1.2). In the special case in which the population is of constant size, k ¼ 2, as pointed out earlier,
and Eq. (4.14) becomes

f ðxjp; 2NÞ ¼
�
2N

x

�
pxqNm�x (4.15)

We can infer many properties about genetic drift from Eq. (4.15). First, the expected allele frequency
in the next generation is E(x/2N) ¼ E(x)/(2N) ¼ p, using Eq. (1.5). This means that on the average,
genetic drift does nothing; the average allele frequency remains the same. This at first may seem to
contradict our conclusion, based on the example of sampling from Mendelian ratios, that sampling
error will cause deviations from the expectation. Deviations from the mean or expected value are
measured by the variance, as pointed out in Chapter 1. In particular, the variance of x from Eq. (4.15) is
2Npq, as given in Chapter 1. Hence, the variance of the allele frequency in the generation sampled
from Eq. (4.15) is

E

 x

2N
� p

�2 ¼ Eðx� 2NpÞ2
ð2NÞ2 ¼ 2Npq

ð2NÞ2 ¼
pq

2N
(4.16)

Note that this variance will be greater than 0 for every p other than p ¼ 0 and p ¼ 1 (q ¼ 0). Hence,
although the expected allele frequency remains p (which corresponds to an average allele frequency
over an infinite number of samples from the sample distribution in Eq. (4.15)), we actually expect
deviations from p in any one sample as long as both alleles are present in the population. A better
interpretation of the average allele frequency remaining constant is that genetic drift has no
direction; it is just as likely to deviate above the original p as below it. But Eq. (4.16) makes it clear
that in any single finite population, genetic drift is an evolutionary force that makes changes in
allele frequency inevitable in any finite population at any polymorphic locus.

Suppose the allele frequency in the next generation sampled from Eq. (4.16) is indeed altered to a
new value, say p1. Then the allele frequency in the second generation is sampled using Eq. (4.15) using
p1 and not p. This is because the second generation’s genotypes are drawn from the first generation’s
gene pool that has an allele frequency of p1, and not the initial generation’s gene pool. Once given p1 as
a realized value and not a random variable, p is irrelevant for predicting the second generation. This
means that the future under genetic drift depends only upon the present condition of the gene pool (in
terms of allele frequency in this case) and not the previous evolutionary history of how that gene pool
got to be in its present condition. Hence, genetic drift generates random changes in allele frequency
every generation without any tendency to reverse or restore allele frequencies to an ancestral
state.

Eq. (4.16) gives the variance in allele frequency due to one generation of genetic drift given the
allele frequency of the parental generation, but it is also possible to calculate the variance in allele
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frequency after t generations of genetic drift relative to the initial generation with allele frequency
p as:

s2t ¼ pq

"
1�

�
1� 1

2N

�t
#

(4.17)

[For a derivation of Eq. (4.17), see Box 4.1 in Templeton (2006)]. Note that s2t is an increasing function
of t and is greater than pq/(2N) for t � 2. This means that the variance in allele frequency increases over
time due to genetic drift. Biologically, this means that genetic drift accumulates with time, with
deviations from the initial conditions getting larger and larger on the average with increasing
time. Genetic drift may cause only a small deviation from the previous generation’s allele frequency,
but over many generations it is expected to cause large deviations in allele frequency. Note, however,
that as t gets larger and larger, Eq. (4.17) converges to the limit of pq. The variance of pq occurs when
the allele frequency of A has drifted either to 1 (fixation of the A allele), with probability p, or 0 (loss of
the A allele), with probability 1 � p ¼ q. As long as ps 0 or 1, binomial sampling always produces a
finite probability that just by chance p will become 0 or 1. Eq. (4.17) implies that this is inevitable given
a long enough time. Using Eq. (1.4), the expected allele frequency at fixation or loss is
1 � p þ 0 � (1 � p) ¼ p. Once again, the average allele frequency has not changed from its initial
state, yet at this point every real finite population has an allele frequency of either 0 or 1, and none are at
p. This reinforces the idea that the constancy of the average allele frequency reflects only the lack of
direction of genetic drift and does not refer to the actual allele frequency in any given population. Note
that once p goes to 0 or 1, then pq ¼ 0 for all subsequent generations (barring reintroduction of the lost
allele). When pq ¼ 0, there is no sampling variance (Eqs. 4.16 and 4.17), so genetic drift is no longer
operating and there is no evolutionary change. That is, once an allele is lost or fixed, it remains in that
condition indefinitely until some other evolutionary force (such as mutation) reintroduces it into the
population. Hence, genetic drift causes the loss of genetic variation within a population through
loss or fixation of alleles. However, Eq. (4.17) also implies that if an ancestral population is split up
into genetically isolated subpopulations each undergoing drift independently, then those subpopulations
become genetically differentiated from one another. Note also that when fixation or loss occurs, the lack
of direction of genetic drift and the constancy of the expected allele frequency implies that p of the
subpopulations become fixed for the A allele, and q of the subpopulations becomes fixed for the a allele.
Hence, genetic drift can lead to complete genetic differentiation between subpopulations for some loci.
Therefore, genetic drift causes an increase in genetic differentiation among subpopulations that
have restricted genetic interchange, with the degree of genetic differentiation increasing with
time. These last two properties can be summarized as follows: genetic drift causes a loss of genetic
variation within local demes but increases genetic differentiation between local demes.

Eq. (4.16) shows that the variance induced by genetic drift is inversely proportional to N, the size of
the deme. This means that genetic drift in general causes larger random changes in allele frequency
and more rapid loss or fixation of genetic variation in smaller populations. Genetic drift operates in
all finite populations, but its effects are more observable over short periods of time in small populations.

These properties of genetic drift in a finite population of size N can be illustrated by simulating the
binomial sampling over multiple generations. Fig. 4.1 shows two sets of simulations of six populations
each over 100 generations, all starting with an initial allele frequency p ¼ 0.5. In panel A, the size of
the populations is set to N ¼ 50, and in panel B N ¼ 500. Fig. 4.1 shows that the allele frequencies
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almost always change from one generation to the next, and they can go either up or down. Moreover,
although the allele frequencies eventually change in every population, we cannot predict the trajectory
of the allele frequency across time in any specific population. This does not mean that we can make no
predictions about the impact of genetic drift over time; rather, Fig. 4.1 shows that the allele frequencies
tend to deviate more and more from the initial p with increasing time; that is, genetic drift accumulates
with time. It also shows that what were initially six identical populations with p ¼ 0.5 become
increasingly diverse from one another over time, having a variety of p values. However, if we average
the p values across all populations, they tend to be close to p ¼ 0.5 even though each individual
population evolves a p different from 0.5, indicating the lack of direction of the genetic drift process.

FIGURE 4.1

Computer simulations of genetic drift over 100 generations. In both panels, six independent populations are

simulated, each with an initial allele frequency of p ¼ 0.5. In panel A, N ¼ 50, and in panel B, N ¼ 500.
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Note that in Panel A, three of the six populations have gone to fixation for the A allele and two have
gone to fixation for the a allele. Thus, there has been an overall reduction in the amount of genetic
variation at this locus within the individual populations. If the simulations were continued long
enough, we would expect all populations to eventually go to loss or fixation of A. Finally, note that all
these effects of genetic drift are more extreme in Panel A than in Panel B over this time course of 100
generations. This reflects the fact that the strength of genetic drift is inversely proportional to N, which
is much smaller in Panel A than in Panel B.

As shown for the survival of a mutant gene, genetic drift plays an important role in shaping the
global human gene pool, but the contrast between Fig. 4.1A and B indicates that the most dramatic
effects of genetic drift are to be found in small, local human populations. There are many such
populations in humanity. Some are remote colonies of small size with little genetic contact with the
rest of the world, others are small communities embedded within a larger population but that do not
reproduce much with people outside of their community, as is the case of some religious communities.
For example, Panoutsopoulou et al. (2014) studied two isolated populations in Greece: the Pomak
villages, a set of religiously isolated mountainous villages in the north of Greece with a combined
population of about 25,000 (but much smaller in the recent past), and the Mylopotamos mountainous
villages on the island of Crete, long-ago colonized by Greeks. They used genome-wide single-
nucleotide polymorphism (SNP) genotype data to genetically characterize these two isolates as well
as the general Greek population. Using data from their supplement, 412 SNPs in the Pomak isolate did
not have a significant change in allele frequency relative to the general Greek population, 308,527
SNPs had an increase, and 328,629 SNPs had a decrease. Similarly for the Mylopotomos isolate, 543
SNPs showed no change in allele frequency relative to the general Greek population, whereas 318,428
had an increase and 326,623 had a decrease. If one averaged these changes across all loci, not much
happened as the increases and decreases balance one another out (genetic drift has no direction),
yet almost all SNPs had different allele frequencies from the general Greek population (99.94% of all
SNPs for the Pomak isolate, and 99.92% of all SNPs for the Mylopotamos isolate). Averaging across
all SNPs, not much changed, but for any particular SNP, change was almost inevitable. Overall,
homozygosity was increased by 1.3% in the Pomak isolate and 0.9% in the Mylopotamos isolate
relative to the general Greek population, and both were significant increases in homozygosity. This
reflects the fact that genetic drift tends to decrease overall genetic variation within isolates. To examine
the tendency of genetic drift to cause isolates to differentiate from one another and from their ancestral
condition, Panoutsopoulou et al. (2014) calculated a statistic called fst. Much more will be said about
this statistic in Chapter 6, but for now we note that one common definition is

fst ¼ s2

pq
(4.18)

where s2 is the variance of allele frequency across the populations being compared. Ideally, this is the
same variance given by Eq. (4.17) for genetic drift, so fst can be regarded in this case as a measure of
the impact of genetic drift (a function of N) and time, t, by substituting Eq. (4.18) into Eq. (4.17) to
yield

fst ¼ 1�
�
1� 1

2N

�t

(4.19)
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Since there are over 600,000 SNPs in this genetic survey, it is not practical to portray the fst values for
each one, so Panoutsopoulou et al. (2014) used the statistical technique of multidimensional scaling to
find a small number of aggregate fst measures that capture most of the information in all of the
individual fst values. Fig. 4.2 shows the plot of the two most informative measures of aggregate fst
values. As can be seen, the different villages in the two isolates show genetic differentiation from the
general Greek population, but show even greater genetic differentiation from one another, as expected
from the simulations shown in Fig. 4.1. These Greek isolates therefore illustrate that genetic drift
decreases within isolate genetic variation (increased homozygosity) but increases between isolate
genetic differentiation (Fig. 4.2).

Up to now, we have only considered single locus measures of genetic drift. However, just as genetic
drift can cause random changes in allele frequencies, it can also cause random changes in multilocus/
nucleotide-site gamete frequencies. For a two-locus/site haplotype to have no linkage disequilibrium,
the gamete frequencies must satisfy the very exact mathematical constraint defined by setting
Eq. (1.18) equal to zero. It is extremely unlikely that random changes in gamete frequencies will
satisfy this constraint, so genetic drift generates linkage disequilibrium. This feature of genetic drift
is shown in Fig. 4.3. That figure shows that linkage disequilibrium decays more slowly with recom-
bination distance in small isolates (the village populations from Northwestern Italy) than in larger
populations.

FIGURE 4.2

Multidimensional scaling analysis of the general Greek population (solid black dots), the Pomak villages

(differently colored hollow circles with each color corresponding to a different Pomak village), and Mylopotamos

villages (differently colored hollow triangles, with each color corresponding to a different village). Only the two

components with the most important aggregate measures of fst are plotted.

From Panoutsopoulou, K., Hatzikotoulas, K., Xifara, D.K., Colonna, V., Farmaki, A.-E., Ritchie, G.R., et al., 2014. Genetic

characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nature

Communications 5.
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Another manifestation of the linkage disequilibrium generated by genetic drift is the creation of
long haplotypes at sufficiently high frequencies in the gene pool that they have a substantial probability
of homozygosity. Fig. 4.4 shows the number of runs of homozygosity (nROH) plotted against their
length (cROH) in the two Greek isolates discussed earlier and in the general Greek population, in
which a ROH had to have at minimum 25 consecutive homozygous SNPs over a length of 1500 kb. As
can be seen, there are many more long haplotypes in the small isolates than in the large general
population, reflecting much more linkage disequilibrium in the isolates compared to the general Greek
population.

As discussed in Chapter 3, runs of homozygosity are a powerful way of measuring F, the proba-
bility of identity by descent. Hence, another implication of Fig. 4.4 is that the isolates have much more
pedigree inbreeding than the large, Greek population. This shows that genetic drift increases the
probability of identity by descent. This property of genetic drift can be easily quantified in our
idealized population of randomly mating, self-compatible hermaphrodites. Starting with an initial (and
constant) population of N individuals in which all copies of a locus are initially assumed to be not
identical by descent, then the only way to get some identity by descent in the next generation is for an
individual to mate with itself. Once we have drawn one gamete out of the gene pool, the probability

FIGURE 4.3

The decay of linkage disequilibrium as measured by r2 (Eq. 1.20) with recombination distance in several human

populations. The populations labeled ALB, CAN, CAB, CAR, MON, and ROA represent small isolated villages

from an Apennine valley in Northwestern Italy. Valley is the conglomerate of all of these isolates, VER represents

the Italian population from the Veneto region, TSI the Italian population from Tuscany, CEU the European

population, and YRI a large African population.

Modified from Colonna, V., Pistis, G., Bomba, L., Mona, S., Matullo, G., Boano, R., et al., 2013. Small effective population size and

genetic homogeneity in the Val Borbera isolate. European Journal of Human Genetics 21, 89e94.
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that the second gamete we draw at random for a fertilization event with the first gamete being from the
same individual is 1/N. Such a self-mating forms a simple pedigree loop of just two meiotic events, so
the probability of identity by descent given this mating type is one-half (Chapter 3). Hence, the average
probability of identity by descent at generation 1, Fð1Þ, is

Fð1Þ ¼ 1

N
� 1

2
¼ 1

2N
(4.20)

Note that the force of genetic drift in increasing Fð1Þ is inversely proportional to 2N, the number of
gametes sampled, just as we have seen earlier for the force of genetic drift in inducing a variance in
allele frequency in a single generation (Eq. 4.16).

In the second generation there are two ways to achieve identity by descent. First, there could be
additional selfing events that contribute to new identity by descent as described by Eq. (4.20). Second,
Eq. (4.20) also implies that the probability that the two gametes chosen at random for a fertilization
event are not identical by descent is 1 � 1/(2N). However, such gametes could be identical copies from
an earlier generation, and this probability at generation 2 is Fð1Þ. Putting all of this together, the
probability of identity by descent at generation 2 is

Fð2Þ ¼ 1

2N
þ
�
1� 1

2N

�
Fð1Þ (4.21)

FIGURE 4.4

A plot of nROH versus cROH in two Greek isolates (A, Mylopotamos; and B, Pomak) and in the general Greek

population (panel C).

From Panoutsopoulou, K., Hatzikotoulas, K., Xifara, D.K., Colonna, V., Farmaki, A.-E., Ritchie, G.R., et al., 2014. Genetic

characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nature

Communications 5.
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In general, the average probabilities of identity by descent between two adjacent generations, say
generation t � 1 and t, is

FðtÞ ¼ 1

2N
þ
�
1� 1

2N

�
Fðt � 1Þ (4.22)

We now define a special type of heterozygosity; the probability that two genes at a locus drawn at
random are not identical by descent:

HðtÞ ¼ 1� FðtÞ (4.23)

H(t) should not be confused with the heterozygosities used to define the system of mating inbreeding
coefficient f (Eq. 3.18), as these heterozygosities refer to two copies of the gene not being identical by
state. Moreover, Eq. (4.23) specifically refers to the probability of nonidentity by descent with respect
to the initial reference generation in which, by assumption, all copies of a gene at a locus are not
identical by descent. Substituting Eq. (4.23) into Eq. (4.22) and solving for H(t) yields

HðtÞ ¼
�
1� 1

2N

�
Hðt � 1Þ (4.24)

that can easily be solved with respect to the reference generation that by assumption has H(0) ¼ 1:

HðtÞ ¼
�
1� 1

2N

�t

(4.25)

Substituting Eq. (4.23) into Eq. (4.25) and solving for FðtÞ yields

FðtÞ ¼ 1�
�
1� 1

2N

�t

(4.26)

Eq. (4.26) tells us that genetic drift causes the average probability of identity by descent with
respect to some reference generation to increase with time and to be an inverse function of the
number of gametes sampled such that the smaller the population, the more rapid the accumu-
lation of identity by descent.Note that as t gets larger, the probability of identity by descent goes to 1.
This means that all genetic variation at this locus is eventually lost due to genetic drift, at a per
generation rate of 1/(2N). Note also the similarity of Eqs. (4.26) and (4.19). Eq. (4.19) is measuring the
variance of allele frequencies across identical isolates or alternatively the increase in variance of allele
frequency within a population as a function of time from a reference population. Hence, in our ideal
population, the impact of genetic drift on a wide variety of evolutionary parameters follows exactly the
same dynamics and in all cases is inversely proportional to 1/(2N) per generation.

An example of how genetic drift increases the average amount of pedigree inbreeding is shown by
another human isolate, the population on the remote Atlantic island of Tristan da Cunha (Roberts,
1968). This island was colonized by 20 British citizens between 1816 and 1820 and had grown to 270
individuals by 1960, but with some dramatic dips in population size (Fig. 4.5). Hence, genetic drift was
a powerful evolutionary force in this isolate. This isolate was a religious colony with a strong incest
taboo, so the system of mating was one of avoidance of inbreeding. As shown in Chapter 3 (see
Eq. 3.17), a system of mating of avoidance of inbreeding has its strongest genetic impact in small
populations. Nevertheless, Fig. 4.5 shows that pedigree inbreeding (as calculated from the actual
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pedigrees, using the original 20 founders as the reference generation) started occurring in the 1850s
and rose to about 0.05 by the 1930s, one of the highest average pedigree inbreeding coefficients in any
human population. The reason for this increase in pedigree inbreeding in a colony actively avoiding
system of mating inbreeding is simple: by the 1850s, virtually every individual of marriageable age of
one sex was a known relative to every individual of marriageable age of the opposite sex. In a small
population, genetic drift insures that all individuals become related in just a few generations, so
complete avoidance of pedigree inbreeding (measured by F) is impossible even if the system of mating
is one of maximal avoidance of inbreeding (measured by f). This illustrates why it is so important to
keep f and F distinct even though they are both commonly called “inbreeding coefficients.” As Fig. 4.5
shows, F is more a measure of genetic drift, whereas f is a measure of system of mating.

EFFECTIVE POPULATION SIZES
All of the equations derived so far to measure the impact of genetic drift have assumed an ideal
constant-sized population of N random-mating, self-compatible hermaphrodites with Poisson progeny
distributions with the same mean progeny number for all individuals, discrete generations, and no
genetic contact with any other population. None of these assumptions are true for any human popu-
lation. As we have already seen in previous chapters, sometimes the violation of ideal assumptions
does not have much impact on the predictions of a model (e.g., the single-locus HardyeWeinberg

FIGURE 4.5

Genetic drift in the isolated human population on Tristan da Cunha. The left axis shows the population size as a

function of year, with the solid line indicating the size. The gray bars show the average pedigree inbreeding

coefficient by decade, with the values indicated on the right axis.

Based on data from Roberts, D.F., 1968. Genetic effects of population size reduction. Nature 220, 1084e1088.
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equilibrium), but in other cases it does (e.g., the 4-gamete test for recombination). As we will now see,
violating the assumptions of an ideal population can have a tremendous effect on the evolutionary
impact of genetic drift. Effective population sizes measure the strength of genetic drift as an
evolutionary force in these nonideal situations by finding the size of an ideal population that has the
same strength of genetic drift as the real, nonideal population.

Just like the phrase “inbreeding coefficient,” the phrase “effective population size” has many
meanings that are mathematically and biologically incompatible with one another. Nevertheless, the
population genetic literature is filled with references to “the effective size.” For example, in his review
of the concept of effective population size, Charlesworth (2009) acknowledges in his first paragraph
that “there is more than one way of defining Ne, depending on the aspect of drift in question,” but in the
subsequent paper only refers to “the effective size.” Indeed, at least three very distinct concepts of
effective size are used in that review, but this diversity of meanings is not indicated in the subsequent
text nor in a single equation. This is unfortunate because there is no such thing as “the effective size” of
a population. A single real population can have many effective sizes depending upon how genetic drift
is being measured, the reference population or time, and the scale of reference. These different
effective sizes can differ by orders of magnitude from one another and from the actual census size of
the population.

Wright (1931) introduced the concept of effective size into population genetics, and from the
beginning there were multiple meanings, although this was not recognized immediately. The two most
common effective sizes in the literature are discussed in this chapter, although more concepts of
effective sizes will be added in subsequent chapters. These two common effective sizes are related to
Eqs. (4.17) (or 4.19) and (4.26). All of these equations have a similar form, showing that the evolu-
tionary dynamics of genetic drift are a function of time (drift accumulates over the generations) and
inversely proportional to population size (drift is stronger in smaller populations). However, these
equations measure different evolutionary impacts of genetic drift. Eqs. (4.17) and (4.19) measure how
genetic drift increases the variance of allele frequencies over time, either within a single lineage
(Eq. 4.17) or across several identical isolates (Eq. 4.19). The variance effective size,Nev, measures the
strength of genetic drift as monitored by the variance in allele frequencies. In contrast, Eq. (4.26)
measures how genetic drift increases the probability of identity by descent. The inbreeding effective
size, Nef, measures the strength of genetic drift as monitored by the average probability of identity by
descent in the population. The primary definition of these effective sizes is obtained by solving
Eqs. (4.17) and (4.26) for N and replacing that N by the appropriate effective size. In both cases the
effective sizes are defined in terms of a reference generation at t ¼ 0 that has no variance in allele
frequencies or F ¼ 0 for all individuals. Hence, the variance effective size is:

Nev ¼ 1

2
n
1� �

1� s2t
�ðpqÞ	1=to (4.27)

Similarly, the inbreeding effective size is:

Nef ¼ 1

2
n
1� �

1� FðtÞ	1=to (4.28)

For example, consider the genetic isolate on Tristan da Cunha (Fig. 4.5). Using the initial 20
founders from 1820 as the reference population, we assume discrete generations of length of
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25 years and F ¼ 0 for the initial generation. Some additional immigrants entered the colony,
thereby reducing F after the 1940s (Fig. 4.5), so we will use 1940 as the year of interest in calculating
the inbreeding effective size. By 1940, Fz0:05, some 4.8 generations later. Substituting these
numbers into Eq. (4.28) yields the inbreeding effective size to be 47. Note that 47 is closer to the
founding number of 20 than to the more than 210 people on the island in 1940. This is an example of
a founder effect in which a population isolate started from a small number of individuals has its
genetic attributes strongly influenced for many subsequent generations. Hence, the genetic char-
acteristics of present-day gene pools often reflect demographic events in the distant past, as will be
examined in more detail in Chapter 7.

Although there was no genetic survey of the population of Tristan da Cunha over time, we can
assign a different allele to every founder, each with an initial frequency of 0.05, 1/20. Because there is
complete pedigree data, we can calculate the “allele” frequency at subsequent times as the frequency
of the contribution of a specific ancestor to the isolate’s gene pool. By assigning only one allele to each
ancestor, this is effectively a haploid model, and we will have to double the estimated effective size to
make it comparable to a diploid model. Another complication is that a handful of people did immigrate
into the colony after the 1880s, but their contributions to the gene pool were very minor by 1940, so we
will ignore them in order to focus on the variance associated with the initial founders only. Under these
assumptions, the variance in founder “allele” frequency in 1940 was 0.00428. Given that p ¼ 0.05
(1 divided by 20, the number of “haploid” founders), Eq. (4.27) yields for t ¼ 4.8 a variance effective
size (adjusting for diploidy) of 46. In contrast, the census size (discarding the percent of the gene pool
derived from the immigrants) is 188. Note that both effective sizes are not equal to census size, but that
the variance and inbreeding effective sizes are close to one another. However, this is not always the
case, as will now be illustrated.

We now calculate inbreeding and variance effective sizes of the Tristan da Cunha population at
other times to illustrate some further properties of these measures of genetic drift. For example, in
1855 the census size was 100 and the average pedigree inbreeding coefficient was 0.0065. For 1855,
t ¼ 1.4, so the inbreeding effective size from Eq. (4.28) is 108. Note that 108 is actually bigger than the
census size of 100, and certainly much bigger than the number of married adults in 1855. This shows
that one common myth about effective sizes is wrong; namely, that effective sizes are always smaller
than census sizes or breeding population sizes. Effective sizes can be much smaller, close to, or much
larger than census or breeding sizes. Also, note that the founder effect on F seems to have disappeared;
indeed, the inbreeding effective size in 1855 is much larger than the inbreeding effective size in 1940
despite a larger census size in 1940. The reason in this case is the system of mating. The founding
population had a very strong avoidance of inbreeding system of mating, and this prevented any matings
between biological relatives (with respect to the 20 founders) until 1854, thereby greatly inflating the
inbreeding effective size of the population at that time. In contrast, the variance effective size in 1855
was 42dmuch smaller than the inbreeding effective size. This is why it is so critical to keep these
different effective sizes separate and identified; the deviations from the ideal population do not
influence all evolutionary measures in the same manner. Hence, there is no expectation that variance
effective size will be the same as inbreeding effective size.

Fig. 4.5 reveals a population bottleneck in which the population size severely declines for a brief
period of time followed by population growth. A population bottleneck occurred in 1856 when several
people left the island due to an argument over religious leadership. We can do the same calculations as
above for the 1857 population, changing the generation index t just to 1.48 and noting that the census
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size declined to 38. In 1856 the second marriage between known relatives had occurred, raising the
average F to 0.013. The inbreeding effective size was now 57, a dramatic reduction in just 2 years
associated with the population bottleneck. The bottleneck had an even more dramatic effect on the
variance effective size, reducing it to just 18. In 1855, all 20 founders were still genetically represented
in the gene pool, but in 1857 9 of the founders no longer had any representation at all in the gene pool,
reflecting the fact that genetic drift leads to the loss of genetic variation.

The example of Tristan da Cunha illustrates that variance and inbreeding effective sizes are not the
same, and that deviations from the ideal population do not affect all evolutionary measures of genetic
drift in the same manner. However, in most human populations we do not have such extensive pedigree
information as in Tristan da Cunha, so the diverse impacts of deviations from the idealized population
on variance and inbreeding effective sizes has been examined through modeling. Accordingly, many
equations have been derived to look at the impact of specific deviations from the idealized population
used in genetic drift calculations and relate measures of those deviations and observed population size
to inbreeding and variance effective sizes (Crow and Kimura, 1970; Li, 1955; Templeton, 2006). Most
of these equations are single generation equations; that is, they use as the reference population the one
that existed in the previous generation (or for inbreeding effective size in a species such as humans
with two separate sexes, the reference population is two generations ago as that is the first generation in
which it is possible to have a common ancestor in the reference population). We now consider two
classes of deviation from the ideal condition that are common in human populations: system of mating
inbreeding and non-Poisson progeny distributions in growing populations.

Avoidance of inbreeding (f < 0) is common in many human populations, but as pointed out in
Chapter 3, its impact is negligible in large populations at the magnitudes typically found in humans.
However, as the example of Tristan da Cunha shows, avoidance of inbreeding can greatly inflate
inbreeding effective size when dealing with small founder isolates. Indeed, Wright (1951) showed that
under maximal avoidance of inbreeding that Nef z 2N. This is close to what was observed in Tristan da
Cunha in 1855, when the inbreeding effective size was about twice as large as the number of breeding
adults. This theoretical result confirms the point already made that effective sizes are not always
smaller than census sizes or breeding adult sizes. Wright (1969) also showed that avoidance of
inbreeding had little effect on variance effective size, thereby demonstrating that inbreeding and
variance effective sizes are not the same measurements at all when dealing with populations that
deviate from the ideal assumptions.

As noted in Chapter 3, about 10% of humanity engages in a positive system of inbreeding (f > 0),
so that deviation from the ideal is important in humans. When f > 0, using equations and derivations
from Li (1955) and Templeton (2006),

Nef ¼ N

1þ f ð2N � 1Þ

Nev ¼ N

1þ f

(4.29)

Note that when f ¼ 0, both effective sizes equal N, which is expected as there is no deviation from the
ideal condition of random mating in this case. However, when f > 0, both effective sizes can deviate
from N and from each other, often substantially. Eq. (4.29) shows in particular that the inbreeding
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effective size is much more sensitive to f than the variance effective size. Fig. 4.6 shows a graph of the
two effective sizes for N ¼ 1000 over the range of 0 � f � 0.02, a realistic range for human
populations. Both effective sizes decrease with increasing f, but the impact of system of mating
inbreeding on the variance effective size is minor, whereas the impact on the inbreeding effective size
is extremely strong, even for modest values of f. This figure illustrates why it so imperative to always
distinguish between inbreeding and variance effective sizes and never fall into the erroneous notion of
“the effective size.”

A second deviation from the ideal population that is relevant for humans is the assumption of a
Poisson progeny distribution with a mean size of two offspring surviving to adulthood. Human pop-
ulations have generally been growing, not remaining stable with a mean family size of 2, for at least
10,000 years. Moreover, human reproductive success (children surviving to adulthood) is strongly
influenced by many factors such as socioeconomic status, ethnicity, etc. that tend to inflate the variance
of progeny number beyond that expected for a Poisson distribution. Consider a population of N
individuals that are otherwise ideal except for the progeny distribution, which has a mean of k and a
variance of v. Then (Crow and Kimura, 1970; Templeton, 2006; Wright, 1969):

Nef ¼ 2N � 1

k � 1þ v

k

�
1� k

2N

�

Nev ¼ kN

1þ 1
.
ð4N=k � 1Þ þ v

k
½1� 1=ð4N=k � 1Þ�

(4.30)

FIGURE 4.6

A plot of the impact of system of mating inbreeding (f) on the inbreeding effective size (red line) and the variance

effective size (blue line) starting with an ideal size of 1000 at f ¼ 0.
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Fig. 4.7 shows a plot of Eq. (4.30) for N ¼ 1000 over k from 1 (a declining population) to 4 (a rapidly
increasing population) and for two levels of variance greater than a Poisson, v/k ¼ 1.5 and 2.0 (recall
that for the Poisson v/k ¼ 1). Fig. 4.7 shows that both inbreeding and variance effective sizes decline
with increasing v/k ratios, but these two measures of genetic drift have opposite responses to increasing
numbers of offspring. The inbreeding effective size decreases with increasing k (Fig. 4.7), whereas the
variance effective size increases with increasing k, and indeed can exceed the census size when there is
rapid population growth. The reason for these opposite responses to population growth stems from the
fact that inbreeding effective size is more sensitive to the number of ancestors, which is smaller than
the current population size in a growing population, whereas variance effective size is more sensitive to
the number of offspring, which is larger than the current breeding population size in a growing
population. Given that the global human population has experienced superexponential growth for at
least 10,000 years, this would imply that the inbreeding effective size of the current global human
population is much smaller than the census size, whereas the variance effective size should be much
larger and possibly larger than the census size. It is commonplace in the human evolution literature to
claim that humans have a small “effective size,” but this is only true when referring to inbreeding
effective size and some other related sizes to be discussed in the next chapter. This common statement
is definitely not true for variance effective size, once again showing the importance of keeping the
different effective sizes measures distinct.

The abovementioned equations can be made far more complicated by incorporating additional
deviations from the ideal population, such as separate sexes, different progeny distributions in males
versus females, overlapping generations, etc. These more complicated equations (see, for example,

FIGURE 4.7

The inbreeding effective sizes as a function of k, the average progeny number, and the ratio of the variance of

progeny number to average size (red for a ratio of 1.5, purple for a ratio of 2), and the variance effective sizes as a

function of k and the ratio of the variance of progeny number to average size (black for a ratio of 1.5, blue for a

ratio of 2).
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Crow and Denniston, 1988; Caballero, 1995; Hill, 1979) only accentuate the differences between
inbreeding and variance effective sizes. The widespread concept of “the effective size” is never
justifiable.

GENETIC DRIFT AND LINKAGE DISEQUILIBRIUM
When a mutation first occurs, it is in linkage disequilibrium with the alleles at pre-existing poly-
morphic sites that just happened to be in the same gamete as the original mutation (Chapter 1).
Assortment and recombination can quickly dissipate this initial disequilibrium with sites that are not
on the same chromosome or distantly located on the same chromosome, but many of these associations
will last many generations before being disrupted by recombination, particularly if the initial mutation
is not near a recombination hotspot. Hence, the calculations on survival of a mutant allele are often
applicable to the survival of a new haplotype created by mutation. Moreover, as shown in the section
on survival of a mutant allele, genetic drift can have important evolutionary effects when a variant is
rare even if the total population size is extremely large. In general, haplotypes tend to be more rare than
the alleles at the specific sites that contribute to the haplotype, so haplotypes in general are more prone
to the effects of genetic drift than individual polymorphic sites. The importance of genetic drift on
linkage disequilibrium and haplotypes is further accentuated in isolates with a demographic history of
founder or bottleneck events. For example, one human isolate is a population living in southern Italy
west of the Apennine Mountains (Filosa et al., 1993). The genes for red/green color vision and the
enzyme human glucose-6-phosphate dehydrogenase (G6PD) are both located on the X chromosome
about 3 Mb apart. TheG6PD locus is highly polymorphic because natural selection in malarial regions
favors mutations that are deficient in G6PD activity (Chapter 9). The tightly linked complex of color
vision genes is also highly polymorphic for alleles leading to red/green color blindness. The 3 Mb
distance between these gene complexes is sufficiently large that most human populations show little to
no linkage disequilibrium between these two X-linked regions, with most linkage disequilibrium being
limited to 1.6 Mb around G6PD (Saunders et al., 2005). However, this Apennine isolate has a unique
G6PD deficient allele called Med 1, indicating both a founder effect and the relative genetic isolation
of this area. Interestingly, all Med 1 G6PDedeficient males also have red/green color blindness,
indicating complete linkage disequilibrium between these two X-linked regions. The nearby island of
Sardinia, which is an autonomous region of Italy, also has a history of a founder event most likely due
to Phoenician contact with the island in the 4th century BCE (Filippi et al., 1977), which is supported
by a high degree of homogeneity for G6PD-deficient alleles (Frigerio et al., 1994). The Sardinians also
show significant linkage disequilibrium between G6PD and red/green color blindness, but in Sardinia
there is nearly a complete absence of color blindness in G6PD-deficient males. Genetic drift accen-
tuated by founder events and relative isolation has created strong linkage disequilibrium between these
two X-linked regions that normally show no linkage disequilibrium, but the alleles showing
disequilibrium are different in these two isolates.

The abovementioned example has implications for a common technique used in human genetics
called imputation that uses haplotypes to infer unobserved genotypes. As mentioned in Chapter 3 with
respect to testing for HardyeWeinberg as a quality control test, the sequences in many “databases” are
not the actual data but rather are the inferences made from the true raw data generated by the
sequencing or scoring technique. In many cases, the quality of the underlying data is too poor to make
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a genotype call, or indeed the raw data may be completely missing. This results in missing genotypes,
and this can be a common problem for some survey techniques. Because linkage disequilibrium and
haplotype structure is so common in the human genome, one way of correcting for such missing
genotypes is to use haplotype data inferred from other studies or from the subset of the data that is
complete for the variants of interest. For example, suppose we find from a previous study that five
adjacent SNPs define a haplotype ACCGT such that every time the sequence AC-GT is observed, that
the third SNP has the C allele in the population of interest. Therefore, if we encounter missing data
at the third SNP in our genetic survey, it is likely that the missing allele is C given the information from
the adjacent SNPs. Such imputation biases the results toward inflated linkage disequilibrium, and
imputation is even more error-prone when surveying populations with little previous data (Jewett et al.,
2012). Even when information is available from nearby populations in the same country, patterns of
linkage disequilibrium can vary tremendously due to genetic drift, as illustrated by the Sardinian and
Apennine populations of Italy. Consequently, imputed data should not be used when dealing with
human isolates unless the isolate itself is the source of the haplotype data used for imputation.
Imputation should also be avoided in studies in which accurate estimates of the linkage disequilibrium
structure is required. Unfortunately, avoiding imputed genotypes is not always possible in some
datasets. Imputation is now so common and automated that some standard datasets make extensive use
of imputation but do not archive it in a retrievable manner. For example, the website of the 1000
genome project (http://www.1000genomes.org/) warns that “ . we are unable to precisely identify
which sites used imputation to generate their genotype.” One should never forget that DNA sequences
are not the true raw data but only inferences made from the underlying data, often with considerable
error. DNA sequence datasets are far more valuable when users can obtain information about the
quality of the genotype calls, including those genotypes that were imputed.

The above warning is particularly important because human isolates affected by founder and
bottleneck effects play a critical role in human genetic disease studies. The randomness of genetic drift
often causes what is otherwise an extremely rare genetic disease to be much more common in an
isolate and therefore more amenable to study, the pedigrees tend to be deeper, the linkage disequi-
librium generated by genetic drift in isolates makes mapping of the disease locus far easier, and the
more homogeneous genetic backgrounds caused by genetic drift often results in greater phenotypic
homogeneity for the effects of the disease allele that also facilitates mapping and more accurate
imputation when the isolate itself is surveyed for haplotypes (Gusev et al., 2012). Indeed, the first
example of the successful cloning of a genetic disease gene was the gene responsible for the autosomal
dominant Huntington’s disease, a neurodegenerative disease. The cloning of this gene was greatly
facilitated by identifying a human isolate in Venezuela that had a high frequency of Huntington’s
disease due to a woman in the founding population over 200 years ago that bore the disease allele and
who had 10 children (Gusella et al., 1983). Isolates continue to be a major focus of many human
genetic disease studies, so the consequences of genetic drift are extremely important in the field of
human genetic epidemiology.

GENETIC DRIFT AND NEUTRAL MUTATIONS
Eqs. (4.17) and (4.26) show that the strength of genetic drift as an evolutionary force is inversely
proportional to population size. However, it would be a mistake to conclude that this means that
genetic drift is important only in small populations. Indeed, as we saw with the survival of a mutant
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gene, genetic drift plays a critical role even in large, effectively infinite populations and has greatly
shaped the global human gene pool. Drift is also important in populations of any size when we consider
the balance between drift and other evolutionary forces. One such force is mutation, and we will now
focus specifically on mutations with little to no effect on survival or reproduction (fitness). As shown in
Fig. 1.5, empirical studies on the spectrum of fitness effects of new mutations reveal many mutations
that have little or no effect on fitness. Indeed, for some classes of mutation (e.g., synonymous
mutations in Fig. 1.5), such neutral or nearly neutral mutations are the most common class in the fitness
spectrum.

Consider first only the class of mutations that are purely neutral with no fitness affects whatsoever.
The fate of such mutations in a population is determined by genetic drift. Because the initial frequency
of such a neutral mutation is 1/(2N), because drift has no direction (meaning that the expected allele
frequency never changes), and because ultimately drift results in the loss or fixation of the neutral
mutant, the probability of fixation of a neutral mutation is 1/(2N) and the probability of loss is
[1 � 1/(2N)], for otherwise the expected allele frequency will deviate from 1/(2N). Once again, the
strength of drift as an evolutionary force leading to the fixation of neutral mutations is inversely
proportional to population size. Now consider the input of neutral mutations into the gene pool. Let m
be the neutral mutation rate; that is, the probability of a mutation at a gene or nucleotide position that
has no fitness effects. Since there are 2N copies of this mutational site in the gene pool, each of which
can mutate, the total input of neutral mutations per generation is 2Nm. The overall rate of neutral
evolution is the rate of input times the rate of fixation (Kimura, 1968a):

Rate of Neutral Evolution ¼ 2Nm� 1

2N
¼ m (4.31)

Note that the rate of neutral evolution is a function only of the neutral mutation rate and not population
size even though genetic drift is the evolutionary force responsible for the fixation of neutral mutations.
This invariance to population size emerges from the balance of mutation, whose force is proportional
to population size, versus drift, whose force is inversely proportional to population size. Hence, for
neutral evolution, genetic drift is an important evolutionary force in all populations regardless of
population size.

Kimura derived Eq. (4.31) at a propitious time. Protein sequences started to become abundant in the
1960s, allowing the study of protein evolution over long periods of evolutionary time. Many had
thought that protein evolution should follow the pattern of morphological evolution such that lineages
showing much morphological change over a period of time should have more rapid protein evolution
than other lineages showing little to no morphological change over the same time period. However, the
patterns of protein evolution indicated that time, not morphology, governed the rate of protein
evolution, leading to the concept of a molecular clock for which the amount of divergence between
two lineages at the molecular level in a protein (now more commonly, DNA sequences) was pro-
portional to the time at which the lineages split from one another in evolutionary history (King and
Jukes, 1969). If the neutral mutation were constant over long periods of time and it if were constant in
absolute time, Eq. (4.31) provides an evolutionary mechanism for the molecular clock.

The 1960s was also the decade in which population genetic survey techniques were revolutionized
by the widespread application of protein electrophoresisda technique that can detect some of the
amino acid differences due to underlying nonsynonymous mutations in a protein-coding gene. Prior to
protein electrophoresis, most genes could be identified as a gene only if there was allelic variation at
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that gene locus due to mutation or natural polymorphisms. This made it impossible to get an unbiased
answer to the question of how much genetic variation exists in a gene pool. Protein electrophoresis
could score specific proteins for variation within a species in a manner that did not depend upon pre-
existing allelic variation; that is, one could score a protein and conclude that there was no observable
variation at that locus. The initial studies using protein electrophoresis on humans and various species
of fruit flies (Harris, 1966; Johnson et al., 1966; Lewontin and Hubby, 1966) all concluded that about a
third of all protein-coding loci were polymorphic (using the criterion that the most common allele had
a frequency less than 0.95) in these different species. Given the limitations of protein electrophoresis to
detect only a subset of the actual variation, this polymorphic rate was certainly an underestimate. Prior
to these results, many believed that most species’ gene pools had very few polymorphic loci because
natural selection would rapidly eliminate deleterious mutations or rapidly fix beneficial ones. Hence,
most of the time, most loci would have only one common allele (called the “wild-type allele”) and
perhaps a handful of rare mutants, mostly deleterious, that would soon be eliminated by natural
selection. The protein electrophoresis results were obviously inconsistent with this model. Kimura
(1968b) showed how neutral evolution could not only explain the molecular clock over long times of
evolutionary divergence between species but could also explain the high levels of polymorphism
observed within a species at a given slice of time. Kimura modified Eq. (4.22) to include the impact of
neutral mutation as follows:

FðtÞ ¼
�
1

2N
þ
�
1� 1

2N

�
Fðt � 1Þ

�
ð1� mÞ2 (4.32)

Note that the part of Eq. (4.32) that is in brackets is identical to Eq. (4.22), but now the bracketed term
is multiplied by the probability that both copies of the gene did not mutate during the transition from
generation t � 1 to generation t, allowing identity by descent. Eq. (4.32) is based on the infinite alleles
model of mutation in which all mutations yield a new, distinguishable allele. Hence, the only way for
two alleles to be identical is for no mutation to have occurred in either gene copy. The equilibrium
solution to Eq. (4.32) that represents the balance between mutation destroying identity by descent and
genetic drift increasing identity by descent is found by setting FðtÞ ¼ Fðt � 1Þ ¼ Feq to yield:

Feq ¼ 1

2N

"
1

ð1� mÞ2 � 1

#
þ 1

(4.33)

If m is small, 1
�ð1� mÞ�2z1þ 2m (from a Taylor’s series expansion), so Eq. (4.33) can be

approximated by

Feq ¼ 1

4Nmþ 1
(4.34)

Because we are interested in genetic variation, Eq. (4.34) can be recast in terms of the expected
heterozygosity at equilibrium, Heq, as follows:

Heq ¼ 1� Feq ¼ 1� 1

qþ 1
¼ q

qþ 1
(4.35)

where q ¼ 4Nm.
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Fig. 4.8 shows a plot of expected heterozygosity for neutral alleles versus q. This figure shows
that the expected heterozygosity can take on any value between 0 and 1 depending upon q, so that the
neutral theory can explain any degree of genetic variation found in a population as a function of
N and m.

The neutral theory immediately induced great controversy within the population genetics com-
munity, and it still does, as illustrated by the controversy over the claim that 80% of the human genome
is functionally important and not neutral because it is transcribed, as discussed in Chapter 2. One early
objection to the neutral theory was that the observed range of Heq is very narrow across species that
differ by many orders of magnitude in N, a result inconsistent with the constancy of m demanded by the
molecular clock. Ohta (1974) explained this narrow range by including mutants that had very small
effects on fitness and that were not purely neutral. Fig. 1.5 shows that such nearly neutral mutations are
also common, and Ohta showed that if the selective pressures on these nearly neutral mutations were
small relative to the variance effective size, they would have neutral dynamics. Hence, as the variance
effective size went down, the effective neutral mutation rate would increase as more and more of the
slightly selected mutations behaved in a neutral manner, and as the variance effective size went up, the
effective neutral mutation rate would go down. This inverse relationship can buffer the expected
heterozygosity to a narrow range. However, making m an inverse function of the variance effective size
destroys the constancy of m needed for the molecular clock. Other difficulties with the clock were that
m was constant in absolute time over all lineages, rather than generation time. The constancy over time
was also bothersome because reproductive fitness, including neutrality, is a phenotype. As discussed in
Chapter 1 and in more detail in Chapter 8, phenotypes emerge from gene-by-environment interactions
and are not inherent properties of a single allele. Hence, as the environment changes (including cultural
changes for humans), an allele that was neutral can become selected or vice versa (Chapter 12). Hence,
there is no expectation that the neutral mutation rate should be invariant to environmental change.
Moreover, theoretical work indicates that having many neutral alleles at a locus can actually accelerate

FIGURE 4.8

The expected equilibrium heterozygosity, Heq, for neutral alleles as a function of q ¼ 4Nefm.
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adaptive evolution by making more of the potential phenotypic space available (Draghi et al., 2010),
thereby blurring the divide between the neutral/selection dichotomy. Finally, natural selection is not
always a force for rapidly eliminating genetic diversity, but rather can act to maintain polymorphic
variation under a wide range of conditions (Chapters 9 and 11e13), and can even result in long-term,
clocklike behavior (Barrick et al., 2009; Wichman et al., 2005; Hartl and Dykhuizen, 1979). There is
little doubt that there is neutral and nearly neutral variation in the human gene pool, but it is difficult to
estimate what proportion of the total variation is effectively neutral at any given time. The focus of
much current population genetics is no longer on testing the neutral theory per se, but rather using the
neutral theory as a null hypothesis. As with most science, advances are made when the null hypothesis
is rejected and much research focuses instead on why neutrality was rejected. In this context, the
neutral theory remains an important and central null hypothesis in human population genetics.
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A BACKWARD VIEW OF GENETIC
DRIFT: COALESCENCE 5
There have been many experimental studies in population genetics. Experiments to test theoretical
predictions have been made with organisms as diverse as bacteria, fruit flies, and mice, among
others. A common feature of the organisms used in empirical population genetics is that their
generation time is much less than that of humans so that the predicted evolutionary processes can be
observed over multiple generations. This is an obvious practical constraint of empirical studies by
human observers. However, when we turn population genetics to our own species, such a constraint
cannot be satisfied. Accordingly, there is little role for population genetic experiments on human
populations over multiple generations. What nontheoretical human population geneticists can do is
to perform genetic surveys on current and past populations of humans and use such genetic data to
test hypotheses about human evolution and genetic structure. Because we cannot perform future-
oriented, multiple-generation experiments on humans, the hypotheses we test from genetic survey
data are either confined to the current generation or look towards the past, not the future. In order to
test hypotheses about humanity’s genetic past, we need a backward-looking theoretical framework.
Up to now, most of the population genetic theory that has been presented has had a forward-looking
orientation. For example, in the previous chapter we derived many recursion equations that predict
how genetic drift will affect a population as it proceeds from one generation to the next. We will
focus on genetic drift in this chapter as well, but with a backward perspective. Starting with a
current sample of DNA molecules and their surveyed genetic variants, we will look backward in
time in order to see how past processes generated the current array of DNA molecules in the gene
pool. As pointed out in Chapter 1, we know that our current array of genetic diversity must have
been generated by a combination of DNA replication events coupled with past mutation and
recombination events. DNA replication allows what is one DNA molecule in some region of the
genome to become two separate DNA molecules in the next generation (Chapter 1). When DNA
replication is looked at backward through time, what we see is that two DNA molecules in one
generation coalesce into one DNA molecule in the previous generation. A coalescent event occurs
when two homologous DNA molecules merge back into a single DNA molecule at some time in
the past. We also saw from Chapter 1 that mutation and recombination generate genetic diversity
among the copies of DNA molecules created by DNA replication. As we travel backward in time we
undo the effects of mutation and recombination events and thereby lose genetic diversity. Eventually,
all the surveyed homologous DNA molecules coalesce to a single ancestral DNA molecule with no
genetic diversity whatsoever. We now examine in more detail this coalescent process.
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BASIC COALESCENT MODEL
We start with a sample of two homologous DNA molecules. All DNA molecules that are homologous
are derived, by definition, from a common ancestral DNAmolecule in the past. We now use the models
of genetic drift developed in Chapter 4 to describe the dynamics of this two-molecule coalescent
process. The probability that these two molecules coalesce in the previous generation in an ideal
population is, from Eq. (4.20), 1/(2N), for a diploid genomic region. We can generalize these results to
an arbitrary level of ploidy, say x, by substituting x for “2” in this probability. Also, for nonideal
populations, we can substitute the coalescent effective size, Nec for N, noting that the coalescent
effective size is closely related to the inbreeding effective size as both are related to identity by descent.
Hence, the probability that the two sampled DNA molecules coalesced in the previous generation is
1/(xNec) for an x-ploid genomic region. The probability that the two DNA molecules did not coalesce
in the previous generation is [1 � 1/(xNec)]. The probability that coalescence occurred exactly t
generations ago is the probability that no coalescence occurred for the first t � 1 generations in the past
followed by a coalescent event at generation t:

Probðcoalescence at tÞ ¼
�
1� 1

xNec

�t�1� 1

xNec

�
(5.1)

Eq. (5.1) defines a probability distribution over the random variable t for all possible generations in the
past from 1 to infinity. Hence, the average time for two DNA molecules to coalesce (the expected time
to coalescence) is:

EðtÞ ¼
XN
t¼1

t

�
1� 1

xNec

�t�1� 1

xNec

�
¼ xNec (5.2)

As can be seen from Eq. (5.2), the smaller the ploidy level and/or the smaller the coalescent effective
size (which is equivalent to stronger genetic drift), the more rapid the coalescent process.

Now consider a sample of n homologous DNA molecules. We will further assume that n is much
smaller than Nec, which makes it unlikely that two or more coalescent events will occur in a single
generation, a model known as the Kingman coalescent (Kingman, 1982a,b). To calculate the expected
time to the very first coalescent event, first note that the number of pairs of genes or DNA molecules in
a sample of n is given by:

Number of pairs of genes ¼
�
n

2

�
¼ n!

ðn� 2Þ!2! ¼
nðn� 1Þ

2
(5.3)

All pairs are equally likely to coalesce under neutrality, so the probability that one pair coalesced in the
previous generation is the product that a specific pair coalesced times the number of pairs:

Probða pair coalesced in previous generationÞ ¼
�

1

xNec

��
n

2

�
¼ nðn� 1Þ

2xNec
(5.4)

The probability of no coalescence in the previous generation is simply one minus Eq. (5.4). Hence,

Probðfirst coalescence at tÞ ¼
�
1� nðn� 1Þ

2xNec

�t�1�nðn� 1Þ
2xNec

�
(5.5)
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and the expected time to the first coalescence is:

EðtÞ ¼
XN
t¼1

t

�
1� nðn� 1Þ

2xNec

�t�1�nðn� 1Þ
2xNec

�
¼ 2xNec

nðn� 1Þ (5.6)

Using Eq. (5.6), the variance of the time to the first coalescent event, s21, is:

s21 ¼ Eðt � EðtÞÞ2 ¼
XN
t¼1

�
t � 2xNec

nðn� 1Þ
�2�

1� nðn� 1Þ
2xNec

�t�1�nðn� 1Þ
2xNec

�

¼ 2xNec

nðn� 1Þ
�

2xNec

nðn� 1Þ � 1

� (5.7)

The first coalescent event leaves us with n � 1 gene or DNA lineages, so all the calculations for the
second coalescent event are identical to those given in Eqs. (5.5) through (5.7) except that we substitute
n � 1 for n. This process can then be iterated for all coalescent events until only one DNA molecule
remainsdthe common ancestral molecule. We can use these iterated results to calculate the expected
time and variance between the k � 1 and kth coalescent events as:

E
�
tk�1;k

� ¼ 2xNec

ðn� k þ 1Þðn� kÞ

s2k�1;k ¼
2xNec

ðn� k þ 1Þðn� kÞ
�

2xNec

ðn� k þ 1Þðn� kÞ � 1

� (5.8)

The expected time for all n genes or DNA molecules to coalesce to the common ancestral gene is
simply the sum of all the expected time intervals (Eq. 5.8) over k ¼ 1 to k ¼ n � 1 coalescent events,
and similarly, the variance in the time for all n genes to coalesce is the sum over all n � 1 coalescent
events of the variance terms in Eq. (5.8). This yields:

EðtÞ ¼
Xn�1

k¼1

2xNec

ðn� k þ 1Þðn� kÞ ¼ 2xNec

�
1� 1

n

�

s2ðtÞ ¼
Xn�1

k¼1

2xNec

ðn� k þ 1Þðn� kÞ
�

2xNec

ðn� k þ 1Þðn� kÞ � 1

�

z 4x2N2
ec

Xn
i¼2

1

ðiÞ2ði� 1Þ2

(5.9)

Eq. (5.9) reveals that when the sample size n is large (but still small relative to Nec), the expected
time for all n copies to coalesce to a common ancestral DNA molecule is directly proportional to the
coalescent effective size. Thus, small populations will have rapid coalescent processes, whereas
coalescence proceeds more slowly in larger populations. The overall coalescence time is also directly
proportional to the ploidy level, x. Finally, the variance of the coalescence time is extremely large.
Recall that the variance of a Poisson distribution is the same as its mean, but the variance Eq. (5.9) is
proportional to the square of the mean. This implies that much variation in coalescent times is expected
across the genome even for genes with the same ploidy level.
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These features of the coalescent process are illustrated by the estimated coalescence times of 24
different regions of the human genome (Fig. 5.1). The ultimate coalescent time at which all DNA
copies surveyed today collapse into a single ancestral molecule is often referred to as the time to the
most recent common ancestor (TMRCA). The TMRCA’s of these 24 genomic regions were estimated
using a molecular clock (Chapter 4) with a 6 million years ago calibration point for the split between
humans and chimpanzees and a mutational model that allowed for homoplasy (Chapter 2) (Templeton,
2004, 2005, 2015). From Eq. (5.9), we have that the expected TMRCA should be about 2xNec for n
large. Mitochondrial DNA and the Y chromosome both are inherited as haploid elements in humans
(Chapter 2), so x ¼ 1 for these DNA regions. Moreover, both mtDNA and Y-DNA are inherited
unisexually; mtDNA is maternally inherited and Y-DNA is paternally inherited (Chapter 2). Given that
the sex ratio in humans is close to 50:50, the coalescent effective size for both of these molecules is
approximately ½Nec where Nec is the autosomal coalescent effective size, yielding an expected
TMRCA for these two molecules of Necdthe most rapid expected coalescence times for any

FIGURE 5.1

Estimated ultimate coalescent times (time to the most recent common ancestor, or TMRCA) for 24 human DNA

regions.

From Templeton, A.R., 2004. A maximum likelihood framework for cross validation of phylogeographic hypotheses. In: Wasser,

S.P. (Ed.), Evolutionary Theory and Processes: Modern Horizons. Kluwer Academic Publishers, Dordrecht, The Netherlands,

pp. 209e230; Templeton, A.R., 2015. Population biology and population genetics of Pleistocene Hominins. In: Henke, W.,

Tattersall, I. (Eds.), Handbook of Paleoanthropology. Springer, Heidelberg, New York, Dordrecht, London, pp. 2331e2370.
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component of the human genome. However, because Nec is similar to the inbreeding effective size, and
the variance in progeny number is generally greater for males than for females in humans, we would
expect the Y-DNA to coalesce somewhat faster than mtDNA from Eq. (4.30). As can be seen in
Fig. 5.1, mtDNA and Y-DNA coalesce much more recently to their common ancestral molecules than
all other regions of the human genome, with Y-DNA coalescing slightly more rapidly than
mtDNAdexactly as expected. Fig. 5.1 also gives the estimated TMRCAs for several X-linked
regions, which are haplodiploid with x ¼ 1.5. Haplodiploidy yields an expected TMRCA of 3Nec.
The autosomal regions have x ¼ 2 and an expected TMRCA of 4Nec. Fig. 5.1 shows that the autosomal
regions do indeed tend to coalesce to a single ancestral molecule slightly more slowly than the
X-linked regions, but with much variability in TMRCAwithin X-linked and within autosomal regions,
as expected, from the large variance term in Eq. (5.9).

We can solve Eq. (5.9) for Nec to obtain an estimate of the coalescent effective size. The TMRCAs
in Fig. 5.1 are given in years, but the time in Eq. (5.9) is given in generations. Assuming an average
generation time of 20 years for humans over the last few million years, Eq. (5.9) yields estimates of the
coalescent effective size of 12,000 for mtDNA and 11,500 for Y-DNA. The average estimate of Nec for
the X-linked genomic regions is 16,105 and for the autosomal regions is 23,372. The much smaller
values for the uniparental haploid elements are significantly different from the autosomal regions. A
possible explanation is that mtDNA and Y-DNA regions do not recombine. Natural selection will not
be discussed until starting with Chapter 9, but for now we note that there are strong interactions be-
tween selection and a lack of recombination. In particular, when a selectively favored mutation occurs
anywhere in a nonrecombining block of DNA, natural selection causes not only the fixation of that
favorable mutation but also of the entire nonrecombining DNA region on which it occurred. This
causes a shortening of the coalescence time for the entire DNA region, and thereby results in an
estimate of Nec that is biased toward smaller values. When a deleterious mutation occurs in a
nonrecombining region, selection tends to eliminate not only that mutation but also the entire DNA
lineage upon which it appeared, resulting in a lowering of Nec (Zeng and Charlesworth, 2011).
Moreover, selection against deleterious mutations has also been shown to reduce the TMRCA for the
haplodiploid system on the X chromosome (O’Fallon, 2013). For these reasons, the larger value of
about 23,000 from the autosomal DNA is probably a more accurate estimator of the long-term
coalescent effective size of humanity.

The coalescent effective size is many orders of magnitude smaller than the current human census
size. To understand why this is so, recall that human populations have been undergoing extreme
population growth for the last 10,000 years (Chapter 4), and over the last 2 million years, humanity has
expanded from a sub-Saharan, savanna distribution to a global distribution over many habitats. During
that same time period there have been many technological innovations (e.g., improved stone tool
cultures, the use of fire) that probably contributed to population growth as well. Hence, we are a
species that has experienced population growth for much of the past 2 million years. As shown by Eq.
(4.30) and Fig. 4.7, inbreeding effective size (and coalescent effective size) is much smaller than
current census size when a population is growing (Athreya, 2012). Given also that our reference point
for calculating effective size in this case is hundreds of thousands to millions of years ago, prolonged
population growth in our species is expected to have a dramatic effect on reducing the coalescent
effective size for humanity as a whole.
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COALESCENCE WITH MUTATION
As we look backward in time from the current sample of DNA molecules, sometimes we encounter a
DNA replication event that had a mutation. Let m be the probability that a mutation occurred during a
DNA replication event. Under the Kingman coalescent model, both the probability of a mutation and
the probability of a coalescent event are so small that we can assume that only one of these events or
none could occur in a single generation. Consider sampling two homologous DNA molecules. As we
look back into the past, eventually we encounter a mutation in one of the two DNA lineages or a
coalescent event. Suppose that we encounter a coalescent event t generations in the past before a
mutational event. This means that there were 2t DNA replication events at risk for mutations (because
we have two DNA lineages), and no mutations will be encountered in any of these replication events
with probability (1 � m)2t. The probability of encountering coalescence before mutation is obtained by
multiplying Eq. (5.1) by this probability of no mutation in 2t replication events to yield

Probðcoalescence before mutationÞ ¼
�
1� 1

xNec

�t�1� 1

xNec

�
ð1� mÞ2t (5.10)

Note that Eq. (5.10) is also the same as the probability of identity by descent because both DNA
lineages coalesce to a common ancestral molecule with no mutational change in either lineage. Hence,
the two molecules are not only derived from a common ancestor, but they are also identical in
sequence; that is, they are identical by descent and by state from the common ancestral molecule.

The other possibility is that we encounter a mutation before coalescence. Suppose the mutation
occurred at generation t in the past. Hence, there were 2t � 1 DNA replication events that did not
undergo mutation, with probability (1 � m)2t�1. At generation t, a mutation did occur, but it could occur
in either of the two lineages, for a total probability of 2m. We have already calculated the probability of
no coalescence per generation, and in this case we have t generations of no coalescence. Hence,

Probðmutation before coalescenceÞ ¼
�
1� 1

xNec

�t

2mð1� mÞ2t�1 (5.11)

Since Eqs. (5.10) and (5.11) describe mutually exclusive events under the assumptions of the Kingman
coalescent, the conditional probability of a mutation before coalescence given that either a coalescent
or mutational event occurred at t is, from Eq. (1.15) in Chapter 1:�

1� 1

xNec

�t

2mð1� mÞ2t�1

�
1� 1

xNec

�t�1� 1

xNec

�
ð1� mÞ2t þ

�
1� 1

xNec

�t

2mð1� mÞ2t�1

z
q

qþ 1
(5.12)

when the coalescent effective size is much larger than the mutation rate and where q ¼ 2xmNec. Note
that if mutation occurs before coalescence, then the two DNA molecules differ from one another in
state. If the two molecules were randomly drawn from the gene pool, this would mean that they were
genetically different, so a biological interpretation of Eq. (5.12) is that it is the expected heterozygosity
between two randomly drawn homologous genes. Also note that Eq. (5.12) is identical to Eq. (4.35),
the expected heterozygosity under the neutral theory. Hence, both the backward view of coalescent
theory and the forward view of standard neutral theory (Chapter 4) yield the same balance between
drift and mutation in determining expected heterozygosity.
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Consider now the total number of expected mutations in the n-coalescent. To solve this problem,
subdivide the coalescent process into the mutually exclusive time intervals defined by adjacent coa-
lescent events (Eq. 5.8), as shown in Fig. 5.2. In the interval between the k � 1 and kth coalescent
events, there are n � k þ 1 DNA lineages, each having a probability m of mutating per DNA

FIGURE 5.2

A hypothetical coalescent process for a sample of n ¼ 6 genes. The five coalescent events needed to go from

the present sample of six genes to the common ancestral molecule subdivide the coalescent process into n � 1

intervals, with each interval having n � k þ 1 DNA lineages where kmarks the kth coalescent event. TMRCA, time

to the most recent common ancestor.
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replication event, and with each lineage experiencing Tk ¼ E(tk�1,k) replication events in that time
interval (Eq. 5.8). Hence, the total number of mutational events that are expected to occur during the
entire coalescent process is

EðSÞ ¼ m
Xn�1

k¼1

ðn� k þ 1Þ
�

2xNec

ðn� k þ 1Þðn� kÞ
�

¼ 2xmNec

Xn�1

k¼1

1

n� k
¼ 2xmNec

Xn�1

i¼1

1

i
¼ q

Xn�1

i¼1

1

i

(5.13)

where S is the number of mutations that occurred during the coalescence of all n sampled genes to a
common ancestral molecule, assuming that the coalescent effective size is constant throughout the

entire process. For very large samples, the sum
Pn�1

i¼1
ðiÞ�1 goes to 2, so the expected number of

mutations approaches 2q. Using a similar derivation, the variance in the total number of mutations that
occurred during the coalescence of all n sampled genes is:

VarðSÞ ¼ q

"Xn�1

i¼1

ðiÞ�1 þ q
Xn�1

i¼1

ðiÞ�2

#
(5.14)

Eq. (5.14) indicates that there can be much variability in the number of mutations that accumulated
across different DNA regions even when the mutation rate is the same.

Note that Eqs. (5.8) and (5.13) are easily generalized to incorporate past fluctuations in the coa-
lescent effective size in the different coalescent intervals illustrated by Fig. 5.2 by making Nec a
function of the interval; that is, replace Nec with Neci. As a result, the distribution of coalescent times
can be used to estimate past fluctuations in the coalescent effective size, although this approach only
works well when large numbers of loci are used (Gattepaille et al., 2016) because of the considerable
variance in coalescent times inherent in this process, as shown in the interval variance Eq. (5.8).

Adding the assumption of the infinite sites mutation model (Chapter 2) on to Eq. (5.13), another
biological interpretation of E(S) emerges; namely, E(S) is the expected number of segregating sites in
the sample of n copies of the DNA region of interest. This interpretation arises because all Smutations
occurred at a different nucleotide site under the infinite sites model; hence, S nucleotide sites are now
variable. Under this assumption, a simple estimator for the parameter q is

bq ¼ SPn�1

i¼1
ðiÞ�1

(5.15)

where S is the observed number of segregating sites in the DNA region of interest.
Given that the infinite sites model seriously violates the known processes of mutagenesis in the

human mitochondrial and nuclear genomes (Chapter 2), an important question is whether or not
the number of segregating sites, S, is a good estimator of the total number of mutations accumulated in
the coalescent process (Eq. 5.13). This question can be answered with datasets analyzed at the
haplotype level in order to distinguish between identity by descent and identity by state. For example,
9.7 kb of the lipoprotein lipase (LPL) locus was resequenced for 142 chromosomes (Templeton et al.,
2000a,b). As mentioned in Chapter 1, a recombination hot spot was discovered within this region,
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and excluding this region yields two flanking regions with no evidence of gene conversion or
recombination: a 50 flanking region of 17 segregating sites and a 30 region of 33 segregating sites.
These regions were analyzed with a haplotype-based method that would detect most, but perhaps not
all, homoplasies, thereby yielding a conservative test of the infinite sites model. The conservative
count of the total number of mutations in the 50 region was 23, so S ¼ 17 underestimated the true
number of mutations by 6 or 26%. For the 30 region, the conservative count of the total number of
mutations was 85, so S ¼ 33 minimally missed 52 mutations or 61%. Obviously, the assumption of the
infinite sites models leads to substantial errors. Unfortunately, much of the human population genetic
literature uncritically accepts the number of segregating sites as an adequate estimator for the number
of mutations and therefore of q. The lesson is clear from this example: the number of segregating sites
should not be equated to the number of mutations accumulated during coalescence for human data.

Under the infinite sites model and the hypothesis of neutrality, it is also possible to calculate the
expected site frequency spectrum that gives the probability distribution for the number of times
each allele occurs in the sample of n. For example, some alleles may only appear once in the sample,
others twice, etc. Rothman and Templeton (1980) derived a general form of the site frequency
spectrum and investigated a number of special cases under varying sampling assumptions and
approximations. The one corresponding to the standard neutral model and Kingman coalescent
(infinite sites model, only neutral mutations, Poisson progeny distributions, constant effective
population size, and an effective such much larger than the sample size) is:

Probabilityðnumber of copies of an allele ¼ iÞ ¼ q

i
(5.16)

Fig. 5.3 shows site frequency distributions of two genes, KCNJ11 andHHEX, from the Euro-American
subsample from a resequencing study (Coventry et al., 2010). As pointed out in Chapter 3, there is
often a substantial error rate in calling rare alleles. Coventry et al. (2010) corrected for this by using a
Bayesian procedure to place posterior probabilities on all genotype calls. Fig. 5.3 shows the sums of
these probabilities, along with 95% credible intervals, and hence explicitly takes into account calling
errors. Fig. 5.3 also shows the expected site frequency distribution under Eqs. (5.15) and (5.16). The fit
is extremely poor, with a great excess of rare variants and a deficiency of more common ones.

There are many potential explanations for this poor fit. First of all, as emphasized by Coventry et al.
(2010), the human population has been growing at a rapid rate for at least the last 10,000 years, thereby
seriously violating the assumption of constant population size that underlies Eq. (5.16). Such popu-
lation growth can cause two major types of deviations. First, as shown in Chapter 4, with sustained
population growth, deleterious mutations are not eliminated from the gene pool but rather can accu-
mulate and persist. This effect would primarily augment the rarer classes of alleles in the site frequency
spectrum. To avoid the confounding effects of deleterious alleles, Coventry et al. (2010) plotted a site
frequency spectrum that was restricted to the most likely neutral alleles: either sites that were at least
30 base pairs from an exon or third-position sites in codons that could mutate to any nucleotide with no
impact on the protein product. Fig. 5.4 shows these “neutral” site frequency spectrums for the two
genes. This restriction improves the fit, but the fit to Eq. (5.16) is still poor, primarily due to an excess
of rare alleles.

The second reason why population growth can result in a poor fit to the expected site frequency
spectrum emerges from Eq. (5.8). As shown in Chapter 4, effective population sizes are sensitive to the
reference generation being used, and this is particularly true when population size is changing over
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FIGURE 5.3

The top panel shows the site frequency spectrum for KCNJ11, with the blue bars indicating the estimated number

of alleles in a frequency class based on the sum of the posterior probabilities of the called genotypes, with the 95%

credible regions indicated in red. The black line shows the site frequency spectrum expected from Eq. (5.15). The

bottom panel shows the same types of distributions for HHEX.

Based on data from Coventry, A., Bull-Otterson, L.M., Liu, X., Clark, A.G., Maxwell, T.J., Crosby, J., et al., 2010. Deep

resequencing reveals excess rare recent variants consistent with explosive population growth. Nature Communications 1, 131.

138 CHAPTER 5 A BACKWARD VIEW OF GENETIC DRIFT: COALESCENCE



time. When Eq. (5.9) was used to estimate Nec, the only genetic parameter we were interested in was the
ultimate coalescent event to the common ancestral molecule. Hence, the only reference generation that
was relevant was the one at the TMRCA. However, in deriving the results when mutations are added, we
are also interested in the accumulation of mutations during n � 1 time intervals throughout the entire
coalescent process. The number of mutations that accumulate in any specific time interval is sensitive to
the effective population size in that time interval. For example, when the population is rapidly growing,
many mutations are expected to occur in the last handful of generations simply because there are more
gametes at risk for mutation in the near past than in earlier generations. Because these mutations are
recent, they contribute primarily to the rare variant classes in the site frequency distribution. Hence,
with rapid population growth, the site frequency spectrum is expected to contain many more rare
variants than indicated by Eq. (5.16). Fig. 5.4 also shows the expected site frequency spectrum as
determined by computer simulations that fit a mutation rate and population growth model to the data. As
can be seen, the data fit well to this model with rapid exponential population growth. Using a larger
dataset based on exome sequencing in many more individuals, Gao and Keinan (2016) found that a
significantly better fit to the site frequency spectrum was obtained when the growth rate was 12% faster
than exponential growth, implying superexponential growth in humans.

FIGURE 5.4

The site frequency spectra for the alleles mostly likely to be neutral for KCNJ11 (panel A) and HHEX (panel B).

The green bars are the observed distributions as estimated from the posterior genotype probabilities, with the red

lines indicating the 95% credible limits. The black lines show the expected spectra under the constant-size model

(Eq. 5.15), and the blue lines show the expected spectra under a model of exponential population growth with both

the growth rate and mutation rate optimized to fit the observed spectra.

From Coventry, A., Bull-Otterson, L.M., Liu, X., Clark, A.G., Maxwell, T.J., Crosby, J., et al., 2010. Deep resequencing reveals

excess rare recent variants consistent with explosive population growth. Nature Communications 1, 131.
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Another source of possible error in the site frequency distribution is the infinite sites model.
However, deviations from the infinite sites model cause compensating biases that can make the fit
appear good. As we saw earlier, S, the number of segregating sites, is an underestimate of the number
of mutations that occurred during coalescence when the infinite sites model is violated. However, the
amount of allelic diversity is also underestimated when alleles are scored only by identity by state, the
situation in which the number of segregating sites is used to determine S. In fact, the estimator given by
Eq. (5.15) is the appropriate estimator for the allelic diversity scored through identity by state. As can
be seen from Eq. (5.16), when q is underestimated, the entire expected site frequency distribution is
shifted toward the right and away from the rare variants, such as the singleton class that has an
expected number of q. However, when homoplasies occur but are not distinguished, the resulting
frequency of an allelic state class is the sum of all the frequencies of alleles that are not identical by
descent but are identical by state. These summed frequencies also shift the observed site frequency
distribution to the right. In particular, any site affected by homoplasy must have two or more copies
that are identical by state in the sample, so homoplasy always reduces the observed singleton class.
Hence, both the expected and observed site frequency spectra are shifted to the right by deviations
from the infinite sites model and scoring variation through identity by state. Consequently, deviations
from the infinite sites model are not so apparent in the site frequency spectrum, even though the entire
site frequency spectra have been biased toward the right and to lower allelic diversity. However,
demographic inferences such as past population sizes and growth rates are sensitive to violations of the
infinite sites model, as shown by Mathieson and Reich (2017) for CpG sites with their high rate of
mutation and homoplasy (Chapter 2). Hence, both population demography and mutational models are
important in interpreting site frequency spectra.

HAPLOTYPE TREES
Fig. 5.5A shows the same hypothetical coalescent process given in Fig. 5.2, but now with mutations
overlaid upon some of the DNA replication events. The sequence of coalescent events in Fig. 5.2
defines a gene tree that portrays the genealogical relationships between all the sampled
homologous DNAmolecules.However, rarely do we have enough information to infer the gene tree.
For example, the gene tree in Fig. 5.5 shows that the orange haplotype is genealogically more
closely related to one of the red haplotypes (a coalescent event in the previous generation) than
the two red haplotypes are to each other (a coalescent event two generations ago). Unless
pedigree data are available, there is no way of knowing which of the two identical red haplotypes is
more closely related genealogically to the orange haplotype. In general, the only DNA replication
events that we can “observe” from a present-day sample are those that are marked by a mutation that
creates a new allele or haplotype. If we remove all of the unobservable DNA replication events
from the gene tree and retain only those marked by a mutational change, we obtain a haplotype tree
that shows how all the genetic variation generated by mutation arose and the evolutionary
relationships among all the observed haplotypes (Fig. 5.5B). The frequency of the current
haplotypes in the sample is also known, as shown by the two copies of the red haplotype in Fig. 5.5B.
Haplotype trees can contain extinct haplotypes (or at least not in the sample), such as the ancestral
black haplotype in Fig. 5.5B that represents an evolutionary intermediate required to interconnect the
existing haplotypes.
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The haplotype tree in Fig. 5.5B is portrayed as a rooted tree; that is, the black haplotype, although
not present in the sample, is given as the root (ancestral molecule) of all the sampled current variation.
Sometimes we do not know the root, yielding an unrooted haplotype network that portrays the
evolutionary pathways that interconnect all the observed haplotypes through mutational change,
but the temporal direction of each mutational change is unknown. The haplotype network asso-
ciated with Fig. 5.5B when the root is unknown is shown in Fig. 5.6.

One advantage of haplotype trees over gene trees is that haplotype trees are estimable from many
types of genetic surveys. There are two major methods of estimating such trees: character state
methods and molecule genetic distance methods. We start with the character state methods, as they
provide more information than the distance-based methods.

To execute a character state method, one first needs haplotypes. Many molecular techniques allow
haplotypes to be observed directly, but other techniques, such as single-nucleotide polymorphism
(SNP) arrays, result in unphased data. For example, suppose a method detects the genotype at auto-
somal SNP1, and say an individual is A/T heterozygous at SNP1. The same method also detects the

FIGURE 5.5

Panel A shows the coalescent process associated with a sample of six homologous DNA molecules portrayed in

Fig. 5.2. Overlaid upon this coalescent process are mutations at some of the DNA replication events. Every

mutation is portrayed as creating a new allele or haplotype, indicated by a color change. Panel B shows the

haplotype tree obtained by eliminating all DNA replication events not marked by a mutation. Every line in the tree

in Panel B represents one mutational change. TMRCA, the most recent common ancestor.
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genotype at tightly linked SNP2, and say the same individual is G/C heterozygous at SNP2. However,
is allele A at SNP1 on the same DNA molecule as G at SNP2 or C at SNP2? With many methods, this
phase information is absent. Hence, the two single-site genotypes are consistent with the following
haplotype inferences: the individual could be heterozygous for the AG and TC haplotypes (AG/TC) or
heterozygous for the AC and TG haplotypes (AC/TG). There are many techniques available for
inferring haplotypes from unphased data (for a review and comparison of methods, see Climer et al.,
2010), and the allele-specific measure of linkage disequilibrium CCC (Chapter 1) can also be used to
phase haplotypes with the program BlocBuster (Climer et al., 2015). Once the haplotypes have been
determined, it is important to look for evidence of recombination (discussed later in this chapter).
Haplotype trees are most meaningful biologically when no or few recombination events have
occurred in the sample. Assuming this is the case, there are many character state methods for esti-
mating the haplotype tree that take into account the nucleotide state (character state) of a haplotype to
estimate the specific mutations that are needed to evolutionarily interrelate the observed haplotypes.
Quite often the same methods used to construct interspecific evolutionary trees from molecular data
are also used to estimate intraspecific haplotype trees. One common algorithmic method ismaximum
parsimony that estimates the haplotype tree as the tree that requires the smallest number of
mutations to interconnect all of the haplotypes to one another. This technique not only infers the
specific mutations (site and nucleotide state) but also can infer haplotypes that are necessary muta-
tional intermediates or nodes in the tree even if those haplotypes are extinct or otherwise not in the
sample of observed haplotypes. Often, however, there is more than one tree topology that has the
same number of mutations, and such sets of equally parsimonious trees reflect ambiguity in esti-
mating the haplotype tree. Because this model seeks to find the minimum number of mutations
needed to generate a tree, it provides a conservative estimate of the number of homoplasies found in
the coalescent process and hence is conservative for testing deviations from the infinite sites model.
Finally, note that no model of mutation is invoked to estimate the haplotype tree under maximum
parsimony. This makes maximum parsimony a convenient method for testing hypotheses about the
nature of mutation in coalescent processes (such as mutational motifs), albeit in a conservative
fashion (Templeton et al., 2000a).

FIGURE 5.6

The unrooted haplotype network corresponding to the haplotype tree shown in Fig. 5.5B. Each line in the network

represents a single mutational change. These lines are shown as double-headed arrows to indicate that we do

not know the temporal direction of mutational change in this network. Different colors indicate the different

haplotypes created by mutation.
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Parametric character state models of mutation can also be invoked and incorporated into either a
maximum likelihood framework or a Bayesian framework. These parametric mutational models can
explicitly incorporate deviations from the infinite sites model. Most of the programs for implementing
maximum likelihood or Bayesian estimators of haplotype trees treat each nucleotide as an independent
unit of mutation, and programs exist to infer the most appropriate of these independent nucleotide
models for a given dataset (Posada, 2008). Frequently, different regions of the genome have different
optimal mutational models (Arbiza et al., 2011), so model fitting should be done separately for every
region of the genome. One major limitation of this approach is that mutation in the human genome,
even when only a single nucleotide mutates, is actually a multinucleotide context-dependent process
(Chapter 2). Only a handful of papers have dealt with context-dependent mutational processes because
of the extra computational burden this imposes, but trees estimated with multinucleotide models of
mutation are much superior to trees using independent, single-nucleotide models (Chachick and Tanay,
2012; Bérard and Guéguen, 2012; Schrider et al., 2011). These results are troublesome as much
coalescent theory and simulations depend upon single-nucleotide models of mutation.

Another problem with all of the above mentioned tree-estimation methods is that they were not
specifically designed to estimate intraspecific haplotype trees, and hence do not incorporate infor-
mation about the tree that stems from coalescent theory. For example, these methods all focus on the
differences between haplotypes, but Templeton and Sing (1993) showed that there is also information
in the site states that are shared. For example, suppose two haplotypes differ at a single nucleotide site
out of a total of 100, whereas another pair of haplotypes differs at two and share 98 as identical. Using
Bayesian statistics, Templeton et al. (1992) showed that the probability of encountering a homoplasy
on the mutational pathway interconnecting the first pair is much smaller than that for the second pair.
Because the second pair has accumulated more mutational differences, that pair in general coalesces to
a common ancestral molecule farther back in the past than the first pair. With increasing time, there is
an increasing chance of homoplasy. This method, known as TCS or statistical parsimony, allocates
homoplasies to longer branches rather than to shorter branches when there are significantly
different posterior probabilities for the branch lengths. These probabilities on alternative muta-
tional pathways also quantify the error in the estimated haplotype tree. The difference between
maximum parsimony and statistical parsimony is illustrated in Fig. 5.7 that shows a portion of the
maximum parsimony trees estimated for a 5.5 kb segment of the human genome containing the
Apoprotein E (ApoE) gene (Fullerton et al., 2000), a region with no detectable recombination. Three
nucleotide sites are relevant for this portion of the haplotype tree that defines four haplotypes.
Fig. 5.7A shows a square loop of mutational changes that potentially interconnects these three hap-
lotypes in the tree. Of course, real evolutionary trees cannot have loops, so the loop indicates an area of
evolutionary ambiguity under maximum parsimony. Eliminating any one of its four sides can break
this loop. As shown in Fig. 5.7A, all four resolutions have the same number of mutations, so under
maximum parsimony there are four equally parsimonious ways of resolving this loop. However, note
that haplotype ACT differs by two mutational changes from both of its nearest neighbors in the tree,
whereas the other haplotypes can be connected to a nearest neighbor by a single mutation. Under
statistical parsimony, the probability of homoplasy occurring between the nearest neighbors that differ
by a single mutation is very small, whereas that between ACTand its nearest neighbors is significantly
higher. Under statistical parsimony the longer branch is much more likely to contain a homoplasy, so
there are only two ways of resolving this loop under statistical parsimony (Fig. 5.7B). There were other
loops in the ApoE tree, and all together there were 240 different maximum parsimony haplotype trees
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for the ApoE haplotypes. In contrast, there were only 32 trees under statistical parsimony. Hence, the
criterion of allocating homoplasies to longer alternative branches alone reduced the ambiguity in the
estimated haplotype tree by an order of magnitude.

Coalescent theory provides additional information that is useful in tree estimation (Castelloe and
Templeton, 1994; Crandall and Templeton, 1993; Crandall et al., 1994). For example, genetic surveys
not only indicate the haplotypes that are present in the gene pool but also provide an estimate of their
haplotype (allele) frequency (Chapter 1). Such frequency information is ignored in most tree-building
algorithms, but there is much information in the frequency of a haplotype about its topological position
in the haplotype tree under coalescent theory. A high-frequency haplotype has many identical copies in
the gene pool, all of which are at risk for mutation. Hence, common haplotypes experience many more

FIGURE 5.7

The difference between maximum parsimony (panel A) and statistical parsimony (panel B) for four haplotypes

(indicated by boxes containing the nucleotide states at the sites numbered below them) at the ApoE locus. Solid

double-headed arrows indicate mutational changes (with the small double-headed arrows indicating the specific

mutation associated with that branch of the haplotype tree) that are fully resolved under the relevant parsimony

criterion, and dashed lines indicate possible mutational changes that may or may not have occurred (ambiguity in

the tree estimate). The possible evolutionary resolutions of the mutational loop consistent with the relevant

criterion are shown underneath the detailed loop in each panel.
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mutational events than rare haplotypes. Rare haplotypes also tend to be due to recent mutations under
coalescent theory. The result is that common haplotypes tend to be internal nodes in the haplotype tree,
often with many mutational branches coming off of them, whereas rare haplotypes tend to be found on
the tips of haplotype trees. Statistical tests based on haplotype frequencies can therefore further resolve
ambiguities in the haplotype tree.

The second basic approach to estimating haplotype trees is through a molecule genetic distance.
All haplotypes found are compared pairwise to each other, and a genetic distance is assigned to each
pairwise contrast. Ideally, the genetic distance between two haplotypes should represent the total
number of mutations that occurred between them after they separated from their common ancestral
DNA molecule. The simplest genetic distance is the number of nucleotide sites at which the two
haplotypes differ (i.e., the number of segregating sites for that haplotype pair). This simple genetic
distance estimates the total number of mutations separating the two haplotypes under the infinite sites
model, but given how common homoplasies are in the human genome, this simple distance will
generally underestimate the number of mutations separating the two haplotypes over evolutionary
history. There are a large number of molecule genetic distances that correct for this undercounting by
including the possibility of the same nucleotide site mutating multiple times. The simplest of these is
the JukeseCantor molecule genetic distance (Jukes and Cantor, 1969). Consider a single nucleotide
site that has a probability m of mutating per generation. All mutations are considered neutral, and any
mutation is considered equally likely to mutate to any of the three alternative nucleotide states at that
site. Let pt be the probability that the two DNA molecules being compared are identical by state at this
nucleotide site at generation t. Then the probability that they will be identical by state at generation
t þ 1 is the probability that they were identical by state at time t and neither molecule mutated plus the
probability that they were not identical by state at time t but that one molecule mutated to the state of
the other (a homoplasy). As in the Kingman coalescent, we assume that at most only one mutation can
occur in any single time interval. Then we have the following recursion relationship:

ptþ1 ¼ ptð1� mÞ2 þ 1

3
ð1� ptÞ2mz ð1� 2mÞpt þ 2

3
mð1� ptÞ (5.17)

with the approximation holding when m is small. From the approximation given in Eq. (5.17), a dif-
ference equation can be defined as:

Dp ¼ ptþ1 � pt ¼ �8

3
mpt þ 2

3
m (5.18)

Approximating the difference equation by a differential equation and then solving the differential
equation yields:

pt ¼ 1

4

�
1þ 3e�8mt=3

�
(5.19)

Because of the assumption of neutrality, the expected number of mutations between two DNA mol-
ecules that separated t generations ago (the molecular clock from Chapter 4) is 2mt. Extracting 2mt
from Eq. (5.19) yields:

2mt ¼ �3

4
ln

�
4

3
pt � 1

3

�
(5.20)

where ln is the natural logarithm operator. Eq. (5.20) is applicable only to a single nucleotide, so pt is
either 0 (the two molecules are not identical by state at this nucleotide) or 1 (they are identical by
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state). If all nucleotides in the haplotypes being compared evolve independently under the same
mutational model, then the genetic distance between the two haplotypes can be estimated by:

DJC ¼ �3

4
ln

�
1� 4

3
p

�
(5.21)

where p is the observed number of nucleotide differences between the two haplotypes (the simplest of
all genetic distances) such that 1 � p is an estimator of pt, and DJC is the JukeseCantor molecule
genetic distance. There are many other molecule genetic distances that deal with more complicated
mutational models (e.g., allowing a transition/transversion bias), but a common element of the stan-
dard genetic distance measures is that they are all single nucleotide models. In that sense, the available
genetic distance measures violate the multinucleotide context dependency of single nucleotide
mutagenesis that is known to occur in the human genome (Chapter 2). Unlike the character state
methods where there have been at least a handful of studies to see the impact of this violation on tree
estimation, there has been no similar attempt with trees based on molecule genetic distances.

Once the molecule genetic distances have been defined for all haplotype pairs, a variety of algo-
rithms exist for converting the pairwise distances into an evolutionary tree. Perhaps the most popular of
these algorithms is neighbor joining that estimates the evolutionary tree by grouping together the
entities that are closest together with respect to the molecule genetic distance measure being used
(Saitou and Nei, 1987). Neighbor-joining trees can be rapidly estimated even from large datasets
containing many haplotypes, whereas character state methods often require much more computational
time for large datasets. This is a great advantage of the distance approach for the increasingly large
datasets found in human genetics. The distance-based approaches generally only yield a single tree,
whereas character state methods often yield multiple solutions (e.g., Fig. 5.7). This is a great disad-
vantage for distance approaches. Haplotype trees are estimated from the data, and character state
approaches can either indicate areas of ambiguity in that tree estimator and/or quantify the confidence
one should place in the tree estimate. Distance-based approaches obscure that ambiguity by yielding
only one tree. Distance-based approaches do not reconstruct the exact mutational changes that separate
two haplotypes, whereas character state approaches do. This is a great advantage of character state
approaches as it allows mutational motifs and even recombination to be studied (Templeton et al.,
2000a,b). Some of this added information available in character state approaches can be made
available in distance trees by inputting the distance-based tree topology into a character state program
and then using the program to optimize the mutational changes by the relevant criterion (parsimony,
maximum likelihood, etc.) given the tree topology (Templeton et al., 2000a). This avoids the
computational intensive step of estimating the tree topology through a character state procedure, but
there is the danger that the tree topology that would arise from the character state criterion being
invoked is different from the distance-based tree topology.

HAPLOTYPE TREES, POPULATION TREES, AND SPECIES TREES
Haplotype trees are exactly what their name implies: they portray the evolutionary relationships
among haplotypes found in a sample of homologous DNA molecules in a region that has little or no
recombination. Coalescent theory indicates that every homologous DNA region with little or no
recombination in every species will have a haplotype tree. Indeed, the very definition of homology
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means descent from a common ancestor, in this case an ancestral DNA region. Hence, haplotype trees
and a common ancestral haplotype are universals in nonrecombining regions of the genome of humans
or any other species.

A population tree describes the evolutionary relationships between populations within a species
that have a history of ancestral populations splitting into two or more descendant populations that in
turn have no or very little genetic interchange after the split. More will be said about population trees in
the next chapter, but here we point out that not all species have population trees. For example, two
species of moray eels are distributed throughout the Indo-Pacific Ocean that covers about 2/3 of our
world, yet they each appear to be a single random-mating deme probably because these eels have the
longest drifting pelagic stage of all reef fishes (Reece et al., 2010). MtDNA and nuclear DNA
haplotype trees have been constructed for these two species, but there are no population trees because
both species consist of only one random mating population, whereas two or more isolated populations
is a necessary prerequisite for a species to have a population tree. Unlike haplotype trees that can be
found within any species or population, population trees may not exist at all in some species. Even
when species do have more than one genetically distinct population, the genetic differentiation
between populations is not necessarily due to a history of splits and isolation (a topic that will be
discussed in Chapter 6). Consequently, even a species subdivided into two or more genetically distinct
populations may also not have a population tree, although it certainly has haplotype trees for non-
recombining genomic regions. Finally, even when a species is subdivided into two or more populations
that arose from past population splits followed by genetic isolation, the haplotype trees do not
necessarily correspond to the tree of the populations.

To understand why haplotype trees may not correspond to population trees even when population
trees truly exist, keep in mind that the common ancestral population generally has a gene pool with
many haplotypes in it. The haplotypes in the ancestral gene pool have their own coalescent history that
extends back in time before the population split. When the ancestral population first splits into two or
more isolates, each isolate shares much of the common gene pool, including its prior evolutionary
history of haplotypes. If the current populations are sampled after less than 2xNeci generations from the
split for one or more of the isolates where Neci is the coalescent effective size for isolate i and x is the
ploidy level, then we expect from Eq. (5.9) that gene pools of the current isolates will still share much
of the evolutionary history of the haplotypes in the ancestral population. Even when more than 2xNeci

generations have elapsed since the population split for every isolate, the high variance of the coalescent
process (Eq. 5.9) means that some DNA regions will still retain some of this shared ancestral popu-
lation coalescent history, whereas other DNA regions will not. The ancestral DNA lineages are
randomly lost after the population split due to genetic drift, a process called lineage sorting. Lineage
sorting may occur in a manner inconsistent with the population tree, as shown in Fig. 5.8. Note that in
the leftmost population tree in Fig. 5.8, the haplotype tree contains haplotypes found in both isolates,
so the split between the isolates does not correspond to a split in the haplotype tree. In the middle set of
trees, there is no overlap of haplotypes between the isolates, but the blue haplotype in isolate 2 is more
closely related evolutionarily to the red haplotype in isolate 1 than the red haplotype in isolate 1 is
related to the green haplotype in isolate 1. This haplotype tree incorrectly implies that isolate 2 split off
from isolate 1, another type of inconsistency with the population tree. In the rightmost set of trees, the
haplotype tree does have the same topology as the population tree. These diverse outcomes are all due
to lineage sorting of neutral alleles through genetic drift. Moreover, natural selection can delay coa-
lescence in some circumstances leading to increased shared coalescent history from the ancestral
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population. Accordingly, sometimes selected loci have haplotype trees that are extremely inconsistent
with population trees.

To see the impact of lineage sorting in human populations, consider a sample of haplotypes not just
from humans but also including those of other great apes. In this case, the model of an ancestral
population splitting into isolates (in this case species) is well justified. When dealing with such a
species tree, the leftmost case in Fig. 5.8 is called polyphyly, the middle case paraphyly, and the
rightmost case reciprocal monophyly. Ebersberger et al. (2007) sampled haplotypes from 23,210
homologous genomic regions in humans, three great apes, and the rhesus monkey. Haplotype trees
were estimated using a Bayesian procedure with the trees being rooted by using the rhesus monkey as
an outgroup (that is, the monkey was always constrained to represent the deepest split in the tree).
Table 5.1 shows the resulting species trees implied by the haplotype trees that had the interspecific
portion of the trees significantly resolved with a posterior probability of at least 0.95. Ten of the fifteen
possible tree topologies involving humans and the great apes had statistically significant support from
at least one genomic region, but almost all of the significant support was given to just the three

FIGURE 5.8

Some potential relationships between population trees, gene trees, and haplotype trees under a model in which an

ancestral population splits into two isolated populations. The fat, gray lines indicate the population trees.

Embedded within each population are gene trees, shown by the nodes (genes) of various shapes and colors

(indicating mutational changes) interconnected by thin lines (DNA replication events). Below the combined

population/gene trees shown at the top are the haplotype trees and their population affiliations.
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topologies shown in Table 5.1. These three topologies define all the three possibilities of the species
relationships among humans, chimpanzees, and gorillas. The most commonly occurring haplotype tree
has humans and chimpanzees as sister species, and this is the accepted species tree based on many
sources of evidence. However, almost a quarter of the significant DNA regions in this study support a
species tree other than the accepted species tree. This support for alternative species trees is not a
mistake or error; rather, these are haplotype trees in which lineage sorting yielded patterns of poly-
phyly or paraphyly. This ambiguity in the relative phylogenetic positions of humans, chimpanzees, and
gorillas found in haplotype trees is actually informative about the speciation events that led to these
three species; namely, that the splits among these species occurred in rapid succession and involved
ancestral populations that carried over much ancestral polymorphism (Presgraves and Yi, 2009;
Wakeley, 2008). Hence, even going back about 6 million years ago, the effects of lineage sorting are
still apparent in about a quarter of the human genome, resulting in haplotype trees that do not reflect
the species tree. When dealing with the shorter timescales associated with populations within a spe-
cies, the effects of lineage sorting and shared ancestral polymorphisms are expected to be much
stronger, so even less concordance is expected between haplotype trees and population treesdif
indeed population trees exist at all within the human species (a point that will be examined in the next
chapter). The lesson is obvious: haplotype trees should never automatically be equated to population
trees or even species trees.

The leftmost and central portions of Fig. 5.8 when applied to species trees would result in a
phenomenon called transpecific polymorphism in which some of the haplotypes found in one
species are evolutionarily more closely related to some haplotype lineages found in another species
than to other haplotypes found in their own species. Transpecific polymorphisms among humans,
chimpanzees, and gorillas have long been known (e.g., Xie et al., 1997), which is not surprising given
the results shown in Table 5.1. The most dramatic example of transpecific polymorphisms in humans
is found in the MHC region discussed in Chapter 3. This region has been implicated in strong
disassortative mating (Chapter 3) and in selection favoring the maintenance of genetic diversity,

Table 5.1 The Number of DNARegionsWith Significant Support for 1 of the 15 Possible Species
Trees Involving Humans (H), Chimpanzees (C), Gorillas (G), Orangutans (O), With the Rhesus
Monkey as an Outgroup that Always Marks the Deepest Split

Tree
Number of DNA
Regions

Percent of DNA
Regions

9148 76.58%

1369 11.46%

1361 11.39%

Seven Other Tree
Topologies

67 0.57%
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both of which can greatly extend TMRCA. Indeed, some human haplotypes in this region are
evolutionarily closer to haplotypes found in Old World Monkeys than to other human haplotypes
(Zhu et al., 1991), indicating transpecific polymorphisms that have persisted for more than 25
million years (Stevens et al., 2013).

COALESCENCE AND RECOMBINATION
So far, the events that we have considered in the past history of DNA molecules have been either a
coalescent event or a mutation event. We can extend coalescent theory by considering other types of
events. The only additional one we will consider in this chapter is a recombination event. When
recombination occurs, a new haplotype can be created such that one segment of the new recombinant
haplotype comes from a DNA lineage with a different history of coalescent and mutation events than
the remaining segment. For example, recall the ancestral recombination graph (Fig. 1.7) for the LPL
gene. Fig. 5.9 shows the details of recombination event 1 found in the lower right corner of Fig. 1.7.
Here a recombination event occurred between two parental haplotypes 4JN and 83R (Figs. 1.7 or 5.9)
to produce recombinant haplotype 3JNR, receiving its 50 end from haplotype 83R and its 30 end from
haplotype 4JN (Fig. 5.9). Recombinant haplotype 3JNR in turn went on to establish new DNA lineages
that accumulated many additional mutations to produce seven of the haplotypes observed in the sample
(haplotypes 7NR, 54N, 51N, 74R, 85R, 41N, and 42N Fig. 1.7). The parental haplotype 4JN had no
recombination events in its coalescent history (Templeton et al., 2000b), but Fig. 1.7 shows that the 50
region of parental haplotype 83R has a recombination event in its evolutionary history between Node a
(an extinct haplotype inferred from the haplotype tree as a necessary intermediate step) and haplotype
2JNR, another haplotype with no recombination events in its evolutionary history. As a result of this
previous recombination event, recombinant haplotype 3JNR in Fig. 5.9 actually represents a combi-
nation of three haplotype lineages (Node a, 2JNR, and 4JN), each with its own distinct evolutionary

FIGURE 5.9

One of the recombination events inferred to occur in the LPL gene. Only the 69 polymorphic SNPs are shown out

of the 9.7 kb that was sequenced. Colored boxes highlight the differences between the two parental haplotypes,

with orange shading indicating the allelic state at haplotype 4JN, and blue shading the allelic state at haplotype

83R. The recombinant haplotype, 3JNR, shares all the 50 allelic states with haplotype 83R up to and including

polymorphic site number 27, and starting with polymorphic site number 29 haplotype 3JNR shares all the 30 allelic
states with haplotype 4JN. This implies a recombination event somewhere between sites 27 and 29, as indicated by

the thick dashed line.
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history. As mentioned in Chapter 1, some of the other LPL haplotypes have as many as seven
recombination events in their evolutionary history.

A recombinant haplotype does not fit into a haplotype tree because it has multiple evolutionary
histories in its different segments, a phenomenon known as reticulation. Indeed, if recombination is
common and uniform in a DNA region, the very idea of a haplotype tree becomes biologically
meaningless (Arenas et al., 2008) and instead we have a reticulated haplotype network. Consequently,
an early step in the analysis of haplotype variation should be testing for recombination events.
There are a wide variety of algorithms for detecting recombination, and they vary from estimating
individual recombination events to estimating the entire ancestral recombination graph (Chan et al.,
2006; Kedzierska and Husmeier, 2006; Kosakovsky Pond et al., 2006; Boni et al., 2007; Zhao
et al., 2007; Tapper et al., 2008; Melé et al., 2010; Rasmussen et al., 2014; Wilton et al., 2015; Martin
et al., 2011; Templeton et al., 2000a). Methods based on patterns of linkage disequilibrium can be
strongly affected by other factors that generate linkage disequilibrium, such as population bottlenecks
in the species’ demographic history (Dapper and Payseur, 2018), so these approaches should not be
used unless demographic history is incorporated into the inference of recombination. Once the
recombinant haplotypes have been identified, there are several options. First, one can remove the
recombinant haplotypes from the analysis and estimate the haplotype tree for the remaining haplotypes
(Templeton and Sing, 1993). When this nonrecombining tree is coupled with an ancestral recombi-
nation graph that also portrays the mutational changes that produce additional diversity after
recombination (e.g., Fig. 1.7), one has a complete description of the coalescent process in terms of
coalescence, mutation, and recombination events (e.g., Templeton et al., 2000b). If recombination
is concentrated into a hot spot, haplotype trees can be estimated for the portion of sequenced area that
has no or few recombination events, as was also done for LPL, resulting in separate haplotype trees for
the portion of the sequence 50 of the recombination hot spot (Chapter 1) and for the 30 portion
(Templeton et al., 2000b).

Coalescent theory can also be extended to include other types of events, such as movement from
one subpopulation to another, as will be discussed in the next chapter. As we will see in other chapters,
selection can also be studied with coalescent theory. Hence, this backward view of evolution has
proven to be very productive and useful in human population genetics.
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GENE FLOW AND SUBDIVIDED
POPULATIONS 6
Our focus in the previous chapters has been upon a single local population or deme. However,
humanity consists of many local populations. Some of these local populations are relatively isolated
from the rest of humanity with little genetic interchange with other populations. In other areas, human
populations intergrade more or less continuously with neighboring populations with no clean-cut
genetic boundaries. As pointed out in Chapter 1, DNA replication means that genes have an
existence in both time (across generations) and space (across local populations) that transcends the
individual. The spreading of genes through space by interbreeding of individuals from different natal
local populations or geographic areas is called gene flow. We now examine how gene flow operates in
humanity and can result in population subdivisionddifferent local populations or areas having
distinct gene pools characterized by different gamete frequencies.

A TWO-DEME MODEL OF GENE FLOW
We start with a simple model of gene flow: just two demes (1 and 2) and a single autosomal locus with
two alleles, A and a. Let p1(0) be the frequency of A in the gene pool of deme 1 at generation 0 and
p2(0) be the frequency of A in the gene pool of deme 2 at generation 0. We assume that a portion m of
the gametes that contribute to the next generation of deme 1 is randomly chosen from deme 2, and vice
versa (that is, gene flow is symmetric in this model). A portion 1 � m of the gametes in each deme are
drawn at random from the same local area and do not move to the other deme. Under these
assumptions, the allele frequencies in the next generation are (assuming all the other standard
HardyeWeinberg model assumptions):

p1ð1Þ ¼ ð1� mÞp1ð0Þ þ mp2ð0Þ
p2ð1Þ ¼ mp1ð0Þ þ ð1� mÞp2ð0Þ

(6.1)

To see if gene flow can cause evolution, we need to examine whether or not the allele frequencies
are changing over time within the demes. From Eq. (6.1), we have that the changes in allele
frequencies within each of the demes are:

Dp1 ¼ p1ð1Þ � p1ð0Þ ¼ ð1� mÞp1ð0Þ þ mp2ð0Þ � p1ð0Þ ¼ �m½p1ð0Þ � p2ð0Þ�
Dp2 ¼ m½p1ð0Þ � p2ð0Þ�

(6.2)

We can now see that gene flow is an evolutionary force that changes allele frequencies when two
conditions are satisfied: (1) m > 0 (that is, some gene flow is occurring) and (2) p1(0) s p2(0) (that is,
the two demes have different initial allele frequencies).
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Letting d(t) be the difference in the frequency of the A allele between demes 1 and 2 at generation t,
Eq. (6.2) can be rewritten as Dp1 ¼ �mdð0Þ and Dp2 ¼ mdð0Þ. The difference in allele frequency at
generation 1 is, from Eq. (6.1),

dð1Þ ¼ p1ð1Þ � p2ð1Þ ¼ p1ð0Þ � mdð0Þ � p2ð0Þ � mdð0Þ ¼ dð0Þð1� 2mÞ (6.3)

Note that Eq. (6.3) requires that jdð1Þj < jdð0Þj for all m > 0 and d(0) s 0; that is, the absolute
difference between the allele frequencies in demes 1 and 2 is reduced by gene flow. Moreover, one can
use Eq. (6.3) recursively to obtain:

dðtÞ ¼ dð0Þð1� 2mÞt/0 as t/N (6.4)

Gene flow is therefore an evolutionary force that reduces the allele frequency differences between local
populations.

We now consider the special case in which p1(0) ¼ 0 and p2(0) > 0. From Eq. (6.1), after one
generation of gene flow, the frequency of the A allele in deme 1 has gone from 0 to mp2(0) > 0 for all
m > 0. In this case, gene flow has increased the level of genetic variation in deme 1 by introducing a
new allele, A, into its gene pool. This is a feature of most models of gene flow, so in general, gene flow
increases the amount of genetic diversity within a local population.

THE BALANCE OF GENE FLOW AND GENETIC DRIFT
Recall from Chapter 4 that genetic drift among isolated demes (m ¼ 0) causes a loss of genetic
variation within each local population and increases the allele frequency differences between local
populations. These evolutionary effects of genetic drift are exactly the opposite of those described
above for gene flow. When dealing with partially isolated demes such that m > 0 but insufficient to
lead to panmixia, the opposing balance between genetic drift and gene flow is the major determinant
in the amount of neutral genetic variation found within local populations versus neutral genetic
differentiation among local populations. We can quantify this balance by taking a coalescent approach
that includes both drift (measured by Nec) and gene flow (measured by m, the proportion of the local
deme’s gene pool that comes from outside demes) in a manner similar to Eqs. (5.10) and (5.11) in
Chapter 5:

Probðcoalescence before gene flowÞ ¼
�
1� 1

xNec

�t�1� 1

xNec

�
ð1� mÞ2t

Probðgene flow before coalescenceÞ ¼
�
1� 1

xNec

�t

2mð1� mÞ2t�1

(6.5)

where x is the ploidy level. From Eq. (6.5), similar to Eq. (5.12), we have:

Probðcoalescence before gene flow jcoalescence or gene flowÞz 1

2xmNec þ 1
(6.6)

Wright (1931) derived Eq. (6.6) using a forward derivation and gave Eq. (6.6) a special symbol,
Fstdyet another type of “inbreeding coefficient.” Fst is the probability of identity-by-descent of two
genes drawn at random from the same local population’s gene pool that also have their entire DNA
replication lineages within that local population. Fst measures this special type of within deme identity
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by descent (the “s” in the subscript stands for “subpopulation” or local deme) relative to the total
population (the “t” in the subscript). Fst measures the balance of gene flow to drift in influencing
within-deme coalescence as it depends upon the product mNec. The strength of gene flow is propor-
tional to m, whereas the strength of genetic drift is proportional to 1/Nec, so mNec ¼ m/(1/Nec) ¼
strength of gene flow divided by the strength of drift. Fst is solely a function of the product mNec, so it
depends upon the number of migrants entering the local deme and not just the gene flow rate, m.
Actually, because the population size in this product is an effective size, it is best to consider mNec as
the effective number of migrants per generation. Fig. 6.1 shows a plot of Fst versus mNec for an
autosomal locus (x ¼ 2). An important turning point in Fst occurs when the effective number of
migrants coming into the deme is one per generation. When the effective number of migrants is less
than one per generation, Fst rapidly goes to high values, indicating that drift is stronger than gene flow,
leading to significant population subdivision. When the effective number of migrants is greater than
one per generation, the Fst values are low. Just one or more effective migrants per generation is
therefore sufficient to keep subpopulations of any size showing at most only modest levels of genetic
differentiation. For example, studies on eight villages on an Indonesian island displayed high genetic
variation within and low genetic differentiation between despite what appeared to be only sporadic
migration due to linguistic and cultural barriers (Cox et al., 2016).

Another biological interpretation of Fst is given in terms of coalescent times within and outside of
the local deme (Whitlock, 2011):

Fst ¼ t � t0
t

(6.7)

where t is the mean time to the most recent common ancestor of two alleles chosen from the total
population as a whole and t0 is the same quantity for two alleles sampled at random from the same
local deme. Thus, Fst measures the difference in times to coalescence in the species as a whole versus
coalescence within local demes. As gene flow becomes stronger and stronger, the total population
approaches panmixia and the difference in coalescence times (and Fst) goes to zero.

FIGURE 6.1

A plot of Fst versus the effective number of migrants per generation, mNec. The small lines indicate the Fst value at

mNec ¼ 1 that represents the transition point between the relative strengths of drift versus gene flow in determining

population subdivision.
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The balance of gene flow versus drift can also be studied through genotype frequencies and var-
iances of allele frequencies in addition to identity-by-descent measures. Consider a single autosomal
locus model with two alleles, A and a. Within every subpopulation, we assume a system of mating
characterized by fis, which is the equivalent of f in Chapter 3 but with the subscripts added to emphasize
that this is a measure of deviation from random mating of individuals within a subpopulation. The
expected genotype frequencies within subpopulation j are (from Eq. 3.16):

Freq.ðAA in deme jÞ ¼ p2j þ pjqjfis

Freq.ðAa in deme jÞ ¼ 2pjqjð1� fisÞ
Freq.ðaa in deme jÞ ¼ q2j þ pjqjfis

(6.8)

where pj and qj are the frequencies of alleles A and a, respectively, in deme j. If restricted gene
flow exists, these allele frequencies should vary across the subpopulations. With respect to the total
population, the frequency of the AA genotype is:

Freq.ðAAÞ ¼
Xn
j¼1

wj

�
p2j þ pjqjfis

�

¼
Xn
j¼1

wjp
2
j þ

Xn
j¼1

wj

�
pj � p2j

�
fis

¼
Xn
j¼1

wjp
2
j � p2 þ p2 þ fis

0
@p�

Xn
j¼1

wjp
2
j � p2 þ p2

1
A

¼ p2 þ s2p þ fis

�
p� p2 � s2p

�

(6.9)

where wj is the proportion of the total population that is in deme j, p ¼ Pn
j¼1

wjpj, and s
2
p is the variance

in allele frequency across all demes:

s2p ¼
Xn
i¼1

wi

�
pi � p

�2 ¼Xn
i¼1

wip
2
i � p2 ¼

Xn
i¼1

wiq
2
i � q2 (6.10)

Defining fst ¼ s2p

.
ðp qÞ, the frequency of the AA genotype in the total population becomes, from Eq.

(6.9):

Freq.ðAAÞ ¼ p2 þ p q fst þ fisðp q� p q fstÞ
¼ p2 þ p q½ fst þ fisð1� fstÞ�
¼ p2 þ p q fit

(6.11)

where fit ¼ fst þ fisð1 � fstÞ. Similar derivations can be performed for the other genotype frequencies,
yielding:

Freq.ðAAÞ ¼ p2 þ p qfit

Freq.ðAaÞ ¼ 2p qð1� fitÞ
Freq.ðaaÞ ¼ q2 þ p qfit

(6.12)
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fit measures the deviation from HardyeWeinberg genotype frequencies of individuals relative to
the total population. Even when there is randommating within each local deme (fis ¼ 0, so fit ¼ fst), the
total population is not in HardyeWeinberg genotype frequencies if there is any variation in
allele frequencies across demes (s2p > 0, so fit ¼ fst > 0). Because a variance can only be positive, the
deviation from HardyeWeinberg genotype frequencies induced by variation in allele frequencies
across subpopulations relative to the total population (hence the st subscript in fst) is always in the
direction of a homozygote excess and a heterozygote deficiency at the total population level. This
deviation from HardyeWeinberg genotype frequencies in the total population that is caused by
population subdivision is called the Wahlund effect, after the man who first identified this
phenomenon (Wahlund, 1928). The Wahlund effect is also important when sampling individuals for
a genetic study. Most modern human demes are randomly mating for most loci, but samples that
include individuals from more than one deme will often not display HardyeWeinberg genotype
frequencies.

Although random mating is common in most human demes, some local human populations do
display deviations from random mating. For example, the Yanomama Native Americans of South
America tend to avoid inbreeding. Because they live in rather small villages and have a large
variance in the number of offspring, avoiding inbreeding in the pedigree sense often has a
measurable impact on f (see Eq. 3.17). Neel and Ward (1972) and Ward and Neel (1976) estimated fis
to be �0.01, indicating an avoidance of system-of-mating inbreeding and a slight excess of observed
heterozygosity within Yanomama villages. There is also substantial genetic differentiation among
villages, yielding fst ¼ 0.073. Hence, the overall deviation from HardyeWeinberg genotype fre-
quencies in the total Yanomama population is fit ¼ fst þ fis(1 � fst) ¼ 0.073e0.01(0.927) ¼ 0.064. If
one sampled Yanomama at the tribal level such that individuals from several villages would be
included in the sample, then the Wahlund effect would induce a large deviation from Hardye
Weinberg genotype frequencies indicative of system of mating inbreeding (f ¼ 0.064) even though
the actual system of mating is one of avoidance of inbreeding (fis ¼ �0.01). This illustrates that the
population genetic inferences we make can be strongly influenced by sampling design, and in
particular a sample inadvertently drawn from many subpopulations can produce misleading
conclusions when the sample is regarded as a single deme. This sampling problem is known as
population stratification.

The parameter fst is a measure of the balance of gene flow with genetic drift. Recall that
fst ¼ s2p

�ðp qÞ. In the extreme case in which there is no gene flow (m ¼ 0), all the subpopulations are
genetic isolates and drift will eventually cause all populations to either lose or fix the A allele, as
shown in Chapter 4. Since genetic drift has no direction, a portion p of the subpopulations should
become fixed for the A allele, and q for the a allele. The variance of the allele frequency across
subpopulations (Eq. 6.10) in this special case is pð1� pÞ2 þ qð0� pÞ2 ¼ p q. Therefore, fst is the
ratio of the actual variance in allele frequencies across demes to the theoretical maximum
when there is no gene flow but only drift. If drift were weak and gene flow so prevalent that all
differences in allele frequencies among subpopulations were eliminated (Eq. 6.4), then fst ¼ 0. In
contrast, if gene flow were completely absent and drift the only evolutionary force, then fst ¼ 1.
Hence, fst is a measure of the relative strength of drift versus gene flow with 0 corresponding to
gene flow dominating and 1 corresponding to drift dominating. Another interpretation of fst is
in terms of the amount of heterozygosity in the total population versus the average of the
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subpopulations. From Eq. (6.12), the average frequency of observed heterozygotes within
subpopulations, HSo, is:

HSo ¼
Xn
j¼1

wj2pjqjð1� fisÞ

¼ 2ðp q� p q fstÞð1� fisÞ
¼ 2p qð1� fstÞð1� fisÞ

(6.13)

If there were no population subdivision at all (fst ¼ 0) and if the population were randomly mating
(fis ¼ 0), then the heterozygosity for the total population, HT, would be HT ¼ 2p q. Hence, the de-
viation from HardyeWeinberg in Eq. (6.13) can be expressed as ð1 � fitÞ ¼ ð1 � fstÞð1 � fisÞ, which
subdivides the deviation from pure random mating expectations under a model of complete panmixia
at the total population level as the product of the deviation due to population subdivision (1 � fst) with
the deviation due to local nonrandom mating (1 � fis). We can focus only on the deviations caused
by population subdivision by using the average expected heterozygosity (Chapter 3) within
subpopulations, say HSe, instead of observed heterozygosity to yield HSe ¼ HTð1 � fstÞ. Solving for
fst yields:

fst ¼ HT � HSe

HSe
(6.14)

Eq. (6.14) is useful in extending the concept of fst to loci with multiple alleles because expected
heterozygosities are easily calculated regardless of the number of alleles per locus. Sometimes this
multiallelic version of fst is called gst (Verity and Nichols, 2014). When gene flow dominates and all
local subpopulations have the same allele frequencies, then HT ¼ HSe and fst ¼ 0. When genetic drift
dominates and has caused all local subpopulations to be fixed for a single allele, then HSe ¼ 0 and
fst ¼ 1. Therefore, fst can also be interpreted as a measure of how genetic variation is distributed within
and among local subpopulations, with fst ¼ 0 indicating that all the genetic variation is shared iden-
tically among all the subpopulations, and fst ¼ 1 indicating that all genetic variation exists at the total
population level as fixed differences among subpopulations, with no genetic variation within
subpopulations.

Another interpretation of how fst measures the balance of gene flow versus drift is given by
Li (1955). Assuming an island model in which the total population is subdivided into a large number
of local demes of equal size with each local deme receiving a fraction m of its genes per generation
from the total population at large, Li showed that for an autosomal locus

fst z
1

4Nevmþ 1
(6.15)

where Nev is the variance effective size of each subpopulation. Note that Eq. (6.15) is similar to
Eq. (6.6) for the case of diploidy (and can be generalized to a ploidy level of x by substituting 2x for “4”
in Eq. 6.15). Eqs. (6.6) and (6.15) both imply that the balance of drift (inversely proportional to an
effective size) and gene flow (m) determines the amount of population subdivision. However, Eq. (6.6)
was defined in terms of probabilities of identity and coalescence, whereas Eq. (6.15) is a standardized
variance of allele frequencies or based on expected heterozygosities. Consequently, the two equations
are only superficially similar. Eq. (6.15) is defined in terms of the variance effective size as a measure
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of drift, whereas Eq. (6.6) is defined in terms of the coalescent effective size (or inbreeding effective
size in other derivations). Hence, the effective number of migrants (the Nm terms) is not necessarily the
same in Eqs. (6.6) and (6.15). Just as we made the distinction between F and f in Chapter 3, we,
likewise, need to make the distinction between Fst and fst. Readers should be aware that this distinction
is rarely made in the human genetic literature, and either symbol could have either meaning. In this
book, we will always make the distinction. In general, fst is the more common measure of population
subdivision in the human literature.

The autosomal fst for the global human population relative to continental subpopulations has been
estimated to be 0.11 (Xing et al., 2010). Note that because Eq. (6.14) has the same form as Eq. (6.6),
Fig. 6.1 is equally applicable in this case by simply substituting fst for Fst and Nev for Nec. An fst of 0.11
implies that the variance effective number of migrants in humans among continental subpopulations is
about 2, placing humans in the part of the curve shown in Fig. 6.1 for which gene flow dominants over
genetic drift in influencing human population structure. Similar results have been obtained for hap-
lodiploid markers on the X chromosome that yield a variance effective number of migrants of 2.4
among continental subpopulations (Cox et al., 2008), which yields a nearly identical fst of 0.12 after
adjusting for haplodiploidy by substituting 3 for 4 in Eq. (6.15). The human fst value is smaller than
that of almost any other terrestrial animal, including species that have a much more geographically
restricted range (Templeton, 1998). Hence, humans are one of the most genetically homogeneous
terrestrial species across their geographical range on the face of the Earth despite having one of the
broadest geographical ranges. The strong role of gene flow in humans is also indicated by coalescent
simulations that all living humans have at least one common ancestor who lived around 300 BCE, and
the time at which all living humans have the same set of ancestors (not necessarily in equal
proportions) is about 3000 BCE (Rohde et al., 2004).

Although X-linked SNPs and autosomal SNPs yield the same fst value once the level of ploidy is
taken into account, different types of genetic variations can yield different estimates of fst. For
example, fst among continental subpopulations is about 0.05 when estimated from microsatellites and
0.10 from SNPs using the same samples (Rosenberg et al., 2002). This is a large and significant
difference. There are three factors that could be contributing to this. First, the models that we used in
deriving our equations for fst have ignored mutation, and the mutation rates for microsatellites are
much larger than for SNPs (Chapter 2). Second, both microsatellites and SNPs are subject to homo-
plasy, but microsatellites appear to have a higher rate of homoplasy. Given that Eq. (6.14) is ideally
based on heterozygosities for alleles that are identical-by-descent and not just identical-by-state, the
rate of homoplasy and mutation could have a large effect on the estimates of fst.

A third contributor is that microsatellites are frequently multiallelic, with most alleles having low
frequencies. In contrast, SNPs are often biallelic, and many of the alleles are at intermediate allele
frequencies. When each locus is multiallelic with many rare alleles, all heterozygosities get pushed
closer to 1, which can greatly diminish the statistical resolution of Eq. (6.14). Crease et al. (1990) and
Lynch and Crease (1990) suggested an extension of the fst concept to solve this problem. The
heterozygosities in Eq. (6.14) are based on an all or nothing qualitative category; either the two genes
or DNA regions being compared are identical or they are not (heterozygosity). This categorical
treatment of allelic variation reflected the limitations of genetic survey techniques at the time the fst
concept was first developed, but with modern genetic survey techniques a quantitative approach can be
taken. For example, suppose a DNA region has been surveyed and revealed the existence of many
distinct haplotypes, which can be regarded as alleles. In Eq. (6.14), any time two sampled haplotypes
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are compared, they are either the same or different, in which case they contribute equally to “het-
erozygosity.” But not all haplotype pairs are equally different. Some pairs may differ by a single SNP,
other pairs by 10 SNPs, etc. By using the categories of “same” or “different,” this additional quan-
titative information about degrees of difference is lost. The solution is therefore to substitute a
molecule genetic distance (Chapter 5) for comparing pairs of haplotypes rather than heterozygosity.
Other than that, one still makes use of allele frequency differences among populations as in Eq. (6.13),
and one can also make hierarchical partitions of that variation using analogues of equations such as
ð1 � fitÞ ¼ ð1 � fstÞð1 � fisÞ. This analogue of fst will be called Fst in this book. A hierarchical
partition of genetic variation in populations that is analogous to f-statistic partitions but that substitutes
a molecule genetic distance for heterozygosity is called an Analysis of MOlecular VAriance
(AMOVA) (Holsinger and Weir, 2009). AMOVA can increase the resolution of an analysis of genetic
variance. For example, the genetic survey of the 9.7 kb section of the lipoprotein lipase gene referred
to in Chapter 1 revealed 88 haplotypes in a sample of 142 chromosomes coming from populations of
European-Americans in Minnesota, African-Americans in Mississippi, and Finns from North Karelia,
Finland. Using the 88 haplotypes as alleles, fst ¼ 0.02 for these three populations, a value not
significantly different from 0 (Clark et al., 1998). Hence, no significant population subdivision could
be found with the traditional fst for this high resolution, multiallelic dataset. However, using the
number of nucleotide differences between haplotype pairs as a simple molecule genetic distance,
Fst ¼ 0.07, which was significantly different from 0. In general, when high levels of genetic variation
exist at a locus, a quantitative, molecule genetic distance between alleles is preferable to the qualitative
categories of “same” or “different.”

There are several molecule genetic distances that can be used, such as the JukeseCantor distance
described in Chapter 5. It is important to choose a molecule genetic distance for AMOVA that is
appropriate for the type of genetic data being analyzed (Holsinger and Weir, 2009). A proper choice
can solve the problem mentioned above that different types of genetic variations can yield different
results in a standard fst analysis. For example, the number of nucleotide differences or a JukeseCantor
distance are not appropriate for microsatellite data. Microsatellites differ in the number of repeats, and
one of the simplest molecule genetic distances for microsatellites is the difference in the number of
repeats between microsatellite alleles. Barbujani et al. (1997) used this simple molecule genetic
distance in an AMOVA of 30 microsatellite loci surveyed in global human populations, obtaining a
Fst ¼ 0.10 for among continental human subpopulations, a figure comparable with the fst studies based
on SNPs (Xing et al., 2010).

GENDER-BIASED GENE FLOW
The models of gene flow given above all assume that migrating individuals are chosen at random,
independently, and with equal probabilities. All migrating individuals are also assumed to have the
same probability of reproducing as all other members of the deme into which they immigrated. All of
these ideal assumptions about gene flow are frequently violated in humans. One common deviation is
that the probability of dispersal and/or reproduction after dispersal is frequently influenced by the
gender of the individual. Some human cultures tend to have patrilocality in which postmarital
residence tends to be at the male’s location (resulting in greater dispersal for females), whereas other
cultures tend to have matrilocality, resulting in greater dispersal for males (Bolnick et al., 2006).
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These gender-specific patterns of dispersal are averaged out in autosomal genetic surveys but are easily
studied by making use of the sex-specific inheritance patterns of other elements of the human genome.
In particular, mtDNA is inherited through females, whereas most of the Y chromosome is paternally
inherited (Chapter 2).

Anagnostou et al. (2013) surveyed paired populations of Pygmies and Bantu farmers from
Cameroon, Congo, and the Central African Republic. Table 6.1 shows the fst values and associated
mNev values obtained for the mtDNA and Y-DNA in these two population groups. Note, because
inheritance is unisexual and haploid for these two genetic elements and the human sex ratio is close to
50:50, the “4” in Eq. (6.15) is now replaced by “1” to estimate Nevm. This table shows that the gene
flow patterns of these two populations are highly influenced by gender and by the cultural differences
between these populations. In particular, the Pygmies show a higher degree of matrilocality, resulting
in much more male-mediated gene flow (a smaller fst for Y chromosomes compared with mtDNA in
Table 6.1), whereas the Bantu show more patrilocality, which favors female-mediated gene flow
(a smaller fst for mtDNA compared with Y-DNA in Table 6.1). This gender bias is also reflected in the
ratio of the effective numbers of female migrants to male migrants (the last column in Table 6.1),
which is well below 1 for the Pygmies indicating male-biased gene flow and well above 1 for the
Bantu, indicating female-biased gene flow.

Studies on mtDNA and Y-DNA can also reveal strong gender effects on the amount of gene flow
between two populations. Bolnick et al. (2006) reported that Native Americans from eastern North
America had 48% of their Y-chromosomes of European origin, but virtually no European mtDNA
haplotypes. Thus, extensive gene flow occurred, but it was almost all male European to female Native
American. This genetic pattern is consistent with ethnographic evidence indicating frequent mating of
male European traders with Native American women in eastern North America.

SYSTEM OF MATING AND GENE FLOW
Gene flow not only involves the dispersal of individuals across space but also the successful breeding
of these individuals in their new locations. The local system of mating in the deme into which an
individual migrates can affect the chances of breeding in the new deme, and hence the amount and
pattern of gene flow. In particular, systems of mating that favor mating with relatives (inbreeding) or
assortative mating tend to diminish gene flow, whereas disassortative mating or avoidance of
inbreeding tend to augment gene flow.

Table 6.1 The Estimates of fst and mNev in Pygmies and Farmers From Central West Africa

Population

Based on mtDNA Based on Y-DNA

Nevmff/Nevmmmfst Nevfmf fst Nevmmm

Pygmies 0.269 2.72 0.054 17.52 0.15

Bantu farmers 0.019 51.63 0.116 7.62 6.76

To indicate sex-specificity, Nevm is now indexed by sex as well, with f for females and m for males.
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Even nongenetic traits that influence mating and that are correlated with immigrant status can
affect gene flow. For example, the Makiritare and Yanomama Indians lived contiguously in South
America since at least 1875, but with little evidence for interbreeding (Chagnon et al., 1970),
apparently due to cultural differences. As a consequence, most villages of these two adjacent tribes had
significant genetic differentiation at many loci, including alleles in the Makiritare that are not present
in the Yanomama gene pool. However, cultural environments change, and one major change was
contact with European settlements. The Makiritare, a “river” people, first made contact with Euro-
peans and acquired steel tools. The Yanomama, being a “foot” people and more in the interior, did not
have contact with non-Native Americans until the 1950s. Hence, the Yanomama depended upon the
Makiritare for steel tools for many decades. The Makiritare demanded sexual access to Yanomama
women in exchange for the tools, siring many children who were raised as Yanomama, but effectively
causing an asymmetric and gender-biased cultural disassortative mating. This also caused much
animosity. One group of Yanomama (Borabuk) eventually moved away from theMakiritare. Sometime
around 1930, the Borabuk Yanomama encountered a group of Makiritare. They ambushed the
Makiritare, killing the men and abducting the Makiritare women. These women had low social status,
and high-status Yanomama men sired an average of 7.3 children per captive Makiritare woman as
compared with 3.8 children per Yanomama woman. This was gender-biased disassortative mating by
social status. Because of this history, there were effectively two generations in which most offspring in
the Borabuk Yanomama were actually Yanomama/Makiritare hybrids. This extreme gene flow
between Yanomama and Makiritare, although not based upon any genetic traits, has lead to the current
Borabuk Yanomama being genetically similar to the Makiritare, although culturally they are still
Yanomama (Chagnon et al., 1970).

Assortative and disassortative systems of mating based on a phenotype that is inherited can cause
locus-specific asymmetries in the amount of gene flow. For example, human populations often
show assortative mating by skin color (Banerjee, 1985; Hulse, 1967; Vandenberg, 1972). As will be
discussed in more detail later in this chapter, there has been much gene flow between European
Americans and African-Americans in the United States. Lao et al. (2010) reported that the allele
frequency differences have converged less (see Eq. 6.4) at the skin color gene SLC45A2 that influences
skin pigmentation than for most loci. Consequently, the interaction of dispersal with system of mating
can differentially affect specific loci depending upon whether or not a locus plays a role in influencing
the system of mating.

Although dispersal is necessary for gene flow in humans, dispersal and gene flow are not the same.
The system of mating can either amplify or diminish the amount of gene flow for a given amount of
dispersal and can also induce asymmetries in the direction of gene flow and gender biases.

KIN-STRUCTURED MIGRATION
As mentioned earlier in this chapter, the fst among Yanomama villages is 0.073. This is well over half
the fst value for human populations on different continents, even though in this case we are dealing with
a very small geographical area. This high level of differentiation among villages is even more sur-
prising because Yanomama individuals frequently move among villages or establish new villages
(Neel andWard, 1970; Neel, 1970). However, like many other human populations, individuals often do
not disperse independently of one another, but rather they disperse as a group of related individuals
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(families and extended families), a pattern known as kin-structured migration. Moreover, when a
new village is founded, it is typically founded by a group of related individuals leaving an ancestral
demeda process known as lineal fissioning. These phenomena of kin-structured migration and lineal
fissioning violate the assumption of independently choosing individuals to disperse.

Rothman et al. (1974) modeled lineal fissioning through a correlated allocation of individuals into
demes in a subdivided population such that the correlation between the genotypes of any two
individuals going into the same subpopulation is r. They showed that correlated sampling increased
the variance of allele frequencies over that expected by random sampling; that is, lineal fissioning
decreases the effectiveness of gene flow to homogenize allele frequencies across subpopulations,
thereby resulting in a larger fst than would otherwise be expected. More elaborate models focusing on
kin-structured migration further showed that the proportional impact on increasing fst beyond random
migration expectations was actually larger in populations with high mobility (Rogers, 1987; Rogers
and Harpending, 1986). Indeed, fst can increase with increasing kin-structured migrationdsomething
that is impossible under random migration (Eq. 6.15). A convenient summary of their results is most
easily seen by a transformation of fst to fst/(1 � fst). In the case of random migration, we can see from
Eq. (6.15) that:

fst
1� fst

¼ 1

4Nevm
(6.16)

Rogers (1987) showed that under kin-structured migration:

fst
1� fst

¼ 1

4Nevme
þ f

2Nev
(6.17)

where me is an effective migration rate that is reduced by increasing kinship among the migrants and f
is a measure of the degree of relatedness among the kin-structured migrants. Both components of the
right side of Eq. (6.17) are larger under kin-structured migration than under independent migration of
individuals, so fst can be increased in a nontrivial fashion by kin-structured migration, which is
common in humans (Fix, 2004). Lineal fissioning is also common in humans and has similar effects on
fst (Walker and Hill, 2014). Yearsley et al. (2013) used a coalescent model to show similar effects on Fst

and further showed that kin-structured migration decreases the ratio of within to between deme
coalescence times from that given by Eq. (6.7).

ADMIXTURE
An extreme form of movement occurs when a large portion of a deme, or even a group of related demes,
moves as a population to another area. Admixture occurs when a population moves into another area
and interbreeds with other populations that were already in the new area or that also moved into the new
area. Such population movements have been common in human history, with over 100 admixture events
having been identified in humans over just the last 4000 years (Hellenthal et al., 2014). Admixture is
therefore a major form of gene flow and determinant of population structure in humans.

One major episode of admixture occurred in the last 500 years in the Americas that primarily
involved three geographically separated ancestral populations. The first ancestral population is the
Native American population, the second is the migrating colonizing population from Western Europe,
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and the third is the slave population who were forcibly brought to the Americas, mostly from western
equatorial Africa. Once these three populations were brought together in the Americas, interbreeding
was possible between individuals from the ancestral populations. First consider admixture between
just two populations. To measure the genetic impact of admixture, suppose an allele A is surveyed in a
potentially admixed population and in one or both of the ancestral populations (say populations 1 and
2, normally equated to the modern populations still living in the ancestral locations). Then if M is the
proportion of the gene pool of the admixed population that comes from population 2 and 1 � M is the
proportion from population 1, then the expected allele frequency in the admixed population is:

pad ¼ ð1�MÞp1 þMp2

¼ p1 �Mðp1 � p2Þ
(6.18)

where pad is the frequency of A in the gene pool of the admixed population and pi is the frequency of A
in the gene pool of ancestral population i (or its contemporary equivalent). Eq. (6.18) can be solved for
M to yield:

M ¼ p1 � pad
p1 � p2

(6.19)

M should not be confused with the m appearing in the earlier equations given in this chapter. M
reflects the overall impact of interbreeding over multiple generations since admixture began until the
time of the genetic survey; m is a per generation rate of gene flow. An example of using Eq. (6.19) is
provided by genetic surveys of African-Americans (the admixed population), Europeans (a proxy for
ancestral population 2), and West Africans (a proxy for ancestral population 1). The frequency of the
Rh þ allele at the autosomal Rh blood group locus is 0.4381 in African-Americans, 0.0279 in Euro-
peans, and 0.5512 in West Africans. Hence, the estimate ofM, the proportion of the African-American
gene pool that is derived from Europeans, is:

M ¼ p1 � pad
p1 � p2

¼ 0:5512� 0:4381

0:5512� 0:0279
¼ 0:2161 (6.20)

Eq. (6.20) is an estimate of European/African admixture in modern African-Americans, but only
from a single locus, Rh. More accurate estimates require the use of multiple loci. Moreover, M can be
inferred with greater statistical confidence when there is a large difference between the allele
frequencies in the ancestral populations (the denominator in Eq. 6.19). As mentioned earlier in this
chapter, humans are one of the most genetically homogeneous terrestrial species on the planet, but
there are so many genetic markers available that it is possible to find markers that have large allele
frequency differences between two indigenous populations from different geographical areas (Brown
and Pasaniuc, 2014), particularly among newly arisen mutants coupled with isolation by distance (it
simply takes many generations to spread geographically under isolation by distance). Such markers are
called ancestry-sensitive-markers or, more commonly, ancestry-informative-markers (AIMs).
Finally, admixture between more than two populations can be studied with a generalization of
Eq. (6.18):

pad ¼
Xn
i¼1

Mipi (6.21)
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where n is the number of ancestral populations that contributed to the admixed population under study,
and Mi is the proportion of the admixed gene pool derived from ancestral population i with allele
frequency pi. Halder et al. (2008) screened 41,548 SNPs to obtain a panel of 176 AIMs with allele
frequency differences greater than 0.4 to distinguish indigenous populations from western Europe,
Western Africa, Native Americans, and East Asia (another group that came to North America). These
AIMs were then used to estimate the ancestral contributions in a sample of 207 self-identified European
Americans and 136 self-identified African-Americans, with the results shown in the upper 2 bars of
Fig. 6.2. As can be seen, the genetic impact of admixture has been asymmetrical, with European
Americans having 97% of their ancestry from Europe, whereas African-Americans have 77% of their
ancestry fromAfrica. This asymmetry in the amount of admixture arises from the interaction of dispersal
and system of mating in determining the genetic impact of admixture. There is strong assortative mating
in North America by self-identified “race” (Vandenberg, 1972), and there are strong cultural factors that
determine how people classify themselves into “races” (“race” will be discussed in more detail in
Chapter 14). North America was strongly influenced by an English culture that regarded the offspring of
European African matings as “black.” This cultural classification coupled with strong assortative mating
by these cultural groupings resulted in the large asymmetry of admixture shown in the top 2 bars of
Fig. 6.2.

FIGURE 6.2

Proportions of genetic ancestry in self-identified categories of people living in North and South Americas from

four ancestral populations (blue for Western Europeans, red for Western Africans, green for Native Americans,

and purple for East Asians).

The data from the United States comes from Halder, I., Shriver, M., Thomas, M., Fernandez, J.R., Frudakis, T., 2008. A panel of

ancestry informative markers for estimating individual biogeographical ancestry and admixture from four continents: utility and

applications. Human Mutation 29, 648e658, that from Rio de Janeiro in Brazil from Santos, R.V., Fry, P.H., Monteiro, S., Maio,

M.C., Rodrigues, J.C., Bastos-Rodrigues, L., et al., 2009. Color, race, and genomic ancestry in Brazil dialogues between

anthropology and genetics. Current Anthropology 50, 787e819, and that from Northeastern Brazil from Franco, M.H.L.P.,

Weimar, T.A., Salzano, F.M., 1982. Blood polymorphisms and racial admixture in two Brazilian populations. American Journal of

Physical Anthropology 58, 127e132.
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The role of cultural factors that affect the system of mating is further shown by admixture studies in
Rio de Janeiro, Brazil (Santos et al., 2009). As in North America, dispersal brought together three
primary populations: Native Americans, Western European colonists (mostly from Portugal), and
Western African slaves. The culture in the area of Rio de Janeiro was quite distinct from that of North
America in how offspring between different populations were classified, resulting in much more
admixture and greater symmetry (Fish, 2002). The three middle bars in Fig. 6.2 show the AIM esti-
mated proportions of ancestry for the three main cultural classifications used in Rio, once again by
self-identification. As can be seen, the differences between these three self-identified group classifi-
cations are much less than the difference between European Americans and African-Americans in
North America. Brazil itself is a large country with much cultural differentiation within it. In
Northeastern Brazil, there are many more categories for individuals of mixed ancestry that resulted in
even more extensive admixture (Franco et al., 1982), as shown in the bottom 2 bars of Fig. 6.2. Now
the genetic distinction between self-identified “whites” and “non-whites” is very minor, revealing
extensive admixture. As Fig. 6.2 reveals, the genetic impact of admixture is strongly influenced by
cultural factors and system of mating.

Assortative or disassortative mating for any trait or combination of traits that are associated with
the ancestral populations can affect the amount and pattern of admixture. For example, suppose people
from the two populations spoke different languages, and there was assortative mating for language
spoken at home. Also, suppose the two populations were established together with highly unequal
socioeconomic status (e.g., conquerors vs. conquered; free vs. slave) and there was assortative mating
for socioeconomic status. There could also be assortative mating for genetic traits, such as skin color,
that differentiate the two ancestral populations. It makes no difference because assortative mating for
any genetic or nongenetic trait or suite of traits that is correlated with ancestral status will perpetuate
the initial genetic differences at all loci that had allele frequency differences. This phenomenon was
observed in a study of the “Caucasian” population of Framingham, Massachusetts, United States
(Sebro et al., 2010). This population of European descent reflected an ancestral mixture from northern
and southern Europe. Sebro et al. (2010) found a high correlation between spouses for AIMs
(r ¼ 0.58), indicating strong assortative mating for some trait or traits associated with North-South
European origin, such as religion (Protestant and Catholic). Indeed, direct examination of mating
patterns in North America reveals strong assortative mating by religion and ethnicity even within the
self-identified racial category of “whites” (Vandenberg, 1972). This assortative mating results in an
excess of homozygosity for these markers (Wahlund effect) in the overall population and the
perpetuation of the stratification of the Framingham “Caucasian” population.

Eqs. (6.19) and (6.21) measure the impact of admixture upon single-locus allele frequencies.
Admixture also has dramatic effects at the multilocus level, and, in particular, induces linkage
disequilibrium (LD) between all loci that differ in allele frequencies between the ancestral sub-
populations (Nei and Li, 1973). Consider a hypothetical example in which subpopulation 1 has a
frequency of 0.2 for the A allele at a given two-allele locus and a frequency of 0.8 for the B allele at
another two-allele locus. Suppose there is no LD between these two loci within subpopulation 1, so
that the two-locus gamete frequencies in population 1 are simply the product of the allele frequencies:
g1(AB) ¼ 0.16, g1(Ab) ¼ 0.04, g1(aB) ¼ 0.64, and g1(ab) ¼ 0.16. Suppose in subpopulation 2, the
frequency of A is 0.8, the frequency of B is 0.2, and that there is no LD within subpopulation 2 such that
g2(AB) ¼ 0.16, g2(Ab) ¼ 0.64, g2(aB) ¼ 0.04, and g2(ab) ¼ 0.16. Now suppose that the two sub-
populations are brought together in a 50:50 mix. The initial gamete frequencies in this mixed, stratified
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population are g(AB) ¼ ½g1(AB)þ½g2(AB) ¼ 0.16, g(Ab) ¼ 0.34, g(aB) ¼ 0.34, and g(ab) ¼ 0.16.
The LD in the mixed population is therefore D ¼ (0.16)(0.16)e(0.34)(0.34) ¼ �0.09. This
example shows how the very act of mixing two (or more) subpopulations generates LD for all pairs of
loci with different allele frequencies in the ancestral subpopulations. A single generation of random
mating at the total population level would establish HardyeWeinberg frequencies at all loci, but it
would take many generations to dissipate this initial LD at a rate of 1 � r per generation, as shown
in Chapter 3.

LD therefore provides both a means of estimating the amount of admixture and also its timing (Loh
et al., 2013), as LD decays slowly with time for closely linked markers (Chapter 3). This LD approach
is most useful when admixture occurs as a one-time event followed by random mating. The magnitude
and the timing are estimated by fitting a theoretical curve for LD decay as a function of genomic
distance measured in centimorgans. For example, Loh et al. (2013) fit the LD decay curve in a Japanese
sample that indicated that the Japanese were an admixed population with 41% ancestry from one
ancestral population with the time of admixture being about 1300 years ago. This is consistent with
modern-day Japanese being derived from peoples from two cultures, the Jomon and Yayoi, with the
Jomon first settling on the Japanese islands followed by the Yayoi about 2300 years ago. The more
recent date for the admixture event from the LD data compared with the archeological data may be due
to the admixture event having occurred gradually over an extended period of time instead of as a single
event (Loh et al., 2013). Dating admixture through LD can also be influenced by the system of mating.
As mentioned above, in humans there is frequently assortative mating for traits (genetic or nongenetic)
correlated with the ancestral populations. Zaitlen et al. (2017) found that the assumption of random
mating significantly underestimates the number of generations since admixture relative to that
accounting for assortative mating and obtained estimates that more closely agrees with the historical
narrative for African-Americans by adjusting for nonrandom mating.

Another multilocus method for studying admixture is based on the distribution of the size of
ancestral chromosomal segments in admixed genomes (Jin et al., 2014; Jin, 2015). Information on the
size and location of chromosomal segments coming from a specific ancestral population in an admixed
genome can be obtained by choosing a panel of AIMs that covers the genome with sufficient density to
mark the segment boundaries of different ancestral origin on the chromosomes (Bercovici et al., 2008).
When two individuals from different ancestral populations mate and reproduce, their offspring have a
full, intact genome from each of the ancestral gene pools. When these offspring reproduce, recom-
bination will create chromosomes that have a mixture of chromosomal segments, some from one
ancestral population and some from the other (Fig. 6.3). As these admixed chromosomes are passed on
through additional generations, recombination will break the ancestral segments into smaller and
smaller segments (Fig. 6.3).

The simplest model of admixture is to have a single generation of admixture between the ancestral
populations followed by random mating of the newly created admixed population. Let t be the number
of generations ago at which this admixture took place. Consider the case with just two ancestral
populations, and let M and 1 �M be the final proportional contributions of the two ancestral
populations (Eq. 6.18). Then, the distribution of the lengths of ancestral chromosomal segments
(LACS) from ancestral population 1 is given by (Jin, 2015; Jin et al., 2014), letting x be the random
variable indicating the segment length:

f ðxjM; tÞ ¼ ð1�MÞte�ð1�MÞtx (6.22)
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The probability distribution 6.22 has a mean and variance of:

m ¼ 1

ð1�MÞt

s2 ¼ 1

ð1�MÞ2t2
(6.23)

In contrast, suppose limited admixture began t generations ago followed by continual but gradual
admixture until the present, resulting in the current proportions of M and 1 � M. Then the mean and
variance of LACS are:

m ¼ 2

ð1�MÞt

s2 ¼
4

�Pt
i¼1

1

i
� 1

�
ð1�MÞ2t2

(6.24)

Eqs. (6.23) and (6.24) reveal that spreading out the admixture over many generations tends to
double the mean LACS and greatly increases the variance. Consequently, there is information in LACS
not only about the proportions of the gene pool in the admixed population that came from the various
ancestral populations but also about when admixture began and how it proceeded over subsequent

FIGURE 6.3

Admixture of two ancestral populations (Pop1 and Pop2), with blue indicating chromosomal segments derived

from Pop1 and red from Pop2. As time proceeds, recombination breaks up the ancestral chromosomal segments

into smaller and smaller blocks.

From Jin, W.F., 2015. Admixture Dynamics, Natural Selection and Diseases in Admixed Populations. Springer, Dordrecht.
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generations. More complex models of admixture can be studied by simulations that generate the
distribution of LACS. Jin (2015) simulated several admixture models and compared the observed
distributions of LACS of African and European ancestry in the African-American gene pool. The best
fitting model had t ¼ 14 generations (280 years ago with a generation time of 20 years, or 350 years
ago with a generation time of 25 years), had the admixture spread out over many generations rather
than being a one time event, and was asymmetric, with European chromosomes entering the
African-American gene pool at a rate of 0.017 per generation. This corresponds well to the historical
record (Jin, 2015).

ISOLATION BY DISTANCE AND RESISTANCE
The assumption that immigrants into a deme are chosen at random from the entire outside population is
frequently violated because most dispersal in humans is between geographically close populations. For
example, Seikiguchi and Sekiguchi (1951) examined 2022 marriages recorded in the upper Ina Valley
of Japan and found that nearly half occurred between people from the same Buraku (hamlet) and over
two-thirds from the same village (a unit containing multiple Burakus). As geographical distance be-
tween spouses increased, the percentage of marriages decreased (Table 6.2). Another example is
shown in Fig. 6.4, which shows the geographical distances between the birthplaces (marital distance)
of the parents of 5267 children from Poland (Kozieł et al., 2011). As can be seen, most of the marital
distances were less than 25 km, and there is a steady drop-off in the proportion of marriages with
increasing distance. Indeed, even in the United States of America, a country with a population that is
generally considered highly mobile, the median distance between an adult child and his/her mother is
29 km (Molloy et al., 2011). The amount of human dispersal and gene flow drop off with increasing
distance in all of these studies, a phenomenon called isolation by distance.

The simplest model of isolation by distance is the one-dimensional stepping stone model in which
the species is subdivided into discrete demes evenly spaced along a one-dimensional habitat (Fig. 6.5).
There are two types of gene flow in this model. The parameter mN measures the amount of gene flow
that is independent of distance; that is, this is the proportion of the gametes that are drawn at random
from the entire species’ gene pool and then randomly redistributed into each local deme. The gene flow

Table 6.2 Isolationebyedistance in the Ina Valley of Japan as
Measured by the Location of the spouse’s Birthplace for 2022
Marriages (Seikiguchi and Sekiguchi, 1951)

Spouse’s Birthplace Percentage of Marriages

Within Buraku (hamlet) 49.6

Within village but outside Buraku 19.5

Neighboring villages 19.1

Within Gun (county) 6.4

Within Prefecture (state) but outside Gun 2.9

Outside Prefecture 2.5

Data from Seikiguchi, H., Sekiguchi, K., 1951. On consanguineous marriage in the upper Ina
Valley. Minzoku Eisei 17, 117e127.
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parameter mN is a measure of long distance gene flow. The other gene flow parameter is m1, which
measures the gene flow due to dispersal only to the immediate neighboring demes. Because this is a
one-dimensional model, each deme has just two neighbors (Fig. 6.5, ignoring the demes at the two
ends of the habitat). Assuming symmetrical gene flow at this local geographic level (that is, m1/2 go to

FIGURE 6.4

The distribution of marital distances between the parents of 5267 Polish children.

Plotted from data given in Kozieł , S., Danel, D.P., Zareba, M., 2011. Isolation by distance between spouses and its effect on

children’s growth in height. American Journal of Physical Anthropology 146, 14e19.

FIGURE 6.5

The one-dimensional stepping stone model of gene flow between discrete demes (Weiss and Kimura, 1965). Each

deme is of idealized size N and is represented as a circle arrayed on a line. A portion m1 of the gametes from any

one population are exchanged with the two neighboring populations, half going to each neighbor. Moreover, each

population contributes a fraction mN of its gametes to a common gene pool that is then distributed at random over

all demes in the same proportion.
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one of the neighboring demes and the other m1/2 go to the other neighboring deme), Weiss and
Kimura (1965) showed:

fstðxÞz e�x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mN=m1

p

1þ 4Nev
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1mN

p when mN << m1 (6.25)

where fst(x) is the pairwise fst for two demes located x steps apart. The pairwise fst is calculated from
Eq. (6.14), but now HT and HSe refer just to the two subpopulations of interest, and all other sub-
populations in the species are ignored. The pairwise fst is an example of a population genetic distance
that measures how different two populations or demes are from one another in terms of allele fre-
quencies in their gene pools. It is biologically quite distinct from the molecule genetic distances
discussed in Chapter 5, although most of the population genetic literature calls both types of distances
“genetic distance.” Once again, reader beware.

Eq. (6.25) indicates that the pairwise fst increases with increasing x (distance measured in steps)
under this model of isolation by distance. Isolation by distance models has been generalized in many
ways, but they all predict that the genetic distances between pairs of local populations are increasing
functions of geographical distance. Demographic studies such as those mentioned above certainly
indicate that human mating patterns are strongly affected by geography, and genetic surveys confirm
the expected increasing population genetic distance with increasing geographical distance. Fig. 6.6
shows a plot of pairwise fst for human populations spanning the globe with 1027 individuals genotyped
for 783 autosomal microsatellite loci (Ramachandran et al., 2005). Using a waypoint distance that

FIGURE 6.6

Pairwise fst plotted against two measures of geographical distance. Panel A uses great circle distances and panel B

uses waypoint distances that minimize travel across large bodies of water. Red dots denote within-continental

comparisons; green triangles indicate comparisons between populations in Africa and Eurasia; blue diamonds

represent comparisons with America and Oceania. A linear regression line is shown in panel B (R2 ¼ 0.78).

From Ramachandran, S., Deshpande, O., Roseman, C.C., Rosenberg, N.A., Feldman, M.W., Cavalli-Sforza, L.L., 2005. Support

from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa.

Proceedings of the National Academy of Sciences 102, 15942e15947.
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minimizes travel over large bodies of water, a linear regression of pairwise fst versus geographical
distance explained 78% of the genetic distances among human populations, indicating that isolation by
distance is a major determinant of current human population structure (Handley et al., 2007). Another
reason for this excellent fit is that many human movements have a strong linear preference (anisotropic
migration): north south in Africa and Europe, and east west in Asia (Jay et al., 2013). Movements that
are not oriented along these preferred axes tend to deviate more from the main isolation by distance
pattern. Kin-structured migration also increases the noise from the major isolation by distance pattern
(Fix, 1993). Finally, some population genetic distance measures are better than others for eliminating
noise in an isolation by distance analysis, but which distance measure is most appropriate varies with
the type of genetic data surveyed (Sere et al., 2017).

When genomic data are available, isolation by distance can be examined by scanning the genomes
of two people separated by a known geographic distance for blocks of chromosomes that are identical
by descent (Ringbauer et al., 2017). The number of such blocks should decrease with increasing
distance under an isolation by distance model, and this information and shared block sizes can be used
to infer the diffusing rate over time and accommodate population size changes. Fig. 6.7 shows how
block sharing decreases with increasing distance in a sample of Eastern Europeans. Ringbauer et al.
(2017) fit an isolation-by-distance model to the data with a likelihood approach using three
population growth models. As Fig. 6.7 reveals, the constant size model did not fit the data well,
whereas both growth models fit the data much better and were virtually indistinguishable because the
estimated growth parameter b was close to one, making the two growth models very similar.

Principal components is another method for visualizing isolation by distance (Novembre and Peter,
2016). Population genetic surveys often cover many loci, sometimes in the hundreds to millions.
Dealing with such multivariate data can be difficult, and principal components is one way of reducing

FIGURE 6.7

Isolation by distance in Eastern Europe as measured by shared blocks of identity-by-descent. Block sizes are

subdivided into four discrete bins measured in centimorgans (cM), shown by different colors. The colored dots

indicate the average block sharing at a given geographical distance for each country pair (p.) and for each block

size bin. The error bars around these dots were calculated assuming a Poisson number of counts in each bin. The

lines are the estimated predicted values under three models: no population growth (D ¼ C) and two population

growth models (C/t and Ct�b).

Modified from Ringbauer, H., Coop, G., Barton, N.H., 2017. Inferring recent demography from isolation by distance of long shared

sequence blocks. Genetics 205, 1335e1351.
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the dimensionality of the multivariate data space while retaining much of the information contained
within it. Principal component analysis rotates the axes of the data space to find an axis such that the
projection of the data onto that new axis captures the maximum amount of variation on a single axis.
Such an axis is called the first principal component (PC1) and represents a weighted linear combi-
nation across alleles and loci of all the genetic data. Using these linear weights, the multilocus
genotypes of individuals (or multilocus allele frequencies of populations) can be converted into a
single numerical score and plotted on the PC1 axis. The data space is then rotated again, keeping PC1
fixed, to find a perpendicular axis to PC1 that captures the second highest amount of variation. This
axis is called PC2. This procedure can be repeated as needed. Principal component analysis is effective
when a significant proportion of the variation contained in the entire dataset can be captured by just a
small number of PC axes. Novembre et al. (2008) studied population structure in Europe. As
mentioned earlier, humans overall display only modest amounts of genetic differentiation even at a
global level, and even less in a smaller region such as Europe. A large number of variable loci can be
used to compensate for this, so Novembre et al. (2008) genotyped 3000 Europeans at over half a
million variable DNA sites in the human genome. Obviously, this is a very high-dimensional dataset,
but much of this variation was captured by just the first two PC axes (Fig. 6.8). Although no
geographical information was used in this principal component analysis, Fig. 6.8 reveals that the
placement of individuals on just the PC1 and PC2 axes mirrored the geography of Europe to a
remarkable degree, indicating a two-dimensional isolation by terrestrial distance pattern. Note that sea
barriers to dispersal are also evident in Fig. 6.8, just as they were in Fig. 6.6 on a global level.

Hoggart et al. (2012) developed a method to extract location information from the higher-ordered
PC axes. Looking at a small geographical region, Northern Finland, they were able to locate
individuals to a median of 23 km from their birthplace and 47 km from their most recent residence
using the top 23 PC axes. This is a remarkable indication of the strength of isolation by distance in
humans even on a fine geographical scale.

Isolation by distance also affects the coalescent process. As discussed in Chapter 5, coalescent
theory is concerned with tracing the lineage of orthologous DNA regions back into time, and as shown
by Eqs. (6.5) and (6.6), it is also concerned with how such DNA lineages travel through space. The fate
of specific DNA regions through recent space and time is most easily reconstructed for genetic variants
that are relatively rare. Rare variants tend to have a recent coalescence; that is, they are due to relatively
recent mutations. Moreover, their very rarity makes them easier to follow through space, as rare
variants are often identical by descent (Novembre and Slatkin, 2009; Gravel et al., 2011). With the
high genetic resolution now possible, finding variants that are globally rare and restricted geograph-
ically is now feasible (Gravel et al., 2011), and they appear to have more power in resolving recent
population structure than common variants (Mathieson and McVean, 2012; O’Connor et al., 2015).
One such rare class of genetic variants is simply a long shared chromosome segment that is globally
rare and geographically restricted (Gusev et al., 2012). As with the chromosome segments used in
studying admixture, the length of such shared segments also gives information about the timing of
coalescence. Ralph and Coop (2013) used genomic data on 2257 Europeans to identify 1.9 million
long chromosomal segments that were shared by multiple individuals and used their lengths to infer
the distribution of shared ancestors across time and space. They inferred that a pair of modern
Europeans living in neighboring populations share 2e12 genetic common ancestors from the last
1500 years and about 100 genetic ancestors going back to 2500 years ago. These numbers of common
ancestors drop off with increasing geographic distance between pairs of modern Europeans, as
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expected under isolation by distance. Isolation by distance also creates an association between time
and space; the older an allele or chromosome segment, the more widespread it should be geograph-
ically. Mathieson and McVean (2014) showed that the median age of rare, shared haplotypes is
50e160 generations across populations within Europe or Asia. In contrast, rare haplotypes shared
between Europe and Asia have median ages ranging from 320 to 670 generations, showing that the
older haplotypes have spread more spatially, as expected by isolation by distance.

The difference between panels A and B in Fig. 6.6 and the sea breaks in Fig. 6.8 illustrate the
importance of how geographical distance is measured in uncovering patterns of isolation by distance.
The motivation for the waypoint distance was that travel over large bodies of water was extremely
difficult for humans until recently. Another way of looking at this problem is to regard this as an

FIGURE 6.8

A principal component analysis of population structure within Europe. The first two principal component axes are

indicated by the lines labeled PC1 and PC2. Small colored labels represent individuals and large colored points

represent the median PC1 and PC2 values for each country. The inset map of Europe provides a key to the labels.

From Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., et al., 2008. Genes mirror geography within Europe.

Nature 456, 98eU5.
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example of isolation by resistance in which the degree of genetic isolation between two areas is
determined in part by distance but also in part by the resistance of the intervening habitat or landscape
to travel between the two areas (McRae, 2006). Humans (and other species) encounter a diverse array
of habitats and landscape features that vary in how difficult they are to traverse, and the contrast
between panels A and B strongly indicate that assigning a strong resistance to large bodies of water
greatly improves the predictability of how genetically divergent two human populations will be. The
resistance associated with large bodies of water emerges directly and visually in the principal
component analysis in Fig. 6.8. Of course, large bodies of water are just one source of resistance to
human dispersal, and features such as mountains or deserts can also have a high resistance. Resistance
can be studied by constructing a resistance distance (McRae, 2006). The waypoint distances in
Fig. 6.6 are an elementary example of such a resistance distance, in which land was assigned a low
resistance and large bodies of water a high resistance. There are many methods for estimating
resistance distances in the landscape genetics literature that use both genetic and environmental
information (Hanks and Hooten, 2013; Graves et al., 2013; Zeller et al., 2012). Faubet and Gaggiotti
(2008) used resistance to study gene flow in human populations in Pakistan, a country with a
combination of flat areas and high mountains. They found that altitude was a better predictor of the
genetic differences among populations than geographic distance.

Petkova et al. (2016) integrated the stepping stone model with resistance models to produce an
estimated effective migration surface (EEMS). A two-dimensional grid with nodes representing demes
is first overlayed upon the geographical area being studied. The expected genetic dissimilarity between
two individuals is computed by integrating overall all possible migration histories in the stepping stone
model, and a resistance distance is estimated from these integrated pathways, which maximizes the
match with the observed genetic differences. The resistance distances are interpolated across the
geographical area to produce an EEMS that provides a visual summary of the observed genetic
dissimilarities and how they relate to geographic location. Areas with high resistance produce low
effective migration rates. Fig. 6.9 shows the EEMS for part of Western Europe and indicates that the
Alps and the English Channel and Atlantic are high resistance areas that have lower effective gene flow.

FIGURE 6.9

The estimated effective migration surface of effective migration rates (m) for part of Western Europe.

Modified from Petkova, D., Novembre, J., Stephens, M., 2016. Visualizing spatial population structure with estimated effective

migration surfaces. Nature Genetics 48, 94e100.
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IDENTIFYING HUMAN SUBPOPULATIONS
Some of the techniques for studying gene flow and population structure require that human sub-
populations be defined a priori, such as fst or AMOVA analyses. Other analyses examine gene flow and
population structure using individual data without the necessity of predefined subpopulations, such as
the PCA analysis shown in Fig. 6.8 or the EEMS analysis shown in Fig. 6.9. Both of these individual
level analyses indicate that sometimes humans are subdivided into genetically distinct subpopulations.
For example, Fig. 6.8 indicates a gap between the individuals on the Italian peninsula from the rest of
Europe, and Fig. 6.9 supports this conclusion by indicating that the Alps were a major barrier to gene
flow. However, Fig. 6.6B raises the possibility that many human subpopulations display gradual
differentiation with increasing resistance distances with no distinct subpopulation boundaries. The
question therefore arises, how many and where are the distinct subpopulations in humanity?

One method of addressing this question is to see if individuals can be allocated into discrete
populations based just on individual genotype data. Spielman and Smouse (1976) were the first to ask
this question using genetic data on Yanomama Native Americans from 19 villages that in turn were
clustered into nine groups. As mentioned earlier in this chapter, the Yanomama have a significant fst
that is more than half of the human global fst, in large part due to kin-related migration and lineal
fissioning. Spielman and Smouse (1976) noted that there was little information for inferring population
affiliation from any single locus (and this is true at the global human level as well), but they speculated
that inferences of population affiliation could be made by combining data from many polymorphic
loci. In their case, they could use the known structure of villages and village clusters as an index of how
successful they were to infer population affiliation from individual, multilocus genotype data. Using
just six codominant markers, they were able to place 16% of the individuals into their correct village,
and 26% into the right cluster. This was far in excess of random expectation, and they speculated that
the ability to infer individual population affiliation should increase with the addition of more loci.

Now it is possible to survey populations for hundreds to millions of codominant markers, making
inferences of population affiliation from individual multilocus genotypes much more feasible and
accurate. There are now many methods available for doing this, some based on genotype alone (e.g.,
the program STRUCTURE, Pritchard et al., 2000) or sometimes combining genotype data with some
other type of data (e.g., BAPS uses genotype and geographic location data, Corander et al., 2003). We
confine further discussion to STRUCTURE and its related programs (Porras-Hurtado et al., 2013; Raj
et al., 2014), as they are the most widely used in the human genetic literature. STRUCTURE uses a
model-based Bayesian analysis to allocate individuals into K subpopulations, where K is specified
beforehand. Another popular program is ADMIXTURE that uses the same statistical model as
STRUCTURE but uses maximum likelihood to allocate individuals and is limited to SNPs as genetic
markers (Alexander et al., 2009). In either case, each of the K subpopulations is a randomly mating
deme characterized by a set of allele frequencies at each locus and with no LD among the markers
(hence, markers are used that are not closely linked). As noted earlier, the Wahlund effect creates
deviations from random mating expectations when individuals from different random-mating demes
are grouped together (Eq. 6.12), and similarly, grouping individuals together from different demes that
have different allele frequencies induces LD, as noted earlier. In this regard, it is advisable to avoid
using closely linked SNPs that are likely to have LD within populations so that the disequilibrium to be
minimized is primarily due to mixing individuals from different populations, as discussed earlier.
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The program assigns probabilities to each individual for being a member of the ith population in a
manner that minimizes overall LD and deviations from HardyeWeinberg genotype frequencies within
the K assumed subpopulations. Moreover, a single individual can be allowed to have nonzero prob-
abilities for two or more of the K assumed subpopulations, indicating either admixture or gene flow.
When admixture/gene flow is allowed, the K subpopulations should be regarded as a set of discrete,
randomly mating ancestral populations from which the current populations are derived.

One of the most widely cited papers using STRUCTURE is that of Rosenberg et al. (2002) who
used genotypes at 377 autosomal microsatellite loci in 1056 individuals from 52 sampling locations
across the globe. Fig. 6.10 shows the results of the STRUCTURE analysis for K ¼ 2 to 6. Note that at
all K values, the different colored populations inferred by STRUCTURE correspond to geographical
clusters as well. It is important to remember that geographical location was not used in this analysis,
only genotypes, so this geographical clustering of colors means that genetic variation in humans is
strongly influenced by geography, as already seen in Figs. 6.6e6.8. At K ¼ 2, the closest approxi-
mation to two random-mating demes in humanity are (1) sub-Saharan Africans combined with people
from Europe and the Middle East (orange in Fig. 6.10 for K ¼ 2) and (2) Asians and Native Americans
(purple in Fig. 6.10 for K ¼ 2). The geographically intermediate populations have individuals that are a
mixture of these two “demes.” The results at K ¼ 5 correspond well to major geographic regions of
the world. At K ¼ 6, the Kalash from northwestern Pakistan emerge as the sixth major “deme” in
humanity, albeit with some admixture with the European/Middle Eastern deme. Rosenberg et al.
(2002) emphasized that these distinctions arose from the accumulation of small allele-frequency
differences across many loci rather than distinctive “diagnostic” genotypes. By using large numbers

FIGURE 6.10

The probabilities of being in one of the assumed K populations for 1056 individuals as determined by

STRUCTURE. Each individual is represented by a thin vertical line, which is partitioned into K colored segments

that represent the individual’s estimated membership probabilities in the assumed K populations. Black lines

separate individuals from different sampling locations. Sampling locations are labeled below the figure, with their

regional affiliations above it.

Modified from Rosenberg, N.A., Pritchard, J.K., Weber, J.L., Cann, H.M., Kidd, K.K., Zhivotovsky, L.A., et al., 2002. Genetic

structure of human populations. Science 298, 2381e2385.
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of markers, population structure could be observed across the globe despite humans being one of the
most genetically homogeneous terrestrial species across its geographic range. Because large numbers
of markers are now readily available in human studies, STRUCTURE and similar programs such as
ADMIXTURE have become a common tool for the analysis of human population structure and for
inferring admixture and gene flow patterns.

Fig. 6.10 shows that STRUCTURE can yield different inferences about human population structure
depending upon which K value is chosen. STRUCTURE itself does not define what K value should be
used, and there is no rigorous statistical criterion for choosing K. Several heuristic measures have been
proposed to choose the “optimal” K, with the deltaK method being one of the more popular (Evanno
et al., 2005). DeltaK measures the change in the log of the probability of the data given K for two
consecutive K’s. The optimal K is the one that maximizes deltaK. In an extensive review of the use of
the deltaK method, Janes et al. (2017) found that the deltaK method is strongly biased to yield the
optimal K as 2, even when more subpopulations are present. Other plots of deltaK in humans are
relatively flat, indicating that choosing the “optimal” K can be difficult or arbitrary. As a result, the
search for a better method of finding an optimal K continues (e.g., Verity and Nichols, 2016). An even
more basic question is does an optimal K exist at all? As mentioned at the beginning of this section,
Yanomama are distributed among villages, but the villages themselves are clustered. The entire
Yanomama population represents just one tribe out of many Native American tribes, who in turn
represents two continental subpopulation (North and South America) of humanity. In general, pop-
ulation structure is hierarchical due to a variety of historical effects (more on this in Chapter 7) and
dispersal barriers (Fig. 6.9), and with isolation by distance undermining the assumption of discrete
subpopulations in other geographic areas (Figs. 6.6e6.8). As a consequence of this hierarchical,
discrete/nondiscrete structure, different values of K may be detecting different levels of this hierarchy
or different historical effects. This means that many K’s could have real biological meaning, and with
isolation by distance, no K could have a real biological meaning. The idea that there is a single optimal
K comes from the attempt of STRUCTURE to find discrete, random-mating subpopulations, either
current or ancestral. This goal interacts with hierarchy, evolutionary history, and gene flow to create
artifacts in STRUCTURE analyses. Kalinowski (2011) used computer simulations to show that
STRUCTURE frequently results in clusters that are not consistent with the true evolutionary history
and gene flow patterns that result in hierarchies. An example of this is the K ¼ 6 result in Fig. 6.10 in
which STRUCTURE elevated the Kalash of northwestern Pakistan into a major distinct subpopulation
of humanity. Hierarchical approaches (Candy et al., 2011) clearly show that the Kalash are clustered
with other Central and South Asian populations, while in Fig. 6.10 with K ¼ 6 Central/South Asian
populations are clustered instead with Europeans and Middle Easterners rather than with the Kalash.

Kalinowski (2011) and Puechmaille (2016) also showed that STRUCTURE can lead to artifacts
simply by having a much larger sample size from some locations than from others, as illustrated by the
K ¼ 2 result in Fig. 6.8. For K ¼ 2, STRUCTURE groups individuals from Africa, Europe, and the
Middle East together. Europe and the Middle East have a much larger sample size than Africa, which
was merged with the larger sample in the STRUCTURE results. Hierarchical and evolutionary analysis
of human population structure indicate that the biologically meaningful two-population subdivision of
humanity should be between Africa versus non-Africa (this will be discussed in detail in Chapter 7),
whereas the clustering of Africa with Eastern Eurasia is simply a misleading artifact of sample size
rather than biology (Kalinowski, 2011). To illustrate the impact of unequal sample sizes, Greenbaum
et al. (2016) analyzed 11 HapMap subpopulations with STRUCTURE using equal sample sizes of 50
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randomly selected individuals from each population and 1000 randomly drawn SNPs scattered
throughout the autosomal genome (Fig. 6.11). Two of the subpopulations are known to have been
influenced by recent admixture (African-Americans, with admixture between Africans and Europeans;
and Mexicans, with admixture primarily between Europeans and Native Americans). The “optimal” K
by the deltaK criterion was 2. As can be seen, the main division is between Africa and Eurasia, as
expected (Chapter 7), with Western Eurasia being somewhat intermediate, as expected from isolation
by distance (Fig. 6.6). These equal sampling results are concordant with human evolutionary history
(Chapter 7), but the K ¼ 2 result with unequal sampling (Fig. 6.10) is not. Some of these sample size
problems can be improved by adjusting the priors away from their default values, but because of
STRUCTURE’s complicated genetic model and many prior options, it is often not obvious how to
choose the priors, making the program easy to misuse (Wang, 2017).

Other sampling artifacts can occur with STRUCTURE when the sampling is geographically sparse
and discrete populations do not exist. As shown in Fig. 6.6, humans overall show a strong pattern of
isolation by distance/resistance. Sparse geographic sampling coupled with isolation by distance leads
STRUCTURE to create sharp boundaries between populations when none actually exist (Blair et al.,
2012; Handley et al., 2007; Safner et al., 2011; Frantz et al., 2009; Serre and Paabo, 2004). As shown in
Fig. 6.6, isolation by distance/resistance results in gradual clines in the level of genetic differentiation.
This gradual cline is illustrated in Fig. 6.12 as a gradient of colors going from green to yellow in the
total population. However, when samples are taken from distant locations, each sample appears to be
genetically homogeneous within but highly differentiated between. This bias is not unique to
STRUCTURE; rather, it is true for virtually all methods of studying population structure. Hence,
geographic sampling design is critical in studying human population structure.

The sampling that underlies the STRUCTURE analysis in Fig. 6.10 was sparse geographically,
often with large distances between sample sites. The impact of this sampling can be seen by con-
trasting the results in Fig. 6.10 with K ¼ 5 versus the results of another analysis that had much finer
sampling in Africa and Western Eurasia (Behar et al., 2010), as shown in Fig. 6.13. The sparser sample
(Rosenberg et al., 2002) subdivides this part of the world into two relatively distinct populations,
Africans and Western Eurasians, with few individuals in either of these categories showing much
admixture. In contrast, the finer sample (Behar et al., 2010) shows an admixture gradient between

FIGURE 6.11

A STRUCTURE analysis of 11 HapMap subpopulations with equal sample sizes based on 1000 SNP’s with

K ¼ 2.

From Greenbaum, G., Templeton, A.R., Bar-David, S., 2016. Inference and analysis of population structure using genetic data and

network theory. Genetics 202, 1299e1312.
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Africa and Western Eurasia rather than an abrupt change. Moreover, every individual in Europe, the
Middle East, and Central/Southern Asia is an admixed individual, rather than coming from a relatively
“pure” population as shown in Fig. 6.10 with K ¼ 5. Thus, with finer sampling, there are no discrete
current populations in Europe and the Middle East, only genetic gradients.

Networks based on genetic similarity between pairs of individuals are an alternative method of
defining subpopulations from multilocus genotype data. Individual genetic similarity measures are
often based on the number of alleles shared by two individuals across all the scored loci. As mentioned
earlier, alleles that are high in frequency in some areas but low in other areas but globally rare (AIMs)
are particularly informative about population structure and affiliation. Greenbaum et al. (2016)
constructed an individual genetic similarity based on allele sharing that gives added weight to AIMs:

Sij ¼ 1

L

XL
l¼1

1

4


�
1� pa;l

��
Iac;l þ Iad;l

�þ �1� pb;l
��
Ibc;l þ Ibd;l

��
(6.26)

FIGURE 6.13

A contrast of the population affiliations as inferred by Rosenberg et al. (2002) (top bar) and by Behar et al. (2010)

(bottom bar) using ADMIXTURE for Africans and Western Eurasians.

FIGURE 6.12

The impact of sparse sampling from a genetic gradient. The top bar represents the genetic differentiation in the

total population across its geographic range under an isolation by distance model. The boxes below indicate

samples taken from three different locations on this gradient.

182 CHAPTER 6 GENE FLOW AND SUBDIVIDED POPULATIONS



where Sij is the individual genetic similarity between individuals i and jwith individual i having alleles
a and b (which could be the same or not) and individual j having alleles c and d at locus l, px,l is the
frequency of allele x at locus l in the total sample, Ixy,l is an indicator variable that is 1 if x ¼ y at locus l
and 0 otherwise, and L is the total number of loci surveyed. Eq. (6.26) is for autosomal loci, but
similarity can be easily generalized to any level of ploidy. Aweighted network is constructed such that
every individual in the sample is a node in the network and is connected by an edge to every other
individual in the sample with the edge assigned the weight given by Eq. (6.26).

Subpopulations (often called “communities” in network theory) are subsets of individuals (“nodes”
in network theory) that are more densely connected to each other than to individuals outside their
subpopulation. A partition of the network into subpopulations is achieved by calculating the modu-
larity of the partition. Modularity measures on a �1 to þ1 scale whether the partition is more or less
internally connected than would be expected if connections were randomly distributed; that is, the null
hypothesis is that of no subdivision. The modularity, Q, of a particular subpopulation is defined as the
weight of the intrasubpopulation connections minus the expected weight of the intrasubpopulation
connections under the null hypothesis:

Q ¼ 1

S�
X
isj

 
Sij � 1
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X
m

Sim
X
n

Sin

!
dij (6.27)

where S� ¼PmsnSmn is the sum over all individual genetic similarities in the network and dij is one if
individuals i and j are in the same subpopulation and 0 otherwise. If there is no population subdivision at
all, thenQ ¼ 0. Subpopulations are indicated by positive modularities. The statistical significance ofQ is
determined by random permutations of the genetic data. Like STRUCTURE, subpopulations are defined
only by individual genotype data and not by prior classifications. Unlike STRUCTURE, the identified
subpopulations are not necessarily random-mating demes in HardyeWeinberg but can have a variety of
genetic properties at the subpopulation level. Also, closely linked markers can be used in addition to
unlinked and loosely linked markers because LD is not used to identify subpopulations. Subpopulations
emerge directly from the genetic data, so no K value has to be assigned. Unlike STRUCTURE, a test of
the statistical significance of the partition is given, and it is possible to have all individuals in a single
community (K ¼ 1 and Q ¼ 0), providing a direct statistical test of the null hypothesis of no population
subdivision. The hierarchical nature of population structure is easily studied with this system by
exploring the impact of an increasing threshold, say s, on the modularity partitions. For a given s, all
edges with Sij < s are eliminated from the network. Starting at s ¼ 0, the threshold is increased until the
subpopulation partition based on modularity changes in a statistically significant fashion as determined
by a permutation test. This process of increasing s is then continued, with statistical testing of all changes
in the resulting subpopulation partitions, until all subpopulation signals are lost. In this manner, the
hierarchical nature of population structure can be observed and quantified with statistical testing at every
threshold level that changes the partition. Finally, this individual similarity approach is much more
computationally efficient than STRUCTURE or even fastSTRUCTURE, so a network analysis is
feasible to implement with the increasingly large datasets that are available for humans.

Greenbaum et al. (2016) applied this network method to the same 11 HapMap populations indi-
cated in Fig. 6.11. However, because of the increased computational efficiency of the network analysis,
1000 random SNPs were chosen from each autosome, for a total of 22,000 SNPs. The results are shown
in Fig. 6.14. With thresholds below 0.181, there was only a single global human population (K ¼ 1, Q
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FIGURE 6.14

Subpopulation detection with different thresholds in a network. For (A), the threshold is 0.207 for the Eastern

Eurasia component and 0.198 for the rest of the network; for (B) the threshold is 0.194; and for (C), the threshold

was 0.188. For visualization purposes, individuals are placed on the world map roughly corresponding to their

ancestry. The HapMap populations are indicated by A1 (African-Americans), A2 (Africans from west Kenya),

A3 (Masai), A4 (Nigeria), E1 (Europe), E2 (European Americans), M (Mexico), I (Americans of ancestry from

India), C1 (Han Chinese), C2 (Chinese Americans), and J (Japanese).

From Greenbaum, G., Templeton, A.R., Bar-David, S., 2016. Inference and analysis of population structure using genetic data and

network theory. Genetics 202, 1299e1312.



not significantly different from 0), consistent with the high degree of geographic homogeneity of the
human species across its entire range and the fact that all humans are derived from a common set of
ancestors only a few thousand years ago (Rohde et al., 2004). Between thresholds 0.182 to 0.188,
humanity is subdivided into two statistically significant subpopulations: Africans and non-Africans
(Fig. 6.14C). At 0.189 to 0.195, three significant subpopulations are identified: Africans, Western
Eurasians, and Eastern Eurasians (Fig. 6.14B). From 0.196 to 0.200, there are five subpopulations:
Africans, Europeans, Mexicans, Indians, and Eastern Eurasians (Fig. 6.14A). From 0.200 to 0.206, the
Eastern Eurasians remain intact but the other subpopulations are split into many small groups, often of
1 or 2 nodes, that do not coherently define subpopulations. At 0.207 to 0.208, the Eastern Eurasian
subpopulation is split into the Chinese and Japanese (Fig. 6.14A) and above 0.209, there is no
discernible structure other than small groups of individuals. All of these different statistically
significant partitions of the human species are biologically meaningful. There is no single “optimal”
partitioning in a biological sense. With network analysis, the meaningful biological hierarchies of
human population structure emerge naturally as one varies the threshold parameter and their statistical
significance can be tested.

More insight into population structure is possible by using other tools from network theory. Just as
STRUCTURE or ADMIXTURE can measure the degree of admixture of a particular individual to
various subpopulations, the network approach can also measure an individual’s strength of association
(SA) to a subpopulation to which the individual was assigned through modularity:

SAðC; iÞ ¼ QC �max
k

QCkðiÞ (6.28)

where C is the significant modularity partition into communities (subpopulations) and Ck(i) is a
partition identical to C except that individual i is assigned to subpopulation k instead of to its original
subpopulation. Instead of just looking at the maximum value over k in Eq. (6.28), the values for all k’s
other than the originally assigned subpopulation provide a measure of association of the individual
with all the other subpopulations in the partition, much like STRUCTURE can estimate the proportion
of an individual’s ancestry that comes from each of the assumed K random-mating demes. A high
value of SA indicates that the individual is strongly associated with the subpopulation to which it was
assigned, whereas low values indicate that there is at least one other subpopulation to which the
individual shows a strong association. This is expected to occur when an individual has recent
ancestors from these other subpopulations, either due to gene flow or admixture. Plotting the SAvalues
for every individual in the subpopulation yields a strength of association distribution (SAD). A sub-
population that experiences little gene flow with outside subpopulations will have an SAD with a high
mean and low variance. As gene flow increases, the mean decreases and the variance increases. Gene
flow or admixture can also produce a left-skewed SAD due to individuals who are descendants of
recent migrants. A multimodal SAD is indicative of subgroups within the subpopulation or of subsets
of the subpopulation experiencing different gene flow regimes. Examples of these types of SADs can
be found in Fig. 6.15 for the three subpopulations given in Fig. 6.14B.

The African population has the SAD with the highest mean, consistent with it being a distinct
subpopulation at even a lower threshold in Fig. 6.14C. However, note that the SAD is bimodal.
Because every individual has an SA value, it is easy to decompose the total SAD into its underlying
sampling units. This is shown in Fig. 6.16. This figure shows that the African mode with the higher SAs
is due to Kenyans and Nigerians. The Masai have both a slightly lower mean and a slightly larger
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variance, indicating a history with slightly more gene flow than the other two African samples. The
African-American sample also contributes to the lower mode shown in Fig. 6.15, but unlike the Masai,
there is a strong left skew due to individuals with low SA scores, indicative of individuals with recent
non-African ancestors.

The East Asian SAD in Fig. 6.15 has a very sharp peak due to low variance. There is a slight left
skew, indicative of a few individuals with recent non-East Asian ancestors. These individuals primarily

FIGURE 6.15

The SADs for the three subpopulations shown in the network in Fig. 6.14B. The dashed lines indicate the means of

the SADs. SAD, strength of association distribution.

From Greenbaum, G., Templeton, A.R., Bar-David, S., 2016. Inference and analysis of population structure using genetic data and

network theory. Genetics 202, 12991312.

FIGURE 6.16

A decomposition of the African strength of association distribution into its four sampling units. Blue indicates the

sample from Nigeria, purple the sample from western Kenya, green the Masai sample, and red the African-

American sample.

Modified from Greenbaum, G., Templeton, A.R., Bar-David, S., 2016. Inference and analysis of population structure using genetic

data and network theory. Genetics 202, 1299e1312.
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come from the American Chinese sample. Finally, the Indo-European subpopulation has the SAD with
the lowest mean, the highest variance, and the strongest left skew (Fig. 6.15). The decomposition of the
Indo-European SAD into its sampling subgroups is shown in Fig. 6.17. The European sample is
unimodal, but both the Americans with ancestry from India and the sample from Mexico have strong
left skews, indicating admixture with other populations. Thus, all three of the subpopulations identified
at this intermediate threshold level have very different genetic compositions. The assumption that all
subpopulations are random-mating demes is clearly not necessary for a network analysis.

POPULATION SUBDIVISION, ISOLATION-BY-DISTANCE, AND EFFECTIVE
POPULATION SIZES
In Chapter 4, we introduced the concept of an effective size as a measure of the strength of genetic
drift. As shown in Chapter 4, there is no such thing as the effective size of a local population or deme;
rather, there are many effective sizes depending upon which genetic parameter is being monitored and
the chosen reference population or time interval. Earlier in this chapter we saw that much of population
subdivision arises from the balance of local genetic drift and gene flow, but two issues now arise: what
are the impacts of population structure on the effective sizes of the total population and how do we
define effective size for a continuously distributed population that has isolation by distance and/or
resistance?

Increasing population subdivision tends to decrease both the local deme inbreeding effective size
and the total population inbreeding effective size (Crow and Maruyama, 1971). The situation is more
complicated for the variance effective size. When a local population is isolated or has very little gene
flow with outside populations, the local inbreeding and variance effective sizes tend to be similar, but
with increasing gene flow the local inbreeding effective size tends to become larger than the local
variance effective size (Hossjer et al., 2016). This occurs because gene flow can act to change allele

FIGURE 6.17

A decomposition of the Western Eurasian strength of association distribution into three sampling units. Purple

indicates the sample fromMexico, green the sample of Americans with ancestry from India, and red the European

and European American sample.

Modified from Greenbaum, G., Templeton, A.R., Bar-David, S., 2016. Inference and analysis of population structure using genetic

data and network theory. Genetics 202, 1299e1312.
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frequencies within a local deme (Eq. 6.2), which in turn increases the variance of local allele frequency
in the next generation relative to the previous generation. As the local variance increases, the local
variance effective size decreases (Eq. 4.27). In contrast, gene flow brings into the local deme
individuals who are less related, thereby decreasing the average pedigree inbreeding coefficient, which
in turn increases the local inbreeding effective size (Eq. 4.28). Therefore, in species such as humans
that have gene flow between most populations, it is never defensible to equate inbreeding and variance
effective sizes at the local level.

The distinction between inbreeding and variance effective sizes at the total population level is even
more extreme. As mentioned above, population subdivision tends to reduce the total inbreeding
effective size because it increases pedigree inbreeding in all local demes. The inbreeding effective size
of the total population is the harmonic mean of the local inbreeding effective sizes, and therefore the
inbreeding size of the total population is decreased by subdivision as well (Hossjer et al., 2016).
Subdivision has the opposite effect on the variance effective size of the total population. For example,
Wright (1943) analyzed a finite island model in which the total population is subdivided into n local
demes, each of variance effective size Nev. The variance effective size of the total population, NevT , is:

NevT ¼ nNev

1� fst
(6.29)

When there is no subdivision (fst ¼ 0), the variance effective size of the total population is nNev, that
is, the sum of the variance effective sizes of all the local demes. But when there is subdivision, NevT

increases with increasing fst, that is, the variance effective size of the total population is larger than if
there were no subdivision. Thus, population subdivision decreases the total inbreeding effective size,
but increases the total variance effective size, and thereby favors the retention of higher levels of
genetic variation at the total population level in a subdivided population. In more general models of the
effective sizes of subdivided populations, Chesser (1991) and Chesser et al. (1993) have shown that
processes that reduce the inbreeding effective size result in a concomitant increase in variance effective
size and vice versa. There is no such thing as “the effective population size” at the total population
level. Given the small degree of subdivision in humans at the global level, there should be only a slight
increase in the total variance effective size of humanity above what it would be under panmixia.

Much of humanity does not live in discrete demes, as assumed by the island model, but rather in
populations that are more or less continuously distributed across some geographic space without any
obvious boundaries but still showing genetic differentiation across this space due to isolation by
distance/resistance (Fig. 6.6). For such populations, Wright (1946) proposed an alternative to discrete
local demes called the neighborhood, that is, the subregion of space centered around a specific point
such that the parents of individuals born near that point may be treated as if drawn at random.
Assuming that dispersal is random in direction and follows a normal distribution with mean of 0 (no
direction) and variance of s2, Wright showed

Neighborhood area for 1 dimension ¼ 2s
ffiffiffi
p

p

Neighborhood area for 2 dimensions ¼ 4ps2
(6.30)

These areas can be converted into neighborhood sizes simply by multiplying them by the
density, D. Maruyama (1972) calculated the rate of loss of genetic variation in a population due to
genetic drift measured through identity-by-descent for a two-dimensional model of gene flow in a
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continuous population of constant density inhabiting a square landscape. In the single-deme
model, this rate of loss per generation is, from Eq. (4.26) with t ¼ 1, 1/(2N), given the standard
ideal deme of size N. Suppose the total ideal population size in the whole landscape is NT, then
Maruyama showed the per generation rate of loss of genetic variation at the total population level is
approximately

rate of loss ¼ Ds2

2NT
if Ds2 < 1

rate of loss ¼ 1

2NT
if Ds2 > 1

(6.31)

The value Ds2 effectively replaces the quantity Nm from the gene flow models for discrete demes. The
rate of loss of variation depends both on density and dispersal (as measured by s2). If the product of
these two components exceeds 1, the total population has the same rate of loss of genetic variation as a
single deme of size NT. That is, with sufficient gene flow, isolation by distance has no effect on the
inbreeding effective size of continuous human populations. If this product is less than one, then
isolation by distance reduces the inbreeding effective size of the total population living in this area.
Given the densities and mobilities of many modern human populations, it is doubtful that isolation by
distance has much of an effect, if any, on total inbreeding effective size. However, this might not have
been true in the past when human densities and mobilities were much lower. We will look at
humanity’s past in more detail in the next chapter.
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HUMAN POPULATION HISTORY
OVER THE LAST TWO MILLION
YEARS

7
In the previous chapters many equations were derived to describe how human populations evolve and
behave in response to mutation, system of mating, genetic drift, and gene flow. Many of these
equations referred to only a single generation transition or to equilibrium conditions at which the
evolutionary forces are balanced and constant. However, human populations are typically not in
equilibrium. This fact was pointed out with respect to the evolutionary impact of population growth
over the last 10,000 years that has had a major impact on the accumulation of genetic variation in
humans, including deleterious variants (e.g., Table 4.1) and on the site frequency spectrum (Fig. 5.4).
Moreover, evolution is a historical process, and events and forces that occurred in the distant past can
often leave a genetic signature on the present. Indeed, some historical events have their genetic impact
amplified over time. For example, suppose a fragmentation event occurred in the past in which an
ancestral population is split into two or more isolated subpopulations. As long as the descendant
subpopulations remain mostly isolated from one another, the genetic consequences of this fragmen-
tation event increase with time due to genetic drift (Fig. 4.1). Another event that can have lasting
effects on a population is a range expansion event or a colonization event in which a subset of the
ancestral population moves into a new geographic area and establishes a lasting population. Such
events can increase the total size of the species over long periods of time and establish new patterns for
isolation, gene flow, and founder effects. In addition, as will be discussed in Chapter 12, natural
selection can play an important role in causing additional changes in new environments that may
induce novel adaptations, thereby amplifying the evolutionary impact of the range expansion. Hence,
we can only understand the current state of the human gene pool by taking into account our history and
nonequilibrium dynamics.

The two basic approaches to the study of past human population genetics are (1) surveys of current
genetic variation to detect the lasting genetic signatures of past events and processes and (2) direct
studies on ancient DNA from the past. These two approaches are often synergistic because they have
complementary strengths and weaknesses. Studies of current variation have the advantage of large
sample sizes and a potentially complete geographic coverage, but have the weakness that inferences of
the past are through indirect genetic signatures that often erode with time. For example, we saw in
Chapter 3 that a single generation of random mating takes a population into HardyeWeinberg equi-
librium at the single locus level. Another way of looking at this is that random mating destroys all the
historical information about the ancestral population in a single generation with respect to single locus
genotype frequencies. However, we also saw in Chapter 3 that if we extend the HardyeWeinberg
model to two loci (or single-nucleotide polymorphisms [SNPs], etc.), the equilibrium is gradually
approached over multiple generations (Eq. 3.13). We also saw in Chapters 3 and 6 that historical
events can create linkage disequilibrium, which then only gradually decays over time. This historic
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information can be captured by examining patterns of linkage disequilibrium or constructing multisite
haplotypes (e.g., Fig. 3.3). Recombination can destroy this information over time, but in regions of low
recombination such historic information can persist for many generations. For both mutational origin
and admixture, history is preserved at the multilocus level and only gradually decays with time. This
turns out to be a general principle, so most studies on past human evolution with current genetic
samples involve either multisite haplotypes and/or multiple polymorphic markers across chromosomes
or the genome (Schraiber and Akey, 2015).

Ancient DNA studies have the advantage of providing a direct window into the past, but the
samples are often geographically and temporally sparse. Inferences about the past depend upon
four levels of sampling: (1) genetic sampling (how many variable sites are surveyed and how they
are measured); (2) the number of individuals taken from a local population; (3) the number of time
periods included in the survey; and (4) the number of distinct geographic sites that are sampled.
The ability to score much of the genome from ancient DNA samples has greatly increased the value
of ancient DNA in terms of genetic sampling. As we will see, some types of inference about past
history depend most strongly upon genetic sampling, and it is for these types of inferences that
ancient DNA is most valuable. However, the other three levels of sampling are typically sparse in
ancient DNA studies, although the sampling tends to improve as we get closer to the present.
Sparse sampling limits many types of inference, such as population structure. For example, recall
from Chapter 6 that sparse geographic sampling can make local populations appear distinct when
in fact they intergrade continuously through isolation by distance (e.g., Figs. 6.12 and 6.13). In
many ways the strengths and weaknesses of current genetic studies and ancient DNA studies are
complementary, so our knowledge of past human evolution depends upon both types of studies and
their integration. We start our discussion with current genetic studies, followed by the ancient DNA
studies.

HAPLOTYPE TREES AS A WINDOW INTO THE PAST
Evolutionary history is most cleanly written in those areas of the genome that have experienced little to
no recombination (Pease and Hahn, 2013). In such regions, when a mutation occurs, its historic
haplotype background can persist for long periods of time, being only slowly eroded by other
mutations. Because of this persistence of haplotype states over long periods of time, it is often possible
to estimate a haplotype tree that displays the evolutionary relationships of all the existing haplotypes
and to infer ancient haplotypes that were past evolutionary intermediates (Chapter 5). The branches in
such a haplotype tree are defined by the mutational event(s) that marked the evolutionary transition
from an ancestral haplotype to a descendant haplotype. Because mutational events are inferred in a
haplotype context, it is possible to infer homoplasies without assuming a particular model of mutation
(Templeton et al., 1992, 2000). The mutational events that interconnect the existing haplotypes and
ancestral haplotypes that may no longer be present can be estimated by a wide variety of phylogenetic
techniques, such as maximum or statistical parsimony (Chapter 5) or by genetic distance approaches
such as neighbor joining (Chapter 5). With statistical parsimony (Chapter 5), the probability of error in
the estimated tree can be quantified. These techniques produce networks that provide a map of the
historical accumulation of mutations that produced the current array of haplotype variation. Often, this
haplotype network can be rooted by identifying the node that represents the ancestral haplotype of all
current haplotypes. Rooting is most commonly down through the outgroup method by including
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haplotypes from closely related species (for humans the outgroup typically consists of chimpanzees,
gorillas, orangutans, gibbons, or some combination of these species). The outgroup(s) can identify the
ancestral node within humans if the coalescent process is monophyletic within humans (the rightmost
panel in Fig. 5.8, regarding isolate 1 as humans and isolate 2 as an outgroup species). Because the
coalescent process sometimes antedates the split of gorillas and chimpanzees from humans (Table 5.1),
it is best to include orangutans, gibbons, or even old-world monkeys to root human haplotype trees.
The midpoint rooting method assumes the root will be found at the molecule genetic distance
midpoint of the tree. Once rooted, the haplotype tree displays how mutations were accumulated over
time in all the DNA lineages leading to the current array of haplotypes. In addition to the haplotypes
and their frequencies, we also know their geographical locations in the current sample. Thus, infor-
mation on both space and time is contained within a haplotype tree to make inference about past
human evolution.

Cann et al. (1987) made an early and highly influential use of a haplotype tree to make inference on
human evolution. They found 133 distinct mtDNA haplotypes from 147 people of worldwide ethnic
origin and estimated a mtDNA haplotype tree through maximum parsimony with midpoint rooting
(Fig. 7.1). Using a molecular clock, they estimated that the common ancestral mtDNA molecule (the
root of the tree) existed 140,000e290,000 years ago. They overlaid this tree upon the geographical
origins of the ethnic groups of their sample and found that the root split the tree into two ancient clades
or branches: one clade of mtDNA haplotypes was found exclusively in sub-Saharan Africa, and the
other was distributed throughout the world (Fig. 7.1A). This geographical pattern implies that the
bearer of the common ancestral mtDNA molecule was located in sub-Saharan Africa. Cann et al.
(1987) interpreted these results as favoring the “classic” model of human evolution that had been
proposed in the first half of the 20th century. The classic model posited that all modern humans came
from a single geographical region, expanded out of their place of origin to repopulate the Old World,
and drove all the other human lineages/species to complete extinction (Dobzhansky, 1944). During the
early part of the 20th century, there was controversy about the geographical location of the origin of
modern humans, but fossil evidence increasingly indicated that modern humans first arose in Africa
(Stringer and Andrews, 1988). Hence, the “classic” model became the out-of-Africa replacement
(OAR) model. The haplotype tree shown in Fig. 7.1A was consistent with OAR as all modern
human mtDNA is derived from a common female (mtDNA is maternally inherited, Chapter 2) from
sub-Saharan Africa. This interpretation of human evolution is shown in Fig. 7.1B.

Cann et al. (1987) claimed their results were incompatible with another model of human evolution
known as the multiregional model. They described the multiregional model as one in which three
major isolated lineages of humans were established when the genus Homo initially spread out of
Africa (now known to be at least 1.8 million years ago (MYA) from the fossil record), with each
lineage evolving in parallel into its modern form (Fig. 7.2A). Under this “multiregional” model, the
coalescence of all modern human mtDNA must be greater than one MYA as this was the last time all
humanity shared a common ancestral population (Fig. 7.2A). Since the actual coalescence of all
modern mtDNA is much less than a million years ago, they regarded the mtDNA haplotype tree as
incompatible with the “multiregional” model.

There are serious flaws in the Cann et al. (1987) paper. First, the model they described as the
“multiregional” model is actually the candelabra model (Coon, 1962) that posits an early separation of
humanity into isolated lineages that experienced parallel evolution into modernity. The true multi-
regional model had been proposed by Weidenreich (1940) as an alternative to the classic uniregional
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model shown in Fig. 7.1B and the candelabra model shown in Fig. 7.2A. Fig. 7.2B is a reproduction of
how Weidenreich (1946) illustrated his model. His multiregional model posits that humans expanded
out of Africa in the early Pleistocene, just as the models in Figs. 7.1B and 7.2A. However, he posited
that the human populations living in Africa and Eurasia evolved into their modern forms as a single
species, with gene flow interconnecting them throughout the process. Consequently, there is no
evolutionary tree of human populations, but rather a trellis or network indicating genetically inter-
connected regional populations (Fig. 7.2B). These regional populations still showed local genetic
differentiation due to isolation by distance (Chapter 6). However, under the true multiregional model, a
mutation arising anywhere in the Old World could spread to all populations through gene flow. In
contrast to OAR, there is no single place of the origin of all living humans, but rather living humans
represent a genetic amalgam from many ancestral regions. Gene flow and admixture are important
evolutionary forces in the multiregional model, but they are totally absent in the OAR and candelabra
models. As Dobzhansky (1944) long ago pointed out, gene flow and/or admixture means that there is

FIGURE 7.1

Panel A shows the mtDNA haplotype tree estimated by Cann et al. (1987), with each tip representing a modern

haplotype. Panel B shows the interpretation of the haplotype tree in terms of the out-of-Africa replacement model

of human evolution, given the initial spread of the genus Homo from Africa into Eurasia at more than one million

years ago based on fossil data at that time. This initial spread established three isolated lineages of humanity, with

both Eurasian lineages completely replaced (shown by the broken lines) by the more recent expansion of modern

humans out of Africa that most likely occurred about 50,000e60,000 years ago.
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no need for parallel evolution in the multiregional model, in direct contradiction to the portrayal given
in Cann et al. (1987). Gene flow and/or admixture in the multiregional model also means that mtDNA
could coalesce to an African location much more recently than a million years ago and still spread into
Eurasia due to gene flow or admixture. Hence, the mtDNA haplotype tree shown in Fig. 7.1A is
incompatible with the candelabra model, but it is completely compatible with both the OAR and true
multiregional models (Templeton, 1993, 1994, 2018).

A second flaw is equating the mtDNA ancestral molecule to an ancestral population of all
humanity. As shown in Chapter 5, all homologous regions of the genome will ultimately coalesce to an
ancestral molecule. Hence, there is nothing noteworthy in the fact that all modern human mtDNA
coalesces to an ancestral molecule: this is true for every species that has mtDNA, and it is also true for
every other region of the genome. As shown in Fig. 5.8 and Table 5.1, coalescence to the ancestral
molecule need not even occur within the human species, so coalescent theory provides no logical basis
for inferring from an African root of the ancestral mtDNA molecule (Fig. 7.1A) that all of humanity
and our genomes came from a single African population that happened to contain this ancestral
mtDNA molecule. A haplotype tree is not a tree of populations. There is indeed information about

FIGURE 7.2

Panel A shows the “multiregional model” of human evolution as described by Cann et al. (1987) and portrayed by

Lewin (1989). Panel B is a reproduction of the multiregional model found inWeidenreich (1946). The words in the

box in panel B refer to fossils by location name as known in the 1940s. Double-headed horizontal arrows indicate

gene flow, and single arrows indicate lines of descent, with diagonal arrows indicating some descent at any one

location originating from other locations.
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population-level processes in a haplotype tree, but there is no logical basis for equating a haplotype
tree to a population tree.

Third, there is no statistical justification for any of the inferences made in favor of OAR. For
example, were enough individuals and locations sampled to ensure that the geographic associations
shown in Fig. 7.1Awere statistically significant, or were the geographic associations simply an artifact
of inadequate sampling?

Despite these flaws, OAR was widely embraced by the population genetics community and became
the dominant model for human evolution for decades. New results were interpreted in this framework,
but these results all suffered from the same three flaws outlined above, although after objections by
anthropologists (e.g., Wolpoff et al., 1988), a few double-headed arrows between lineages were often
added onto the candelabra model to represent weak and sporadic gene flow, but nothing like the trellis
structure shown in Fig. 7.2B. The multiregional model continues to be misrepresented in the genetic
literature as a treelike structure with weak and sporadic gene flow. Even with this weak version of the
multiregional model, there has never been a single genetic dataset that has favored OAR against
alternatives in a statistically significant fashion (Templeton, 2018). Moreover, genetic datasets soon
appeared that falsified OAR, both logically and statistically.

As genetic technology improved, it became feasible to study nuclear DNA in addition to mtDNA,
which had been the primary focus of many early studies because mtDNA is a small, self-contained,
nonrecombining, and highly abundant molecule in the cell. Because recombination is concentrated into
hot spots in the human nuclear genome (Chapter 2), it was also possible to find regions in the human
nuclear genome with little to no recombination where haplotype trees could be meaningfully estimated.
Harding et al. (1997) reported haplotypes at the beta-hemoglobin locus that were of Asian origin much
older than 200,000 years but less than 1.9 MYA, and soon many other nuclear DNA regions were found
to coalesce in Eurasia in this time range (Templeton, 2007). Each one of these old Eurasian coalescent
events represents a falsification of OAR using exactly the same type of logic used by Cann et al. (1987)
to dismiss the candelabra model. Although the proponents of OAR accepted the falsification of the
candelabra model (and its erroneous extension to the multiregional model), they ignored or rationalized
the multiple observations of times to coalescence in Eurasia that falsified OAR. For example, Takahata
et al. (2001) inferred the geographical root for ten nuclear genes, with nine being in Africa and one in
Asia. Takahata et al. (2001) dismissed their own falsification of OAR by redefining the OAR model to
be “equivalent” to a model in which most, but not all, of the modern human gene pool was derived from
Africada model known as the “mostly out of Africa” hypothesis (Relethford, 2001). However, these
twomodels are not equivalent, as pointed out long ago by Dobzhansky (1944). The classic model has no
role for gene flow or admixture, only for the expansion of an isolated population and extinction of all
others, and thus predicts that the entire gene pool of all modern humans came from a single
geographical location. In contrast, the multiregional model has a role for gene flow or admixture and
predicts that the modern human gene pool came from both Africa and Eurasia. The relevant evolu-
tionary forces in these two models are qualitatively different, as are their consequences for the modern
human gene pool. Dobzhansky found the classic model to be “an oversimplification,” but he did
acknowledge that “The ‘classic’ theory is probably justified to the extent that some of the races of the
past have contributed more germ plasm than others to the formation of the present humanity”
(Dobzhansky, 1944, p. 263)dsuch as in the mostly out of Africa model. Dobzhansky made it very clear
that the mostly out of Africa model was actually a special case of the multiregional model and not the
“classic” model as the mostly out of Africa model involved the same qualitative evolutionary forces of
gene flow or admixture as multiregional evolution and had the same qualitative consequence: a modern
human gene pool that is derived from both African and Eurasian Pleistocene ancestors.
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The field of inferring the past by overlaying haplotype trees upon geography became known as
phylogeography (Avise, 2000). Incorporating statistics into these inferences created the field of
statistical phylogeography. The first statistical phylogeographic technique was nested clade phylo-
geographic analysis (NCPA, Templeton et al., 1995). The first step in NCPA is to estimate the
haplotype tree, typically with statistical parsimony (Chapter 5) that quantifies the uncertainty in the
tree estimate (Templeton et al., 1992). The haplotype tree is then converted into a nested design using a
few rules (Templeton et al., 1987; Templeton and Sing, 1993). An example of this is given for a simple
haplotype tree of the human RRM2P4 pseudogene on the X chromosome (Garrigan et al., 2005) that is
rooted in Asia (thereby logically falsifying OAR) using the chimpanzee as an outgroup (Fig. 7.3).

FIGURE 7.3

The estimated, statistical parsimony haplotype tree and nested-clade design for the human RRM2P4 pseudogene.

(A) Haplotypes are indicated by capital letters, and solid lines indicate single mutational change. “0” indicates an

interior node that represents a haplotype state necessary to interconnect sampled haplotypes, but that was not

found in the sample. Solid boxes indicate one-step clades generated by moving one mutational step in from tips;

dashed boxes indicate one-step clades obtained by applying this one-step rule again after the solid boxed set is

excluded. (B) The tree of one-step clades and resulting two-step clades when the same nesting rules used in (A) are

applied to one-step clades instead of haplotypes.
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Fig. 7.3A shows the estimated statistical parsimony tree, in this case with no significant ambiguity,
along with the haplotypes nested into groups called 1-step clades. The 1-step clades are then nested
into even larger groups called 2-step clades by applying the same nesting rules to 1-step clades instead
of haplotypes, as shown in Fig. 7.3B. Two-step clades are the largest nested groups for this small
haplotype tree, but for larger haplotype trees, more nesting levels are possible. The nesting serves
many purposes. First, it provides statistically independent units of analysis (Templeton, 1995), thereby
allowing straightforward multiple testing correction. Second, haplotype trees are often estimated with
error or multiple alternatives that cannot be excluded in a statistically significant fashion. Often this
ambiguity involves deep interior nodes separated by multiple mutational events that have no impact on
the nested design. Even when the ambiguity does alter the nested design, a few simple rules (such as
expanding the nesting clade to include all alternatives) can yield a nesting design that is robust to the
ambiguity in the tree topology (Templeton and Sing, 1993). Hence, the nested analysis does not
assume that the haplotype tree has been estimated with no ambiguity. Third, all inferences in NCPA are
drawn from analyses within nesting clades, and hence do not depend upon the overall haplotype tree
topology but only on the relationships of haplotypes or a clade of haplotypes to their nearest evolu-
tionary neighbors. This is important because the overall tree topology does not necessarily correspond
to a history of populations, even when there is an evolutionary tree of populations. As shown in
Chapter 5, many gene regions in the human genome do not even give a haplotype tree that corresponds
to a species tree. When there is the potential for gene flow and/or admixture and short times between
populations even if they do split into isolated lineages, it is probable that a particular haplotype tree
will not correspond to the evolutionary history of populations. NCPA uses only local topological
information in the tree to extract population inferences, but never equates the haplotype tree to an
evolutionary history of populations.

Given the nested design, NCPA first tests the null hypothesis that there is no association between
geography and the haplotype tree. Because there are many ways in which a haplotype tree could have
geographic associations, this null hypothesis is not tested with a single statistic, but rather with a battery
of summary statistics, a set of statistics that contain information about the association of interest
but which measure different aspects of that association. The first summary statistic is the clade distance,
which measures the geographic range of the haplotype or clade. The second is the nested clade distance,
which measures how far the geographic center of a particular haplotype or clade is from the geographic
center of the larger clade in which it is nested. The final two summary statistics are the differences
between the clade and nested clade distances of the oldest or interior member of the nested group being
tested with the average of the clade and nested clade distances respectively of the younger or tip
haplotypes or clades in the same nested group. The distributions of the summary statistics under the null
hypothesis of no geographic associations are simulated by randomly permuting the location data across
all observations with the computer program GEODIS (Posada et al., 2006). The observed summary
statistics are then compared to these null distributions to determine statistical significance. Table 7.1
shows these statistics and their significance levels for the RRM2P4 pseudogene data using the nested
design shown in Fig. 7.3. As can be seen, summary statistics for haplotypes within Clade 1-5 and for
2-step clades within the total cladogram level (Clade level 3) were significant, thereby rejecting the null
hypothesis of no geographic associations. It is important to note that statistical significance depends
upon the numbers of the haplotypes or clades in the sample. For example, haplotype B in Table 7.1 has a
clade distance of 0 km, which is not significantly small, but haplotype G has a clade distance of
2649 km, which is significantly small at the 0.1% level. The reason for this apparent discrepancy is that
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haplotype B occurred only once in the total sample. Because the permutation procedure preserves the
marginal frequencies, the single observation of haplotype B always results in a clade distance of zero in
all permutations. Hence, Dc ¼ 0 for haplotype B is without statistical significance. This illustrates the
danger of making inferences just from how a haplotype tree overlays upon geographic space without
any assessment of sample sizes, as was done by Cann et al. (1987). In contrast, haplotype G occurs six
times in the sample, with five observations from Africa and one observation from Europe. Haplotypes G
and H (members of the nesting clade 1-5 in Fig. 7.3) are collectively found in Africa, Europe, Asia,
North America, and South America. The permutation procedure reveals that it is extremely unlikely that
the six observations of haplotype G would show such a tight geographical clustering over such a broad
geographic range if both haplotypes G and H were indeed randomly distributed geographically.

Table 7.1 Statistical Significance of Summary Statistics (Measured in Kilometers) for
the RRM2P4 Pseudogene Using the Nested Design Shown in Fig. 7.3

Haplotypes in 1-Step Clades 1-Step Clades in 2-Step 
Clades

2-Step Clades in 3-Step 
Clade

Haplotype DC DN Clade DC DN Clade DC DN

A 1,862 2,492

1-1B 0 6,603 – – 2-1 2,949 13,496L

I-T -1,862 4,111

C – – 1-2 – – 2-2 0 6,148

F – – 1-3 0 2,603

D 5,224 5,265

1-4 5,241 5,831E 0 4,647

I-T 5,224 617 2-3 6,145S 6,485

I-T -5,905L -863

G 2,649S 5,954 
H 6,133 7,276 1-5 6,762 6,937

I-T -3,484S -1,322 I-T -5,833 -3,658

The summary statistics are DC for the clade distance, DN for the nested clade distance, and I-T for the difference in the
clade and nested clade distances between the interior/older haplotype or clade (shaded in gray) in the nested group
versus the average clade and nested clade distances respectively of the tip/younger haplotypes or clades in the nested
group. A superscript L indicates a significantly (p < 0.05) large value, and a superscript S indicates a significantly
(p < 0.05) small value.Vertical lines to the right of a set of summary statistics indicates they belong to the same nested
group, with the name of that nested group appearing to the right of that vertical line. A dash indicates clades with no
observations or only one haplotype or clade nested within in it, in which case no summary statistics are calculated.
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The next step in NCPA is to interpret the significant summary statistics within a clade. Note that all
inference is local within the haplotype tree, involving only the clades that are evolutionarily most
closely related to one another. Coalescent theory (Chapters 5 and 6) is used to derive expected patterns
for a summary statistic under a particular demographic or historical situation. Because of the potential
complexity of the inferences, no one summary statistic can differentiate all possible biological situ-
ations from one another, so combinations of significant summary statistics are used to make biological
inference. For example, consider a model of isolation by distance (Chapter 6). Under this model, it
takes time for a haplotype to spread through space from its place of geographic origin, going from one
neighboring population to the next. Hence, there tends to be a gradual increase in geographic range
with time, so we would expect smaller clade distances for tips or more recent clades and larger clade
distances for the interior or older clades within a nesting clade. Since this process occurs continuously
over time, we expect similar patterns for the nested clade distances because new haplotypes and clades
always originate within the range of their ancestral clade (that is, the interior clade of the nesting clade)
and then move only slowly from this origin through time. Hence, the geographic distributions of tips
overlap greatly with that of interiors. These patterns also imply large I-T distances for both clade and
nested clade distances.

Consider now the patterns expected by a range expansion involving the movement of a whole
population. When range expansion occurs, those haplotypes found in the ancestral population will
become widespread geographically (large clade distances). This will sometimes include relatively
young (tip) haplotypes or clades that are globally rare but found in the ancestral population. As a result,
some young, rare haplotypes can be carried along with the population range expansion, resulting in
clade distances that are large for their frequency. This is the pattern observed with haplotype G in
nesting clade 1-5 (Table 7.1). In this case, the older haplotype G is restricted mostly to Africa and has a
significantly small clade distance of 2649 km, whereas the younger tip haplotype (H) is found in Asia
and the Americas with a clade distance of 6133 km, thereby having a much wider geographical
distribution than its immediate ancestral haplotype. This is the opposite of the pattern associated with
isolation by distance. Moreover, because the ancestral haplotype is found almost exclusively in Africa,
this represents an expansion out of Africa. To insure consistency, an inference key was constructed,
and this key has been automated (Zhang et al., 2006). This key was validated by applying it to 150
positive controls; that is, actual examples of events or processes that were known to have occurred in
humans or other species from other data. NCPA performed reliably, yielding only about 4% of the
clades making a false-positive error when the nominal type I error rate for the summary statistics was
set to 5% (Templeton, 2004b). This 4% observed error rate is conservative because any inference
other than those known to have occurred using outside data was scored as an error. However, it is
possible that some of these historical events actually occurred but simply were unknown. No other
method of phylogeographic inference has been validated so extensively through positive controls
(Templeton, 2008).

The most common error made by NCPA in this positive control analysis was the failure to detect a
known event. This is not surprising. Recall that the haplotype tree only contains that subset of
coalescent history that is marked by a mutational event (Chapter 5). Hence, NCPA inference depends
upon having a mutation or mutations occurring at the right time and place. Mutation is a stochastic
process at the population level, so whether or not such an informative mutation occurred is not under
our control, and in its absence NCPA cannot make inference. One way to circumvent this problem is
to perform NCPA not just upon one haplotype tree, but upon many, independent haplotype trees
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(Templeton, 2002). Multilocus NCPA became feasible as DNA technology allowed more and more of
the nuclear genome to be studied coupled with the fact that many areas of the human nuclear genome
show little to no recombination (Chapter 2). Although any one genomic region may have a haplotype
tree that did not have a mutation or mutations to mark a particularly phylogeographic event or process,
as the number of genomic regions studied increases, the chance that all of them are noninformative
decreases, thereby increasing statistical power. Moreover, with multiple loci, a new method of elim-
inating false positives is possible (Templeton, 2004a,b, 2009a). In multilocus NCPA, an inference is
retained only if it achieves a threefold cross-validationdan inference is retained only if the type of
inference is inferred from two or more genomic regions (e.g., two or more haplotype trees yield the
inference of a population expansion); given two or more inferences of the same type, the inference is
retained only if two or more haplotype trees are concordant in their inferred geographical locations
(e.g., two or more haplotype trees yield the inference of a population expansion out of Africa into
Eurasia); and given concordance in type and location, an inference is retained only if there is no
statistically significant difference in the timing of the inference at two or more genes (e.g., two or more
haplotype trees yield the inference of an out-of-Africa expansion into Eurasia at times that do not differ
significantly). Times of events or processes in the past are inferred by using a molecular clock with a
chimpanzee outgroup and a fossil calibration of 6 MYA for the divergence of chimpanzees and
humans. The mutations are counted directly from the haplotype trees, and as pointed out earlier
(Chapter 5), this means that homoplasies can be taken into account without the need of invoking an
unrealistic model of mutation at the nucleotide level (Chapters 2 and 5). Times are modeled as a
gamma distribution that varies continuously from 0 (the present) to infinity (the distant past). The
parameters of the gamma distribution are estimated from the mutational data separately for each
haplotype tree to set the mean and variance of the timing and are then placed into a maximum like-
lihood ratio test (Chapter 1) of the null hypothesis of temporal homogeneity across haplotype trees.
Two different types of likelihood ratio tests are used. First, for events (e.g., an expansion event), we test
the null hypothesis that the mean inferred times from all haplotype trees equal the same value. If we
fail to reject this null hypothesis, the maximum likelihood estimators of the mean and variance of the
time of the event is determined from all the informative haplotype trees and not just a single gene. If
the shared inference across haplotype trees is a recurrent gene flow process (e.g., isolation by distance),
we do not expect all inferences of this process to necessarily be at the same time as gene flow can occur
over multiple generations (Chapter 6). In that case, we test the null hypothesis that no gene flow
occurred between the inferred geographical areas over a time interval rather than at a specific time. We
only conclude gene flow in the time interval if this null hypothesis is not rejected; otherwise, we accept
the null hypothesis of no gene flow and that the populations were isolated during this time interval.
This maximum likelihood testing framework can also be utilized to test other hypothesis, such as the
null hypothesis of no admixture between two populations that come into contact due to a range
expansion.

Multilocus NCPA has been validated by computer simulation. Nine months after the publication of
multilocus NCPA (Templeton, 2002), Knowles and Maddison (2002) simulated a situation of
microvicariance in which each location represents a completely isolated population from all others,
derived from an evolutionary history of splits followed by isolation with much carryover of ancestral
polymorphisms across the isolates to create much polyphyly and paraphyly (Fig. 5.8), making this a
very difficult phylogeographic inference problem. Although multilocus NCPAwas already available,
Knowles and Maddison (2002) decided to only apply the single-locus version to their simulations.
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The case of microvicariance was specifically excluded from single-locus NCPA (p. 773, Templeton
et al., 1995), thereby ensuring that the inference key was inapplicable to the situation being simulated
by Knowles and Maddison (2002). Not surprisingly, single-locus NCPA did not fare well in their
simulations and neither did the phylogeographic approaches developed by Knowles and Maddison
(2002). However, when the 2002 version of multilocus NCPA was applied to these simulations by
regarding the set of 10 simulations as being 10 different loci [the same number used in Templeton
(2002)], this difficult phylogeographic history was reconstructed with no errors (Templeton, 2009b),
thus vindicating the multilocus version of NCPA. Panchal and Beaumont (2010) executed simulations
of the multilocus version of NCPA under a wide variety of phylogeographic scenarios using five loci
per simulation. In general, their false-positive rates were well below 4% for almost all types of
phylogeographic inference when the nominal rate for type I errors was set to 5%. They reported a
high false-positive error rate only for inferences of recurrent gene flow. Interestingly, Panchal and
Beaumont (2010) did not test gene flow inferences for temporal concordance “because there is no
stipulation that the inferences should be concordant in time” (Panchal and Beaumont, 2010, p. 418). As
pointed out earlier, inferences of gene flow between areas are tested for temporal concordance in an
interval of time in multilocus NCPA precisely because gene flow is a recurrent process. For example,
18 inferences of restricted gene flow were made in an analysis of human data, but 7 of them (39%)
were discarded on the basis of the temporal interval concordance test (Templeton, 2009a, 2013, 2015),
indicating that there could be a substantial false-positive error rate for inferences of gene flow from
single loci. Panchal and Beaumont (2010) are correct in concluding that their reported high false-
positive rate for gene flow inferences were due to their failure to test for temporal concordance, but
they inaccurately claimed that a multilocus test for temporal concordance did not exist, even though
they cited a paper that gave such a test with a worked example (Templeton, 2009a, Eq. 2). Once this
misrepresentation is corrected, their simulations validate multilocus NCPAwith a false-positive error
rate below 5%.

Fig. 7.4 gives the results of a multilocus NCPA using 25 genomic regions with little to no
recombination (Templeton, 2015), which is very similar to the original multilocus NCPA based on just
10 genomic regions (Templeton, 2002). No prior model is used to generate the model of recent human
evolution shown in Fig. 7.4. Rather, the model arises naturally from the analysis through statistical
hypothesis testing. Dates are obtained by estimating the age of the clade showing an event or process
by applying a molecular clock calibrated for each haplotype tree using chimpanzees as the outgroup
with the humanechimpanzee split set at six MYA followed by multilocus pooling on the basis of the
maximum likelihood ratio test for temporal concordance. Since all retained inferences require two or
more haplotype trees, all estimated times are based on multilocus data.

Fifteen genomic regions detect an out-of-Africa into Eurasia population range expansion (Fig. 7.4),
but the null hypothesis that all these loci are detecting a single event in time is rejected with a
probability value of 3.89 � 10�15. Instead, the 15 loci yield time estimators that are clustered into
three distinct groups, with each group being statistically homogeneous within. The earliest event
detected is an out-of-Africa expansion dated to 1.9 MYA detected with a high degree of homogeneity
across the informative genes (p ¼ 0.62 for the null hypothesis of homogeneity in time). This genetic
date corresponds well to the fossil dating of the expansion of the genus Homo out of Africa to
1.85 MYA (Ferring et al., 2011) and into eastern Asia by at least 1.54e1.65 MYA (Zhu et al., 2015).
This date is also compatible with the paleoclimatic data indicating a major wet period in eastern
Africa between 1.9 and 1.7 MYA, which would make the Sahara more amenable to dispersal
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FIGURE 7.4

The model of human evolution over the past two million years that emerges from nested-clade phylogeographic

analysis of 25 haplotype trees scattered throughout the human genome, including mtDNA. Vertical lines show

descent within a broad geographic area, diagonal lines show gene flow between areas, and red arrows show major

population range expansions. When range expansions occurred into regions already occupied by other human

populations, the vertical lines of descent are not broken to indicate that the expansion was accompanied by

admixture. The maximum likelihood estimates of the dates of the three out-of-Africa expansion events are given

on the left, along with their 95% confidence intervals in parentheses. The other range expansion events all

occurred within the last 50,000 years, but are difficult to estimate from haplotype tree data as there are too few

mutations for accurate estimation. The genomic regions that underlie a particular inference are given with the

inference.
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(deMenocal, 2011). Moreover, soil carbonate data indicate an expansion of grasslands at this time
(deMenocal, 2011), producing favorable conditions for the expansion of Homo, a species of savannas
and grasslands at that time. The paleontological record indicates that not only Homo expanded at this
time, but so did many other savanna and grassland species (Bobe and Behrensmeyer, 2004).

Although seven loci indicated restricted gene flow in the time period between the first and the
second out-of-Africa expansions (1.9e0.7 MYA in Fig. 7.4), the null hypothesis of isolation between
the three major geographic regions cannot be rejected (the ln-likelihood ratio test is 11.87 with 7
degrees of freedom, yielding p ¼ 0.105). Hence, there is no significant evidence for gene flow among
these archaic populations in the early Pleistocene, so they are portrayed as isolated in Fig. 7.4.

The next significant event in human evolution is a second out-of-Africa expansion into Eurasia
dated genetically at about 700,000 years ago (Fig. 7.4), as detected by seven loci for which the null
hypothesis of temporal homogeneity cannot be rejected (p ¼ 0.51). The estimated time of this second
expansion is significantly different than the first out-of-Africa expansion event (p ¼ 0.003). This
expansion is supported by the archaeological record of the spread of the Acheulean stone tool culture
out of Africa and into Eurasia. Acheulean tools are found first in Africa at about 1.75 MYA (Beyene
et al., 2013), with the earliest non-African sites being older than 1 MYA (Pappu et al., 2011). However,
Acheulean sites did not become widespread in Eurasia until about 0.6e0.8 MYA (Hou et al., 2000).
This has led to the suggestion that there were two Acheulean expansions out of Africa: the first at about
1.4 MYA and the second at 0.6e0.8 MYA (Bar-Yosef and Belfer-Cohen, 2001). Fig. 7.4 indicates a
statistically significant out-of-Africa expansion at 0.65 MYA (0.3917e0.9745 MYA), which corre-
sponds well with the second, more widespread, Acheulean expansion. However, this genetic analysis
does not falsify the hypothesis that there was an earlier Acheulean expansion at 1.4 Ma. Indeed, the
out-of-Africa expansion detected by CYPA2 dates to 1.43 Ma. However, because of the large variances
associated with older coalescent-based estimates of age (Chapter 5), this event at 1.43 Ma could not be
distinguished from the other out-of-Africa events detected toward the beginning of the Pleistocene.
Thus, there may well have been an Acheulean expansion at 1.4 MYA. The Acheulean expansion is also
consistent with the paleoclimatic and habitat data, which indicate a second major wet period and
expansion of grasslands between 1.1 and 0.9 MYA (deMenocal, 2011), a time period that overlaps the
95% confidence interval of the inferred mid-Pleistocene expansion shown in Fig. 7.4. As with the
earlier period of grassland expansion, the paleontological record demonstrates the expansion of
other savanna species out of Africa at this time (Cuenca-Bescós et al., 2011; MartÌnez-Navarro and
Rabinovich, 2011).

When humans expanded into Eurasia at 1.9 MYA, they colonized a continent that had no other
members of the genus Homo. When the Acheulean population expanded out of Africa, they
encountered humans from that earlier expansion; humans that may have been isolated from them for
hundreds of thousands of years and with a different (and inferior) toolmaking culture. Did the
Acheuleans replace these Eurasians or interbreed with them? Multilocus NCPA can test the null
hypothesis of no interbreeding by noting that if complete replacement had occurred, there would be no
genetic signatures of events or genetic processes in Eurasia that would be older than the Acheulean
expansion event. Recall that NCPA is based on genetic samples from current populations, so if a
population were completely replaced, it would leave no genetic signatures in current humanity. The
Acheulean replacement hypothesis can therefore be tested by testing the null hypothesis that the
Acheulean expansion is not significantly older than other Eurasian events or processes with older
estimated times. Because the older inferred gene flow events do not cross-validate in the temporal
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interval between these two expansion events, they are excluded from the analysis. Hence, the test of the
null hypothesis of replacement reduces to the test of the null hypothesis that all of the inferences
supporting the first out-of-Africa expansion event are homogeneous with the inferences supporting the
Acheulean expansion event. This null hypothesis is rejected with p ¼ 0.003, indicating that
the Acheulean expansion was accompanied by admixture and/or gene flow and not replacement. The
arrow representing the Acheulean expansion in Fig. 7.4 therefore does not break the Eurasian lineage
lines, as they contributed to modern humanity.

Between the Acheulean expansion and the most recent out-of-Africa expansion event dated
molecularly at 130,000 years ago (95% confidence interval: 100,000e170,000 years ago), the null
hypothesis of no gene flow is rejected with p ¼ 0.013. This gene flow occurred not only between
Eurasian populations but also involved African-Eurasian genetic interchange. Humans had the
capability of moving both into and out of Africa during this time interval. This inference of recurrent
gene flow is compatible with the paleoclimatic data. In addition to the major wet periods discussed
earlier, there were many more minor humid periods that resulted in a “green Sahara.” For example,
Larrasoña (2012) reconstructed the paleoclimatic history of the Saharan Desert over the past
350,000 years and found green Sahara phases and expansion of subtropical savannas at 330, 285, 240,
215, 195, 170, 125, and 80 thousand years ago. Hence, there were multiple, recurrent climatic phases
that would have allowed humans to disperse out of and into sub-Saharan Africa, and the Arabian
peninsula as well (Jennings et al., 2015). The Homo fossil record also supports the conclusion of
widespread gene flow since the mid-Pleistocene. Productive fossil sites from the Middle and Late
Pleistocene that yield multiple individuals over short time spans reveal extreme variability within a site
coupled with remarkable similarity between sites that are roughly contemporaneous. These discoveries
at the handful of rich fossil sites imply “sporadic, but continuing multidirectional migrations and gene
flow” (Simmons, 1999, p. 107). The oldest fossils with key morphological features of modern humans
are from Morocco in northwestern Africa at 315,000 ybp, and South Africa at 259,000 ypb, indicating
a pan-African origin of Homo sapiens (Hublin et al., 2017). No matter how the origin of H. sapiens is
interpreted in light of these fossils, human populations had to be dispersing across the Sahara around
300,000 years ago or before, supporting the inference of trans-Sahara gene flow by NCPA in this time
period (Fig. 7.4).

The third out-of-Africa population expansion in Fig. 7.4 is dated to 130,000 years ago, and this
corresponds to the recent out-of-Africa expansion found in OAR (Fig. 7.1), although most proponents
of OAR dated this expansion to 50,000e60,000 years ago. Like the earlier two out-of-Africa
expansions, the timing of this expansion across the informative loci indicated in Fig. 7.4 is highly
homogeneous (p ¼ 0.95 for the null hypothesis of homogeneity), but the timing of this event is highly
significantly different from the timing of the Acheulean expansion (p ¼ 1.66 � 10�10 for the null
hypothesis that both expansion events occurred at one time). The highly significant difference between
the Acheulean expansion and the most recent out-of-Africa expansion also falsifies the hypothesis that
the most recent out-of-Africa expansion was a replacement event. If it were replacement, all evidence
of the Acheulean expansion into Eurasia would have been obliterated. A more powerful test of the null
hypothesis of replacement is to include the data supporting the original out-of-Africa expansion at
1.9 MYA and the cross-validated gene flow inferences involving Eurasia from the mid-Pleistocene
until the most recent out-of-Africa expansion, as all evidence for these events and processes in
Eurasia should have been obliterated under replacement. Now the null hypothesis of replacement is
rejected with p ¼ 1.11 � 10�16da definitive rejection of replacement. Instead, the NCPA model
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implies a mostly out of Africa expansion event, with about 10% admixture with Eurasian populations
in toto (Templeton, 2002, 2007).

In much of the genetic literature on OAR, this latest out-of-Africa expansion is attributed to
“anatomically modern humans” that are treated as a well-defined group quite distinct from contem-
poraneous “archaic humans” in Eurasia. In reality, the morphology of these groups is highly variable in
the fossil record (including being highly variable in living humans, many of whom do not have
“modern” traits), with different “modern” traits displaying disparate geographical and temporal pat-
terns, resulting in indistinct borders between “archaic” and “modern” fossil specimens (Pearson, 2008;
Hublin et al., 2017). Treating “anatomically modern humans” and “archaic humans” as separate
groupsdoften as separate speciesdreinforced the idea of replacement rather than admixture, as a new
“species” came out of Africa and displaced a more primitive, archaic “species.” The fossil record
actually shows a differentiated but variable human population coming out of Africa that encountered
other variable human populations in Eurasia, which were clearly interfertile as indicated by the
extremely strong rejection of replacement by NCPA. Moreover, hybrid fossils and evidence of
introgression of traits between Neanderthals and “modern” humans have been found, providing direct
fossil proof of interfertility and admixture (Duarte et al., 1999; Higham et al., 2011; Trinkaus, 2007;
Zilhao, 2006). Ancient DNA studies of some of these same fossils have confirmed their hybrid nature
(Fu et al., 2015). In addition to fossils showing a mixture of modern and archaic traits, other traits
display a pattern of regional continuity (Wolpoff et al., 2000; Wu, 2004; Shang et al., 2007) or
incongruence (Pearson, 2008). Continuity and incongruence are not expected under replacement.
However, as long as there is genetic interchange among populations, the Mendelian mechanisms of
recombination and assortment allow different traits influenced by different genes to have different
evolutionary fates. Some traits could have spread due to the joint actions of gene flow, admixture, and
natural selection, whereas other traits may not have spread as rapidly or not at all due to a lack of
selection or due to local selective pressures. Recurrent gene flow and admixture therefore provide the
genetic interconnections that explain all of the fossil trait patterns during this time period, but
replacement does not. Once again, the genetically based conclusions of NCPA are consistent with the
fossil record, but OAR is not.

The estimated time of the latest out-of-Africa expansion at 130,000 ybp was also quite divergent
from the 50,000e60,000 ybp favored by OAR. The paleoclimatic evidence is consistent with the
NCPA date. Of the wet periods of green Sahara over the last 350,000, one of the most extreme (and
therefore most optimal for dispersal) was the one occurring around 125,000 years ago (Larrasoña,
2012). Moreover, there was an Arabian Peninsula wet phase 130,000e125,000 years ago as well,
which would further facilitate dispersal into Eurasia (Jennings et al., 2015). Hence, NCPA dates
humans as dispersing out of Africa at one of the most climatically optimal times in the last
350,000 years. The fossil and archaeological records also support the date of 130,000 years ago. Many
anatomically modern traits and archaeological features first appeared in pan-Africa around
300,000 years ago (Hublin et al., 2017), and then first appeared out of Africa in the Levant by
177,000 ybp (Hershkovitz et al., 2018). Between 120,000 and 80,000 ybp, there is extensive archae-
ological and fossil evidence for “modern” humans throughout the southern tier of Eurasia, including
far eastern China (Liu et al., 2010, 2015; Bae et al., 2017), consistent with Fig. 7.4. Between 73,000
and 63,000 ybp “modern” humans were in Sumatra (Westaway et al., 2017), and were in Australia by
65,000 ybp (Clarkson et al., 2017). Hence, the expansion of “modern” humans was already extensive
throughout the Old World before the OAR model predicts it even began.
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The 50,000e60,000 ybp date has been so engrained in the OAR literature that some researchers go
to great lengths to retain it despite the overwhelming falsification of this date by the fossil and
archaeological record. For example, Rabett (2018) does not question the overwhelming evidence that
Homo sapiens spread out from Africa around 130,000 years ago and quickly become distributed from
northwest Africa to eastern China. He also accepts that these populations persisted (as the archaeo-
logical and fossil record demonstrates) for 70,000 years, bringing us to 60,000 ybp. After 70,000 years
of success, he then claims that this first wave of H. sapiens suddenly disappears throughout its
extensive geographical range outside sub-Saharan Africa, without leaving any genetic descendants in
modern humanity. The mechanism for this mass disappearance spanning from northwest Africa to
eastern Asia is not specified, but whatever it was, this mysterious extinction mechanism did not cause
the extinction of any of the archaic populations that coexisted for 70,000 years with the first wave of
H. sapiens under this model but only affected H. sapiens populations living in the same geographic
areas. Very mysterious indeed! Then, just as the first wave of H. sapiens went extinct at 60,000 ybp, a
second wave of H. sapiens expanded from sub-Sahara Africa and recolonized the same areas as the
first wave and hybridized with the archaic Eurasian populations. This cumbersome theory that relies on
a mysterious but implausible extinction mechanism is based on the premise that the genetic data
clearly and absolutely indicate a 50,000e60,000 ybp date for the latest out-of-Africa expansion, and
hence they have erected this theory to reconcile the “genetic” date with the archaeological and fossil
record that clearly falsifies that date. However, as shown in Fig. 7.4, there is no conflict between the
genetic dating and the archaeological and fossil record. When the genetic dates are estimated under
NCPA, the estimates are based only on those portions of the genome that best store historical infor-
mation, use a method of adjusting for homoplasies that is robust to mutational models, and is based
upon multiple loci in a maximum likelihood hypothesis testing framework. More recent genetic
analyses have also supported the 130,000 year NCPA date. After calibrating the molecular clock by
direct estimates of human mutation rates using next-generation sequencing, Scally and Durbin (2012)
dated the presence of modern humans in Eurasia to 90,000e130,000 years ago. An analysis of
Y-chromosomal DNA dated this origin to 115,000 years ago (Scozzari et al., 2014). A recent genetic
and cranial morphological analysis (Reyes-Centeno et al., 2014) supports the older date of
130,000 years ago, as well as the inference from NCPA (Fig. 7.4) that the initial out-of-Africa
expansion of modern humans was primarily along the southern part of Eurasia. Coalescent simulations
and their fit to alternative dates indicate that the most likely date is around 120,000 years ago (Groucutt
et al., 2015). A genomic analysis indicates that modern humans arrived in Australia between 62,000
and 75,000 years ago (Rasmussen et al., 2011), which is consistent with the fossil record. Hence, the
genetic date of 130,000 years ago first estimated under NCPA has been vindicated by subsequent
archaeological, fossil, and genetic data.

After the final out-of-Africa expansion event, NCPA (Fig. 7.4) detects gene flow and several more
range expansions, including the colonizations of new areas in northern Eurasia, the Pacific, and the
Americas. These more recent expansions were all within the last 50,000 years, but are marked by too
few mutations for accurate dating from haplotype trees, and this reflects one of the limitations of
NCPAdit tends to lack the genetic resolution to detect very recent events in humans with their long
generation times. Fortunately, as will be discussed later in this chapter, other techniques exist to fill this
gap. The archaeological and fossil data also support these expansions that occurred within the last
50,000 years. For example, the oldest Homo sapiens fossil in northwestern Europe dates to
43,000e42,000 years ago (Higham et al., 2011), and the archaeological record indicates that the first
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human presence in the Eurasian Arctic was 45,000 years ago (Pitulko et al., 2016). NCPA implies a
male-mediated expansion and interbreeding occurred from Eurasia into Africa within the last
50,000 years. More extensive data on the Y chromosome have allowed the dating of a Paleolithic
expansion event to 41,000e52,000 years ago (Wei et al., 2013).

Multilocus NCPA provides a coarse framework for human evolution over the past two million years
that is remarkably consistent with the fossil record, archaeological studies, paleoclimatic data, and
recent additional genetic studies. It must be emphasized that all the inferences about recent human
evolution and their dates are exclusively from genetic data in NCPA, and moreover, much of the
collaborating fossil, archaeological, and genetic data were gathered after 2002 when the first NCPA
model of human evolution was published. Moreover, as we will see later in this chapter, studies with
ancient DNA have also vindicated the NCPA model. The NCPA model shown in Fig. 7.4 was
extremely controversial when it first appeared, so the corroboration from so many diverse fields and
studies is remarkable. The same is not true for models such as OAR, which has many inconsistencies
with nongenetic data sources and is falsified by every genetic dataset that provides a basis for logical or
statistical hypotheses testing (Templeton, 2018).

POPULATION TREES
In addition to haplotype trees, many population geneticists have investigated or modeled human
evolutionary history by constructing evolutionary trees of human populations (Chapter 5). This
approach assumes that human evolutionary history is characterized by ancestral populations that split
into two or more distinct subpopulations, with the subpopulations behaving primarily as isolated
lineages with little or no gene flow. Figs. 7.1B and 7.2A are examples of population trees. Population
trees are normally constructed from genetic distances, but a different type of genetic distance than the
molecule genetic distances introduced in Chapter 5 or the individual genetic distances used in Chapter
6. Population genetic distances measure how different two gene pools are from each other. We have
already encountered an example of a population genetic distance in Chapter 6: the pairwise fst. Note
that fst is a function of allele frequenciesda concept meaningful only at the level of a population’s
gene pooldnot molecular or individual genetic states. Consequently, two populations can share all the
same alleles at all loci and still have a positive genetic distance as long as some alleles have different
frequencies. There are many other population genetic distances besides the pairwise fst, and of course it
is possible to combine a molecule genetic distance with a population genetic distance, as is done in
AMOVA (Chapter 6). Such a combined genetic distance is still a population genetic distance since it is
measuring how genetically distinct two populations or gene pools are from each other. Given a
population genetic distance, the population tree can be estimated using a variety of phylogenetic
techniques, such as maximum likelihood tree estimation (Felsenstein, 1982) or neighbor joining
(Chapter 5).

Fig. 7.5 shows examples of population trees (Long and Kittles, 2003) estimated by maximum
likelihood from microsatellite data on eight human populations using chimpanzees as an outgroup (all
with sample sizes � 50). Fig. 7.5A shows the tree obtained with a strict molecular clock; that is, it
assumes that all populations accumulate genetic differentiation at exactly the same rate. As we saw in
Chapter 4, populations diverge in their allele frequencies mostly due to genetic drift. It is doubtful that
all populations have exactly the same or constant local variance effective sizes through time, so
constancy of divergence is a poor assumption for population trees. Fig. 7.5B shows a “relaxed” tree

212 CHAPTER 7 HUMAN POPULATION HISTORY



with the same topology (that is, the same hierarchy of populations formed by splits of ancestral
populations, ignoring the branch lengths) that drops the constant rate of divergence assumption. These
population trees are typical for the human genetic literature in that they show that the oldest “split” was
between African and non-African populations, with more recent “splits” among non-African
populationsdjust as was the case in the network analysis shown in Fig. 6.14.

The strict and relaxed trees in Fig. 7.5 share the assumption that human evolutionary history has
been dominated by “splits” of ancestral populations into isolated descendant populationsdan
assumption referred to as treeness. Most of the computer programs and algorithms used to estimate a
tree from genetic distance data will generate a tree regardless of the validity of this assumption. Hence,
the most basic question about population trees is not the type of genetic distance used or the particular
phylogenetic algorithm implemented to estimate the tree, but rather “To tree or not to tree, that is the
question” (Smouse, 1998). Smouse’s answer was simple; when dealing with intraspecific samples,
populations often define an interconnected network due to gene flow and admixture rather than an
evolutionary tree (Smouse, 1998, 2000). Why then do population trees dominate the human evolu-
tionary literature and not network diagrams (e.g., Fig. 6.14) that do not assume a treelike structure
(Bapteste et al., 2013)? The answer is that most investigators that generate population trees for humans

FIGURE 7.5

Panel A shows the strict clocklike maximum likelihood tree for eight human populations from four major

geographical areas inferred from population genetic distances calculated from microsatellite loci allele

frequencies. Panel B shows the maximum likelihood relaxed tree estimated that allows each population to evolve

at a different rate. The length of all branches reflects the estimated genetic distances accumulated on that portion

of the tree.

Modified from Long, J., Kittles, R., 2003. Human genetic diversity and the nonexistence of biological races. Human Biology

75, 449e471.
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invoke the splitting/isolation assumption without ever testing its validity. Treeness is typically an
unstated assumption that is implicitly regarded as being true without testing. Given that other analyses
indicate that gene flow and admixture have played an important role in human evolution since at least
the mid-Pleistocene (Fig. 7.4) and other methods of examining population structure, such as isolation
by distance (Fig. 6.6) fit the human data well without invoking any splits or isolation at all, the
assumption of a treelike structure among human populations should be tested before accepting a
population tree.

The sum of the branch lengths between any two populations in a population tree should ideally be the
same as their observed pairwise population genetic distance. One class of testing the fit of the data to a
tree is to measure how close the raw genetic distance data fit to the estimated branch length sums in the
tree. One of the earliest measures of this type is the cophenetic correlation; simply the correlation be-
tween the observed genetic distances between populations with the expected genetic distances assuming
an optimized tree (Rohlf, 1993). Many human datasets were scored with this measure, all of which had
come from publications that had presented population trees, but not a single dataset fit the constraints of
an evolutionary tree with this measure using the recommended thresholds of the cophenetic correlation
(Templeton, 1998). A major problem with the cophenetic correlation is that the thresholds used to judge
goodness of fit are heuristic and are not based on an evaluation of statistical significance. The reason is
that these distances are not independent and the estimated tree distances were optimized to fit the
observed distance, thereby always insuring a positive correlation. As a result, the usual statistics used to
evaluate the significance of a correlation coefficient are not applicable to the cophenetic correlation.
Cardona et al. (2018) have worked out some statistical properties of the cophenetic correlation under
specific models, so this old measure might be more useful with further statistical work.

A statistical test of the null hypothesis of a population tree was presented by Cavalli-Sforza and
Piazza (1975). Long and Kittles (2003) updated this test and corrected some minor errors. This test is a
maximum likelihood ratio test of the goodness of fit, and thereby ideally requires that the population
tree be estimated by maximum likelihood. The trees shown in Fig. 7.5 were estimated by maximum
likelihood, so this likelihood ratio test is applicable to these trees. The test of the goodness of fit of a
strict population tree (Fig. 7.5A) is rejected with a p-level of 3.8 � 10�49. The fit to a relaxed tree
(Fig. 7.5B) is also rejected with a p-level of 1.3 � 10�9. Hence, there is an overwhelming rejection of
the null hypothesis that these human populations fit a population tree, whether strict or relaxed.

A major impediment to implementing this likelihood ratio test is that estimating a population tree
with maximum likelihood is computationally intensive and indeed becomes impractical with large
datasets. For example, Hunley et al. (2016) constructed a population tree from 52 populations scattered
over the world scored for 645 autosomal microsatellite loci in 1037 individualsda dataset that was
largely identical to that used in the construction of Fig. 6.6 showing isolation by distance. These data
were too large to make maximum likelihood estimation of the tree practical, so instead neighbor
joining was used (Chapter 5), although the root of the tree was obtained by minimizing the likelihood
ratio test statistic. Fig. 7.6 shows the resulting relaxed tree. By substituting the neighbor-joining
estimated tree distances for the maximum likelihood distances, the likelihood ratio test could be
evaluated [although this was not done by Hunley et al. (2016)], with the results shown in Table 7.2 for
the total tree and various subtrees. As can be seen, the results indicate that the fit of these trees to the
data can only be described as abysmal. Some of this abysmal fit could be due to using neighbor joining
distance estimates instead of maximum likelihood estimates, but the fit is so extremely poor that unless
the neighbor joining tree is greatly different from the maximum likelihood tree, it is unlikely that this
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would improve the extraordinarily low p-values to above 0.05. This conclusion is reinforced by the fact
that the relaxed tree based on a much smaller dataset for which maximum likelihood could be used
(Fig. 7.5B) also gave an extremely poor fit. Finally, the population tree shown in Fig. 7.6 is difficult to
reconcile with the excellent statistical fit of the isolation by distance/resistance model shown in Fig. 6.6
based on almost the same data. If a human population tree did exist, there should be strong breaks and a
steplike appearance in genetic distance versus geographical/resistance distance plots (Templeton,
2013). Fig. 6.6 shows that this is not the case. Note that the “splits” in this tree are mostly ordered by
geographical position and the predicted distances in the “tree” increase with increasing geographical
distances between pairs of populations, as would happen if data from an isolation by distance model
were forced into a treelike structure. In light of Fig. 6.6, this is not surprising.

FIGURE 7.6

A relaxed neighbor joining population tree of 52 human populations. Colors correspond to geographic regions:

sub-Saharan Africaddark blue; North Africa and the Middle Eastdorange; Europedbrown; Central South

Asiadgreen; Oceania, light blue; East Asia, red; Americas, purple.

Modified from Hunley, K.L., Cabana, G.S., Long, J.C., 2016. The apportionment of human diversity revisited. American Journal of

Physical Anthropology 160, 561e569.
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Another method of testing for treeness avoids the necessity of estimating a tree by directly
examining the constraints imposed upon genetic distances by a treelike structure. Many of these tests
are based on the fact that four populations or other taxa extracted from an evolutionary tree have one
and only one internal branch in an unrooted tree (Fig. 7.7). One test based on this topological constraint
of trees is the four population Z test of Reich et al. (2009). Assuming that there is a tree and that
the topology of the tree is that given at the top of Fig. 7.7, then the difference in allele frequencies

FIGURE 7.7

The three possible unrooted evolutionary tree topologies of four populations (P1, P2, P3, and P4). All topologies

have exactly one internal branch, shown by the dashed line.

Table 7.2 The Goodness of Fit of the Population Tree Shown in Fig. 7.6 and Various Subtrees to
the Underlying Genetic Data

Population Tree
Goodness of Fit
Statistic Degrees of Freedom p

Total Tree 12,832 1282 <10�200

African Tree 563 15 2.5 � 10�110

Non-African Tree 8693 953 <10�200

West Eurasia and
Central-South Asia

3224 195 <10�200

East Asia, Oceania, and
the Americas

1628 255 2.1 � 10�198

Data from Hunley, K.L., Cabana, G.S., Long, J.C. 2016. The apportionment of human diversity revisited. American Journal of
Physical Anthropology 160, 561e569.
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(the underlying basis of population genetic distances) between populations P1 and P2, say p1 � p2 for a
particular allele at a particular locus should be uncorrelated with the difference in allele frequencies for
the same allele between populations P3 and P4, p3 � p4 because the population pair (P1, P2) does not
share any common evolutionary history with the (P3, P4) pair (that is, the internal branch of the tree
does not affect these allele frequency differences). If there is a tree, the expected value of the product
(p1 � p2) (p3 � p4) should be zero, and this statistic can be normalized to provide a test of deviations
from 0. Reich et al. (2009) applied this approach to SNP data on 25 human populations from India
along with a few additional populations from Africa, Europe, and East Asia. They examined each SNP
allele across all three topologies and many different combinations of four populations, adjusting for
linkage disequilibrium across the SNPs. Almost every combination of tree topology (Fig. 7.7) and four
populations resulted in a strong rejection of the null hypothesis of a population tree. A principal
component analysis (PCA) (Chapter 6) revealed a strong eastewest gradient in the 25 Indian
populations in the degree of relatedness to Chinese versus Europeans, a result more consistent with an
isolation by distance model than with a tree model.

Another four-population test is the ABBA/BABA test, but as that test has been used extensively for
the analysis of ancient DNA, further discussion will be delayed until the section on ancient DNA later
in this chapter. Other four-population tests have been derived as well (Peter, 2016). All that we need to
say now is that these tests also result in the rejection of both modern and ancient human populations
being related to one another in a treelike fashion.

The literature on hypothesis testing for a treelike structure for human populations is easy to
summarize: the null hypothesis of a tree is almost always rejected. The fit of human population data to
an evolutionary tree is typically abysmal, yet the depiction of human population trees is widespread
throughout the human genetic literature. There is no justification for this in terms of hypothesis testing,
so despite the popularity of population trees, they are an inappropriate and misleading depiction of
human evolutionary history.

One common way of trying to salvage the use of population trees is to assume that humans have a
treelike evolutionary history with some limited gene flow or admixture after the “splits” that can be
overlaid upon the tree in a parsimonious fashion, but at a level insufficient to erase the underlying
treelike structure. For example, when advocates of the OAR model were criticized for misrepresenting
the multiregional model (Fig. 7.2), they responded by adding in a few arrows to represent sporadic
genetic interchange between lineages in the candelabra model (Fig. 7.2A), as shown in Fig. 7.8.
Diagrams similar to Fig. 7.8 soon became the norm for portraying the “multiregional model” in human
evolutionary genetics, rather than the trellis structure of the original multiregional model (Fig. 7.2B).
Population trees with some occasional genetic interchange are now commonplace in the human
genetic literature and are often the basis for many of the analytical techniques used to investigate
admixture and gene flow in human evolutionary history.

An example of this approach is the work of Fagundes et al. (2007), the only paper that purported to
provide statistical evidence in favor of the out-of-Africa replacement model. They simulated three
basic models of human evolution: the replacement model (Fig. 7.1B), a model identical to Fig. 7.1B
but allowing admixture of the expanding African population with Eurasian populations, and the
candelabra treelike model with weak gene flow (Fig. 7.8), which they called the “multiregional
model.” Note that all of the models simulated are either a population tree (their out-of-Africa
replacement model) or treelike with very weak or sporadic genetic interchange (their model with only
a single admixture event in all of human history over the last 2 million years, and their “multiregional”
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model). They tested these models through computer simulations coupled to the statistical method of
approximate Bayesian computation (ABC) (Lintusaari et al., 2017). In ABC, detailed models are
constructed to describe evolutionary history. Such models often depend upon many parameters whose
values are not known. Prior probability distributions are assigned to these parameters, and each model
is simulated many times, drawing parameter values from the prior distributions. Various summary
statistics are calculated at the end of each simulation and compared to the summary statistics calcu-
lated from the real data. The results of repeated simulations are used to approximate the posterior
probabilities on the parameters by examining the fit of simulated summary statistics to the observed
summary statistics. These posterior probabilities can then be used to estimate parameters and test
hypotheses. When multiple models are simulated, it is also possible to assign approximate posterior
probabilities to the various models. The resulting posterior probabilities on the three models consid-
ered by Fagundes et al. (2007) were 0.781 for the replacement model, 0.001 for the model allowing
admixture, and 0.218 for the “multiregional” treelike model.

These model posterior probabilities reveal serious problems for the claimed support of OAR.
First, their ABC simulations did not discriminate between OAR and the candelabra treelike model
with weak gene flow, which had a posterior probability of 0.218da value not generally regarded as
low enough to reject the model. Hence, there was no significant discrimination between OAR and
their “multiregional” model. Second, their seemingly strong rejection of any admixture between
“modern” and “archaic” populations in Eurasia is particularly troubling. Fagundes et al. (2007)

FIGURE 7.8

A modified candelabra model of human evolution that allows for weak and sporadic gene flow while retaining a

treelike structure.
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treated the three simulated models of human evolution as mutually exclusive alternatives. However,
their replacement model is actually a special case of their admixture model that occurs whenM ¼ 0,
where M is their admixture proportion that can vary from 0 (no admixture) to 1 (complete
replacement by Eurasians). One of the required properties of probability measures is that the
probability of an event nested within a more general event must be less than or equal to the prob-
ability of the general event. This is an absolute property of all probability measures. Obviously,
0.781 is not less than or equal to 0.001da mathematically impossible result for a probability
measure. Such a violation of elementary probability theory and Boolean logic is called incoherence,
so their rejection of admixture is an incoherent inference (Templeton, 2010a). By using the same
posterior probabilities generated by their simulations with a well-established coherent Bayesian test
(Lindley, 1965), the null hypothesis of no admixture (M ¼ 0; that is, OAR) was rejected relative to
the more general admixture model with a probability less than 0.025 (Templeton, 2010a)da reversal
of the relative probabilities of these two models by five orders of magnitude! It is important to note
that this reversal is not a flaw of the ABC method per se because the reversal is based on the same
ABC posterior probabilities. The only difference is in whether or not these same posterior proba-
bilities are used in a coherent (nested models) or incoherent (mutually exclusive models) fashion.
Hence, contrary to the claims of Fagundes et al. (2007), the ABC approach when used in a coherent
fashion rejects replacement in favor of limited admixture.

There are also serious problems with the construction and use of priors in Fagundes et al. (2007)
that need to be pointed out in light of the popularity of Bayesian analyses in human population
genetics. One of the main strengths of the Bayesian approach is the ability to incorporate prior
information, and there are commonly accepted guidelines in how to transform prior information into
prior probability distributions (Garthwaite et al., 2005). Producing informative and mathematically
appropriate priors is a critical step because Bayesian model selection can be highly sensitive to priors
(Sinharay and Stern, 2002), and this sensitivity has been found for ABC (Oaks et al., 2013). First,
models that are not simulated represent implicit priors of absolute certainty (a prior probability of 0),
which in turn can lead to significant bias in an ABC analysis (Ewing and Jensen, 2016). For example,
the NCPA analysis discussed earlier indicated an important role for isolation by distance since the mid-
Pleistocene (Fig. 7.4). Subsequent computer simulations reinforced this conclusion. Eswaran et al.
(2005) simulated the OAR model and an isolation-by-distance model (Fig. 7.2B) and found that
isolation-by-distance simulations fit the genetic data much better than, indeed “refuted,” the OAR
model. In contrast, Ray et al. (2005) simulated at about the same time the OAR model and the
“multiregional model” and claimed that their simulations “unambiguously” favored OAR and refuted
the “multiregional model.” Despite the seemingly opposite conclusions of these two simulation papers,
in fact there is no contradiction between them because the “multiregional model” of Ray et al. (2005)
was the candelabra treelike model with weak gene flow shown in Fig. 7.8. Hence, both simulations are
consistent with the ordering: multiregional with isolation-by-distance > out-of-Africa replace-
ment > candelabra treelike model with weak gene flow. Hence, both NCPA and these computer
simulations provided prior evidence that an isolation-by-distance model fits the human data better than
the population tree models. Fagundes et al. (2007) ignored these prior studies and simulated only tree
and treelike models. By assigning implicitly all isolation-by-distance models a prior probability of 0,
there was no possibility of nonetreelike models doing better than OAR, despite prior published
knowledge. Moreover, none of the tree and treelike models simulated by Fagundes et al. (2007)
contained the mid-Pleistocene Acheulean expansion, so once again a prior was invoked implicitly of
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absolute certainty that there was no Acheulean expansion and that all the evidence from genetics,
archaeology, paleontology, and paleoclimatic studies mentioned earlier that indicated such an
expansion was absolutely false. Much of this information was published long before 2007, but
Fagundes et al. gave no reason for why they were completely certain with no room for any doubt that
all these prior publications from so many fields were false. This absolute belief that no Acheulean
expansion occurred means that the simulated populations would be genetically isolated for far longer
periods of time than the real populations that had experienced the Acheulean expansion. With
increased time of isolation, genetic divergence between African and Eurasian simulated populations
would be accentuated (Chapters 4 and 6), which in turn would create a stronger signal for admixture
for a given M value in the simulations compared with the real populations that had experienced the
Acheulean expansion. This creates a strong bias to underestimate M in their ABC analysis and biases
their posterior probabilities against the admixture model. Such absolute beliefs with no possibility of
error are dangerous in science and are certainly inimical to the basic philosophy of Bayesian statistics
that prior information should be used.

Concerning the explicit priors, Fagundes et al. (2007) simply invoked the priors without any
indication of what prior information was used (or ignored). Their priors were often incompatible with
previously published data. For example, there was already much anthropological and paleoclimatic
literature that modern humans had expanded beyond sub-Saharan Africa by at least 125,000 years ago
(some of this was referred to earlier in this chapter) and NCPA indicated a genetic date of
130,000 years ago well before the publication of Fagundes et al. (2007). Nevertheless, the prior for the
time of expansion was a uniform distribution over the range of 1600 to 4000 generations ago
(40,000e100,000 years ago using a generation time of 25 years). It was consequently statistically
impossible to obtain an estimate of the timing of this expansion that would be compatible with these
prior studies. Moreover, their construction of this prior violated one of the most fundamental rules in
generating mathematically appropriate priors in Bayesian analyses. Garthwaite et al. (2005) criticize
the use of uniform priors because it is almost always the case that the actual prior data indicate a
greater probability toward the center of the range as opposed to the range limits. More importantly,
unless the range represents the absolute physical limits of the possible values of the parameter of
interest, it is “unreasonable to give zero probability to the event that the quantity lies outside the range”
(p. 688, Garthwaite et al., 2005). Once again, this is the danger of priors of absolute certainty; in this
case absolute certainty about the range. We already saw an example of this in Chapter 1 in the Bayesian
estimate of allele frequencies in which using a uniform distribution of restricted range resulted in a
highly biased estimate that appeared to have great statistical confidence as an artifact of an inappro-
priate uniform prior. Instead, one needs to use priors that cover the entire range of possible parameter
values and adjust their mean and variance to concentrate the prior probability into the smaller range
suggested by the prior data but not to exclude completely values outside this range (recall the beta
distribution in Fig. 1.3). In this regard, NCPA also assigned probability distributions to times of
inferred events, but in NCPA a gamma distribution was used that is distributed between 0 (the present
time) and infinity (the distant past), but with two parameters that can concentrate the probability mass
into the region suggested by the data. Altogether, Fagundes et al. (2007) defined 32 priors, all of which
were either uniform priors or log-uniform priors. In only 1 of these 32 uniform priors did the prior
cover the entire possible range. It is therefore not surprising that all of the major conclusions of that
paper have been falsified by subsequent data and discoveries, in contrast to the inferences from NCPA
that have been confirmed.
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ABC is not the only Bayesian method for estimating and testing models of the human evolutionary
past. Another common method is to estimate the posterior probabilities through a computer-intensive
procedure called theMarkov chain Monte Carlo (MCMC) method. MCMC is used not only in tree-
based methods for evolutionary history (e.g., Kuhlwilm et al., 2016) but also underlies many other
commonly used programs in population genetics, such as STRUCTURE (Chapter 6). A Markov chain
is a stochastic process in which the probability of a particular state of the system in the next time
interval depends only on the current state and a set of defined transition probabilities. The Monte Carlo
part refers to the use of a random number generator to simulate the transition probabilities from the
known current state to the next state. Basically, an initial state is assumed (often close to the prior mean
parameter values in a Bayesian analysis) and the Monte Carlo method is used to generate the state at
the next time interval using the defined transition probabilities. This new state is retained and replaces
the previous state if it fits the data better using some predefined optimality criterion; otherwise, one
goes back to the initial state. This sampling process is repeated to generate a chain of states from their
predecessors. Because the state at iteration i is generated from iteration i � 1, adjacent states are highly
correlated. Hence, the initial state can have a strong effect on the simulated subsequent states. The
early states are ignored because of this sensitivity to the initial state, and this is called the burn-in
period. In some cases, several distinct stationary chains states may exist, in which case the initial
state can have a lasting effect and the global optimal stationary state may not be encountered in the
chain. Therefore, it is often wise to redo the simulations with more than one initial state. After a
stationary chain has been reached, the states in the chain are sampled to estimate the posterior dis-
tributions (or to evaluate some goodness of fit statistic). Sampling is generally done every nth state in
the stationary chain, with the value of n chosen to be large enough to ensure that the sampled states
have little correlation with one another. The length of the burn-in period and the value of n to ensure
low correlations between sampled states can impose a severe penalty in computational efficiency, and
moreover, it is often wise to do some preliminary simulations to make sure an adequate burn-in period
and n value are chosen. Nevertheless, MCMC is often quite feasible with current computers.

One major problem with all these approaches is that they must simulate not only the hypothesized
historical/demographic processes but also a mutational model to generate the genetic diversity over
space and time. Because of computational constraints, the mutational models used are typically simple
single-nucleotide site models and frequently the infinite-sites model (Hey, 2010). Strasburg and
Rieseberg (2010) investigated the robustness of these treelike isolation-followed-by-migration models
for making historical/demographic inferences and discovered that such models are generally robust to
small-to-moderate deviations in their demographic assumptions but not in their mutational assump-
tions. This is troubling because almost all computer simulation models in human genetics do not use
the realistic multinucleotide context-dependent mutational models discussed in Chapter 2 because of
computational constraints, with an unknown impact on the resulting inferences.

Another issue to keep in mind is that the “best” model that emerges from these model-based
simulations does not mean that other models are wrong or could not fit the data even better.
Limiting investigation only to treelike models has filled the human evolutionary history literature with
estimates of “events” that are tree specific and that may not have occurred at all. For example,
Fagundes et al. (2007) and many others who only use analytical techniques that assume a tree or
treelike structure give estimated “divergence times” between human populations that had a “split.”
However, these “divergence times” are only meaningful under a treelike structure and are meaningless
under models such as isolation by distance in which genetic distances arise between populations that
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may have always been in genetic contact with no “split” (Chapter 6). This is particularly true when the
geographical sampling is sparse in which large genetic distances can arise between scattered locations
that are really part of a continuum of genetic exchange (Fig. 6.12). These “divergence times” are
simply a necessary outcome of using analytical techniques that assume a treelike structureda testable
assumption that is generally invoked without testing. The human evolutionary literature is also filled
with estimates of past population sizes based on treelike models. However, when past populations are
structured by patterns of gene flow (Chapter 6), Mazet et al. (2016) show that any inferential model
that ignores population structure will infer population size changes that are spurious. The inferences of
past population size are even more dubious when past population structure changes. For example, the
expansion of modern humans out of Africa would have changed the isolation-by-distance patterns with
Eurasians and those populations that remained in Africa. As a consequence, Mazet et al. (2016) have
called for a major reevaluation of what genomic data can actually tell us about the past population sizes
of our species.

To avoid such artifacts, it is necessary to explore the potential model universe without assuming a
priori models. In this regard, multilocus NCPA is one of the few phylogeographic techniques that
generates the model directly from the data through hypothesis testing. Although some have portrayed
NCPA and fully specified model-based techniques as antagonistic competitors (Beaumont et al., 2010),
in reality NCPA and model-based approaches are synergistic (Templeton, 2010b). NCPA can delineate
the model universe that is compatible with the data through a hypothesis-testing framework and
therefore help avoid the implicit priors of absolute certainty that bias model-based approaches.
However, NCPA, being mostly nonparametric, offers no insight into most of the quantitative details of
the evolutionary history of the populations, unlike model-based approaches. NCPA and model-based
approaches have complementary strengths and weaknesses, and when used together can produce
inferences that are stronger than either technique can produce alone (Strasburg et al., 2007).

Given the extremely poor fit of human data to population trees (e.g., Table 7.2), the dominance of
treelike models in human evolutionary genetics is difficult to justify, particularly because alternatives
exist to treelike models. For example, there is nothing inherent in the ABC technique that requires the
simulation of only treelike models; rather, isolation by distance and other spatial models can be used in
ABC (Dellicour et al., 2014). Pugach et al. (2016) were interested in reconstructing the recent
evolutionary history of human populations from Siberia. They analyzed their genomic data with the
program TreeMix (Pickrell and Pritchard, 2012) that adds on admixture events as needed onto a
treelike structure. However, Pugach et al. (2016) found the TreeMix results difficult to interpret and in
contradiction to well-accepted aspects of the population history. They also used a Bayesian analysis
called SpaceMix (Bradburd et al., 2016) that fits various types of genetic interchange in a spatially
explicit fashion. The SpaceMix results fit the genomic data better without contradictions and indicated
a history that included isolation-by-distance, long-distance dispersals and multiple admixture
eventsdall of which violate the assumption of a population tree.

The network models described in Chapter 6 also provide insight into human evolutionary history
without making the a priori assumption of a treelike structure. Human reproductive history over
generations has traditionally been portrayed in two different manners: as pedigrees displaying a
reticulating trellis of reproduction, or as population trees displaying a single line of lineal decentd
both are examples of networks (Morrison, 2016). It is important to note that a population tree is a
special type of network, so treelike structures are nested within the hypothesis of a generalized
network. Hence, networks allow the investigation of evolutionary histories that may or may not fit a
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population tree (Bapteste et al., 2013). For example, there is information about human evolutionary
history in the networks shown in Fig. 6.14. The strongest and deepest aspect of human population
structure revealed by that network analysis is a highly significant differentiation between African and
non-African populations (Fig. 6.14C). This could be explained by the OAR tree model (Fig. 7.1B), but
it also corresponds well to the inference from NCPA of an expansion of modern humans out of Africa
with limited admixture with Eurasians (Fig. 7.4). Hence, the network does not necessarily indicate that
Africans and non-Africans “split”dindeed, many studies indicate that genetic interchange has
occurred between these areas since the expansion event (Hodgson et al., 2014; Pickrell et al., 2014;
Llorente et al., 2015; Cerezo et al., 2012). Network analyses can also be combined with other
analytical procedures that do not make an assumption of a treelike structure, such as PCA (Chapter 6).
For example, one hypothesis about human history that has long attracted attention is the Neolithic
expansion of agriculture out of the Near East into Europe. Was this an expansion of agricultural
knowledge or an expansion of human populations from the Near East into Europe who brought
agriculture with them (Cavalli-Sforza et al., 1994)? Paschou et al. (2014) used PCA on 75,194
autosomal SNPs followed by identifying the top 10 nearest neighbors of each individual outside its
population of origin in the space defined by the top five principal components (note, the dimensionality
of the unreduced genetic space is 75,194). This produces an n-by-p table where n is the number of
individuals sampled and p is the number of populations sampled. The (i,j)th entry denotes how many
neighbors individual i has in population j. From this table they create a population distance measure
that is a scaled and normalized (for sample sizes) count of the number of nearest neighbors that
individuals of population X have in population Y. A network is then constructed with populations as
nodes and these new PCA-derived distances weighting edges between nodes by the minimum of the
distance of X to Y versus the distance of Y to X (these distances are not necessarily symmetric). The
resulting network overlayed upon geography indicated that Neolithic farmers did indeed expand out of
the Near East into Europe along a northwestern route from the Near East, coupled with a maritime
route and island hopping to reach Southern Europe (Paschou et al., 2014). As these examples show, we
do not have “to tree” in order to study human evolutionary history, and whenever we decide “to tree,” it
should only be after we have confirmed that the underlying data fit “treeness.” This is particularly
important because tree-based methods yield different inferences about past admixture and gene flow
than methods that start with a general network (Wen et al., 2016). This discrepancy is particularly
troublesome given the abysmal fit of treelike structures to human populations whenever tested and the
fact that trees are nested within network models. This means that the many “splits,” “divergence
times,” specific admixture events, and past population sizes estimated by assuming a treelike structure
should be treated with extreme skepticism.

ANCIENT DNAdTHE ORIGINS OF THE HUMAN GENE POOL
The most direct way of studying the past is to sample individuals from the past. Recent technical
advances sometimes even allow the reconstruction of ancient genomes and are pushing farther and
farther back in time our ability to recover ancient DNA (Orlando et al., 2015; Ermini et al., 2015;
Krause and Pääbo, 2016). These technical breakthroughs have changed our understanding of human
evolutionary history, but they do not replace the importance of studies on current populations. Many
inferences in population genetics and genomics depend upon samples from populations and not
individuals scattered widely through space and time. Population samples become increasingly difficult
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to obtain from ancient DNA techniques the farther back in time we go. Nevertheless, the ancient DNA
surveyed from even sparse samples can produce important insights into human evolution, particularly
when used in conjunction with samples from living populations. In this manner, our knowledge of
ancient human evolution is greatly enhanced by the synergy between ancient and modern sampling.

The excitement in ancient human DNA studies escalated with a draft sequence of the Neanderthal
genome derived as a composite of three individuals identified as Neanderthals by morphological
criteria that were found in a cave in Croatia, dating to 34,000e43,000 years ago (Green et al., 2010).
This study revealed that Neanderthals shared genetic variants with living humans, particularly
Eurasians, thereby indicating some gene flow between Neanderthals and the population of modern
humans that had expanded out of Africa. This study was quickly followed by another genome derived
from the finger bone of a single 50,000-year-old individual of unknown morphological affinity from
Denisova Cave in Siberia (Reich et al., 2010). This genome indicated additional gene flow from
archaic Eurasians into the expanding out-of-Africa modern population, this time particularly affecting
modern Pacific (Oceania) populations. Additional Neandertal and Denisovan genomes reinforced the
conclusion of geographically widespread genetic interchange of archaic Eurasians with the expanding
modern human population (Haber et al., 2016; Kuhlwilm et al., 2016; Prufer et al., 2014; Sawyer et al.,
2015; Fu et al., 2014). Moreover, a genome from a 37,000e42,000-year-old fossil that had anatom-
ically modern features from Romania had 6%e9% Neanderthal-derived alleles, including three large
segments of Neanderthal ancestry of over 50 centimorgans in size. This indicates a Neanderthal
ancestor just four to six generations ago (Fu et al., 2015), providing direct evidence for interbreeding in
that time period. Overall, 3.7%e7.3% of the modern non-African gene pool is from Neanderthals, as
inferred by a maximum likelihood estimation procedure that makes use of genomic blocks (Lohse and
Frantz, 2014), with an additional 4%e6% Denisovan ancestry in the Pacific and lesser amounts in
eastern Asia and the Americas (Haber et al., 2016). These admixture estimates are based on extremely
small sample sizes and can only go up as additional samples of archaic Eurasians are analyzed. For
example, the addition of a single new Neanderthal genome identified 10%e20% more Neanderthal
DNA in present-day humans, including admixed regions that are likely under natural selection (Prüfer
et al., 2017). These results strongly confirm the NCPA analysis of human evolution (Fig. 7.4), which
had estimated a 10% rate of overall input from archaic Eurasians (Templeton, 2007).

The abovementioned conclusions were based on a variety of statistical tools for inferring inter-
breeding using ancient DNA (Harris and DeGiorgio, 2017), but the most commonly used statistics are
variants of the four-taxa test for treeness discussed in the previous section, particularly various
versions of the ABBA/BABA test (Green et al., 2010; Durand et al., 2011), also known as the doubly
conditional frequency spectrum test (Eriksson and Manica, 2014). These statistics are commonly
called “D” statistics, but to avoid confusion with the common use of the symbol “D” for linkage
disequilibrium (Chapter 1), we will symbolize these tests by “DC” for doubly conditional tests. This
test is first conditioned on one of the four populations being an outgroup, say P4. The outgroup species
is typically the common chimpanzee or a human population thought to be distantly related to the other
three populations. Two populations (P1 and P2) are current or more modern and are assumed to be
evolutionarily closer to one another than either is to the third population, P3, typically an archaic
human population. Hence, if a population tree exists, it should be the tree topology given at the top of
Fig. 7.7. Second, the test is conditioned on using only a subset of the variable sites found in the
genomes being compared. Specifically, the outgroup allele, say A, must be found in only one of
the other populations, and a derived allele, B, must be found in the other two populations. Under the
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assumptions of no homoplasy and that the population tree is the same as the gene tree, the derived
allele Bmust have arisen on the internal branch, resulting in the allele configuration BBAA for the four
populations when ordered as (P1, P2, P3, P4). However, as we saw in Chapter 5, gene or haplotype trees
can often be topologically inconsistent with species trees due to retention of ancestral polymorphism
and lineage sorting from genetic drift. Retention of ancestral polymorphism and lineage sorting from
genetic drift is expected to be even more prevalent for population trees, so deviations from the BBAA
pattern are expected under coalescent theory. Moreover, homoplasy can also create such deviations,
but that possibility has not been formally considered in the derivations of the DC test. The two allelic
pattern deviations from the assumed population tree would be ABBA (for the bottom tree in Fig. 7.7)
and BABA (for the middle tree in Fig. 7.7), always using the order (P1, P2, P3, P4). Since the deviations
are assumed to be due to random forces, they should be equally frequent under the population tree
hypothesis. However, genetic interchange among the populations and ancient population structure can
create biases in the type of deviation most frequently found (Durand et al., 2011). The simplest form of
a DC type statistic is:

DC ¼ NðABBAÞ � NðBABAÞ
NðABBAÞ þ NðBABAÞ (7.1)

where N(XYZW) is the number of sites at which the pattern XYZW occurred. Under the null hypothesis
of a population tree, the expected value ofDC is zero, and the statistical significance of deviations from
zero can be evaluated (Durand et al., 2011). The form of DC in Eq. (7.1) is applicable when single
genomes from each population are being compared, but it can be extended to population samples with
differing allele frequencies (Durand et al., 2011; Harris and DeGiorgio, 2017).

Most derivations of DC tests assume a model of a single, instantaneous admixture event between
two of the populations. It is therefore not surprising that significant deviations from zero of the DC
statistic are almost universally interpreted as admixture between two populations in the human ancient
DNA literature. However, DC is a test of population treeness and not just admixture (Peter, 2016). For
example, Durand et al. (2011, p. 2242) state that “Although we modeled admixture with an instan-
taneous episode of gene flow, this conclusion holds for ongoing migration between P3 and P2 or P1.”
Peter (2016) showed that isolation by distance can lead to significant DC tests. Eriksson and Manica
(2014) showed that isolation by distance and population structure (Chapter 6) are indistinguishable
causes of significant DC results from simple admixture, and one of the main culprits for the failure of
these tests to distinguish between various models of genetic interchange is spatial coarseness of the
samples (recall Fig. 6.11). However, some extensions of the DC class of tests can distinguish between
genetic interchange and ancestral population structure (Theunert and Slatkin, 2017). Hence, the
ancient DNA papers cited earlier that all purport to show “admixture” in reality only show that modern
human populations do not have a treelike relationship to ancient Eurasian genomes. The cause of the
rejection of a treelike relationship could be due to a single admixture event, multiple admixture events,
or various types of recurrent gene flow, such as isolation by distance or recurring long-distance
dispersal.

NCPA also indicated that admixture and recurrent gene flow, restricted by isolation by distance but
with some long-distance dispersal, have been important factors in human evolution since at least the
mid-Pleistocene. Ancient DNA studies corroborate that conclusion. Unlike NCPA, ancient DNA can
directly indicate the genetic state that existed at a particular place and time in the past, and these direct
observations indicate much movement of individuals and/or populations before, during, and after the
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expansion of modern humans out of Africa (Pickrell and Reich, 2014). For example, although the
admixture between modern humans and Neanderthals is commonly modeled as a single, instantaneous
event, the age of the fossils and length of the introgressed genomic segments indicate a variety of times
of genetic interchange: 100,000 years ago (Kuhlwilm et al., 2016); 52,000e58,000 years ago (Fu
et al., 2014; Seguin-Orlando et al., 2014); and 37,000e42,000 years ago (Fu et al., 2015). MtDNA
indicates Middle Pleistocene gene flow into Neanderthals from Africans between 413,000 and
268,000 years ago (Posth et al., 2017), confirming the NCPA inference of trans-Saharan dispersal in
the mid-Pleistocene on. Obviously, the gene flow between modern humans and Neanderthals was not a
single event over a short period of time, but rather was multiple admixture events and/or recurrent gene
flow spread out over several tens of thousands of years. Moreover, this gene flow went in both
directions, with multiple backcrosses introgressing modern DNA into Neanderthals (Kuhlwilm et al.,
2016) and introgressing Neanderthal DNA into modern humans (Fu et al., 2015). Genetic interchange
was also occurring among archaic populations well before the expansion of modern humans out of
Africa. Using a tree-based Bayesian analysis, Kuhlwilm et al. (2016) inferred gene flow among
Neanderthals, Denisovans, and another archaic population. Ancient DNA studies from human fossils
found in Spain dated to 430,000 years ago revealed mtDNA closely related to the Denisovan mtDNA,
but nuclear DNA more closely related to Neanderthals (Meyer et al., 2014, 2016), thereby indicating
the movement of genes across the Eurasian continent during the Middle Pleistocene, as previously
inferred from NCPA (Fig. 7.4). Sikora et al. (2017) obtained ancient DNA from several anatomically
modern individuals from western Russia dating to about 34,000 years ago that indicated a population
structure similar to current humans, indicating much gene flow and outbreeding in that ancient
population.

Another indicator of the extensive role of gene flow in human evolution can be seen in the genetic
similarity between archaic and modern populations. As shown in Chapter 6, strong gene flow causes
populations to have similar gene pools. Although the ancient DNA literature on humans tends to
emphasize the differences between Neanderthals, Denisovans, and modern humans, these human
populations have a high degree of genetic similarity when placed in a more general taxonomic context.
For example, Stoeckle and Thaler (2015) examined a 648 bp segment of the mitochondrial CO1 gene
in a large number of species, including modern and ancient human mtDNA genomes. This segment of
mtDNA tends to evolve very rapidly in most species and is therefore used as a “DNA barcode” to
distinguish species, subspecies, and populations across the animal kingdom (Ratnasingham and
Hebert, 2013). Fig. 7.9 shows a heat map of these DNA barcodes for modern humans, Neanderthals, a
Denisovan individual, several individuals from two different subspecies of the common chimpanzee
(Pan troglodytes), and several individuals of bonobos, another species of chimpanzee (Pan paniscus).
In this diagram, the sequences are arrayed against each other so that every sequence (regardless of
species) is compared with every other sequence. Each intersection of sequences is color coded to show
the pairs’ similarity, with dark red being the most similar and dark blue the least. As can be seen from
Fig. 7.9, all humans have a high degree of similarity, both modern and ancient. No human comparison
is as dissimilar as the comparisons between the subspecies of common chimpanzees, and indeed, many
individuals within the same subspecies of the common chimpanzee and within the bonobos are more
different from each other than Neanderthals or the Denisovan are from modern humans. Thus, in
comparison to our closest evolutionary relatives, Neanderthals, Denisovans, and modern humans are
genetically very similar and would not even be recognized as different subspecies using the standard
interpretations of DNA barcoding applied to the rest of the animal kingdom. This high degree of
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similarity indicates much gene flow among these human groups during our recent evolutionary past, as
shown by the ancient DNA studies mentioned above and NCPA.

The ancient DNA studies undermine the population tree models of human evolution, such as OAR
(Fig. 7.1B), and support network or trellis models with much admixture and/or gene flow (Figs. 7.2B
and 7.4). Despite the increasing evidence for a network structure for humanity since at least the
mid-Pleistocene and the continual strong rejection of treeness with modern and ancient DNA datasets,
population treeebased analyses still dominate in the area of human evolutionary history and in the
portrayal of recent human evolution. As a consequence, the literature is filled with estimated
“divergence times” of “splits” of human populations, but these are artifacts of using computer
programs that force a treelike structure upon the data even if the data are not treelike. Rather, the
evidence from both ancient DNA and modern populations clearly indicates that the modern human
gene pool is derived from multiple geographical regions and represents a mixture of many ancient
populations that made unequal contributions to the current gene pool.

ANCIENT DNAdTHE LAST 25,000 YEARS
As we get closer to the present, ancient DNA surveys become more informative about our past as
sample size can increase, adding details that are difficult to infer just from genetic surveys on
contemporary individuals. For example, we mentioned earlier that a PCA/network analysis of
contemporary populations supports the idea that agriculture spread into Europe along with an

FIGURE 7.9

A heat map of the COI barcode in modern and archaic humans and in two species of chimpanzees, bonobos and

the common chimpanzee (chimp), that is represented by two subspecies. Genetic differences on a 0 to 1 scale are

indicated by the color line on the left.

Modified from Stoeckle, M., Thaler, D., 2015. A recent evolutionary origin of most extant animal species? Mitogenome and DNA

barcode evidence from humans and other animals. Genome 58, 285e286.
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expansion of Neolithic farmers out of the Near East (Paschou et al., 2014). However, using data just
from contemporary individuals has still left much controversy over the amount, timing, and
geographical orientations of possible admixture between the Neolithic agriculturists and European
hunter-gatherers (Arenas et al., 2013; Novembre and Stephens, 2008). Moreover, treelike models are
still frequently used to interpret PCA results, but signatures of population range expansion events are
confounded by isolation by distance in PCA (Frichot et al., 2012).

Ancient DNA studies in conjunction with contemporary genetic surveys and archaeological data
have greatly clarified and added much detail to the Neolithic transition in Europe. Archaeological data
imply that an agricultural system arose in the Near East about 11,000 years ago and had reached most
of the European continent by 6000 years ago. Haak et al. (2015) sequenced 69 ancient European
genomes and coupled it with data from 25 previous ancient genome studies, covering the time period
from 3000 to 8000 years ago and included both hunter-gathers and early farmers. The ancient DNA
data were combined with data on 2345 present-day humans. Using PCA, they inferred that the ancient
hunter-gatherers defined a gradually differentiating cline with geographical distance, with the Russian
samples defining the eastern end and western European samples the western end. A similar cline was
found in ancient genomes of 225 individuals spanning the time period from 12,000 to 500 BCE
(Mathieson et al., 2018). This suggests an ancient pattern of isolation by distance of the hunter-
gatherers. The ancient farmers expanded from the Near East along the Mediterranean to Spain and
northwest along the Danube to Hungary and Germanydconsistent with inferences drawn from PCA/
network analyses on contemporary populations (Paschou et al., 2014). There was limited admixture
between the farmers and hunter-gatherers during this northwestern expansion, but with some early
groups in southeastern Europe mixing extensively with hunter-gathers without sex bias, although later
migrations and gene flow were strongly male biased (Mathieson et al., 2018; Goldberg et al., 2017).
Overall, mobility and gene flow increased over time associated with technological advances (Loog
et al., 2017). The farmers showed clear near eastern ancestry and were initially more homogeneous
genetically, with western hunter-gatherer ancestry increasing with time throughout much of Europe
(Haak et al., 2015). This is indicative of recurrent gene flow and/or multiple admixture events. The
eastern hunter-gatherers from Russia showed affinity to ancient North Eurasians that contributed to
both Europeans and Native Americans and later to pastoralists in the Eurasian steppes. These
pastoralists appear to have had genetic input into Central Europe around 4500 years ago, indicative of
a sudden migration. After this initial input, these genes from the steppes spread throughout Europe.
Overall, Haak et al. (2015) suggest two major migrations: first, the arrival and spread of farmers from
the Near East who interbred with western European hunter-gathers and a later expansion of pastoralists
from the Russian steppes into Europe followed by admixture and gene flow.

As mentioned above, one source for the modern European gene pool comes from the Eurasian
steppes, and this steppe population also showed genetic affinity through PCA to an older ancient
genome from a 24,000-year-old Siberian boy and to another ancient genome from south central Siberia
17,000 years ago (Raghavan et al., 2014). The current western Siberians trace 57% of their ancestry to
ancient northern Eurasians represented by this ancient Siberian boy (Wong et al., 2017). Native
Americans also show genetic affinity to these two ancient genomes, such that 14%e38% of Native
American ancestry may have originated from this Siberian population, with most of the remaining
Native American ancestry coming from East Asia (Raghavan et al., 2014). All four-taxa tests using
modern Africans as the outgroup, the 24,000-year-old Siberian genome, modern Chinese, and a variety
of Native American populations significantly reject treeness (Raghavan et al., 2014), indicating once
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again the importance of admixture and/or gene flow in human evolution rather than splits and isolation.
With the addition of present-day genomes from Siberia, Native Americans, and Oceania plus 23
genomes from ancient Native Americans from between 200 and 6000 years ago, Raghavan et al.
(2015) concluded that all Native Americans were derived from a single migration from Siberia that
occurred no earlier than 23,000 years ago, but with some subsequent gene flow from East Asians and
Oceania populations through East Asians that stopped around 12,000 years ago at the time of the
breaching of the Beringian Land Bridge by rising sea levels. There is also some Denisovan ancestry in
Native Americans and other East Asians (Qin and Stoneking, 2015). After arriving in the Americas,
population structuring occurred among Native American populations.

The most recent parts of the world colonized by humans were those with high resistance to human
dispersal (Chapter 6), such as the colonization of Oceania across large bodies of water (Wollstein et al.,
2010), and the colonization of the high-altitude Tibetan Plateau where resource scarcity, cold stress,
and hypoxia were barriers to colonization (Jeong et al., 2016). Ancient DNA studies reveal an
interesting contrast between the colonization of the Tibetan Plateau versus the Neolithic expansion in
Europe. As pointed out before, there was a strong association between the spread of a culture (farming)
and the demic movement of peoples from the Near East in the European Neolithic expansion. In
contrast, ancient DNA studies from specimens from the Tibetan Plateau that span 3150 to 1250 years
ago reveal population genetic stability despite three major changes in material culture that swept
through the plateau (Jeong et al., 2016). Hence, human cultures can spread both with and without gene
flow/admixture.

Overall, the ancient DNA studies strongly support the inferences from NCPA that much of human
evolutionary history has been dominated by movements of populations and individuals, sometimes
across and between continents. These movements were not followed by replacement, splitting, or
isolation, but rather by admixture and gene flow. Genetic interchange has been the hallmark of much
human evolution, both past and present.
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GENOTYPE AND PHENOTYPE 8
The focus of the previous chapters has been upon genotypes, alleles, haplotypes, and the first two
premises of population genetics (Chapter 1): DNA can replicate, and DNA can mutate and recombine.
Now we shift our focus to the third premise of population genetics: information in the DNA and the
environment interact to produce phenotypes. A phenotype is simply any measureable trait of a bio-
logical entity of interest (usually, but not exclusively, individuals), and the trait can be categorical (e.g.,
presence or absence of a disease) or continuous (e.g., height). We are now concerned with how genetic
information is transformed into phenotypes. Often, the relationship between genotype and phenotype
is presented as a simple mapping. For example, in Chapter 1, we noted how the homozygous genotype
for the sickle-cell allele, S, at the Hbb locus is often portrayed as a 1:1 mapping of SS genotypes onto
the phenotype of sickle-cell anemia. The idea of a simple mapping is also contained in the metaphor of
the genome being a “blueprint,” thereby implying a static set of instructions that determines the
phenotypes of an individual. However, as shown in Chapter 2, transforming the genetic information
into a biologically useful form by going from the genome to the transcriptome to the proteome and
epigenome is a highly dynamic process that is influenced by many factors, including the environment
in which the individual is developing and living.

The mapping of genotype to phenotype is often quite complex, even when dealing with “simple
Mendelian traits” such as sickle-cell anemia. We saw in Chapter 1 that the S allele at the Hbb locus
influences many traits (anemia, sickling of red blood cells, malarial resistance, and viability). The
phenomenon of a single genotype influencing many different traits is known as pleiotropy, and this
one-to-many genotypeephenotype mapping is extremely common. We also saw in Chapter 1 that the
traits influenced by the S allele are also influenced by the environment, e.g., the oxygen tension can
influence the degree of sickling, and the presence or absence of falciparum malaria can influence the
viability of the genotypes bearing an S allele. Hence, we do not inherit traits; rather, we inherit re-
sponses to environments. There are even more complications to the mapping of genotype to
phenotype with respect to the S allele. For example, sickle-cell homozygotes show much variation in
the severity or even the presence of many or all of the clinical traits associated with sickle-cell anemia
(Fig. 1.8). The S allele exists upon many different haplotype backgrounds that span several other
hemoglobin genes (Fig. 3.3), including the duplicated genes that codes for fetal hemoglobin (g in
Fig. 3.3). Fetal hemoglobin has a higher oxygen affinity than adult hemoglobin, allowing the devel-
oping fetus to take oxygen from the mother’s blood through the placenta. Normally, expression of the
fetal hemoglobin gene is turned off shortly after birth, but some individuals have the phenotype of
persistence of fetal hemoglobin, often at low levels, throughout life. Allelic variants exist at and near
the fetal hemoglobin locus that strongly influence the amount and persistence of fetal hemoglobin, and
other loci can also influence the persistence of fetal hemoglobin (Galarneau et al., 2010). Even a small
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amount of fetal hemoglobin in a red blood cell can reduce the extent of the polymerization of HbbS

under conditions of low oxygen tension (Chapter 1) because the g chain cannot participate in the
polymerization. This polymerization underlies many of the symptoms of sickle-cell anemia (Fig. 1.8),
so it is not surprising that SS individuals who also have alleles at other loci that promote the persistence
of fetal hemoglobin tend to have mild clinical symptoms of sickle-cell anemia (Berry et al., 1992;
el-Hazmi et al., 1992; Ramana et al., 2000). In addition, many other loci scattered throughout the
genome have been discovered that ameliorate the clinical impact of sickle-cell anemia (Templeton,
2000). This is an example of reduced or incomplete penetrance in which some individuals with a
particular disease-causing mutation or genotype fail to express most if not all features of the disease in
question (Cooper et al., 2013). Such resilience to a genetic disease or disease predisposition is a
common phenomenon and can be caused by interactions with other genes and/or environmental factors
(Friend and Schadt, 2014).

As shown above, even a “simple Mendelian trait” such as sickle-cell anemia is in reality affected by
many loci scattered around the genome. Many different genes also influence another trait associated
with the S allele: malarial resistance. Some 57 candidate loci have been identified as potential con-
tributors to malarial resistance, and genome-wide association studies (GWASsdto be discussed later
in this chapter) have identified additional genomic regions that appear to contribute to malarial
resistance (Mackinnon et al., 2016). In general, many different genes influence most phenotypesda
phenomenon known as polygenic inheritance. The mapping of genotype to phenotype is almost al-
ways many-to-many due to the joint effects of pleiotropy (one gene to many phenotypes) and poly-
genic inheritance (many genes to one phenotype). When different individuals in the population
experience different environments, the mapping gets even more complicated due to variable responses
to varying environments. The field of quantitative genetics focuses on this mapping of genotype to
phenotype in a potentially variable environment.

FISHER’S QUANTITATIVE GENETIC MODEL
Fisher (1918) long ago defined the basic model of quantitative genetics that is still used today. This
model will be illustrated by a worked example in which specific genotypes can be assigned to in-
dividuals, although in Fisher’s day this was generally not possible. After illustrating the model with
measured genotypes, we will show how Fisher was able to estimate many important quantitative
genetic parameters without knowing the specific genotypes of any individual. The measured genotype
example we will use is on genotypes at the ApoE locus in humans, which has three common alleles, all
associated with amino acid changes in the apoprotein coded for by this locus: ε2, ε3, and ε4. These three
alleles at this autosomal locus define six genotypes, and Table 8.1 shows the observed numbers and
frequencies of these genotypes in a sample of 9053 European Americans (Maxwell et al., 2013).
Table 8.1 also shows the excellent fit of these genotype frequencies to the values expected under
HardyeWeinberg principle, so we will assume HardyeWeinberg frequencies in our analyses.

Several phenotypes were measured for each individual in this sample, including the lipid pheno-
type of total serum cholesterol level (TC) measured in mg/dL (Maxwell et al., 2013). Table 8.2 shows
the means and variances of total serum cholesterol within each of the six genotype categories, as well
as the total sample. The first part of the Fisherian analysis is to calculate the mean and variance of the
phenotype for the total sample. Let Pij,k be the phenotype of an individual with genotype ij (with ij
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referring to gamete i and gamete j that came together to form genotype ij) living in environment k.
Fisher assumed that each individual lives in a unique, random environment. In a sample of n in-
dividuals, the mean phenotype is:

m ¼
X
ij

X
k

Pij;k

�
n (8.1)

where the summation is over all genotypes ij and over all environments k, which is equivalent to
summing over all n individuals because the environments are unique to each individual in Fisher’s
model. Hence, one can also calculate the mean using the discrete version of Eq. (1.4), letting

Table 8.1 ApoE Genotypes in a Sample of European Americans and Their Expected Numbers
Under the Assumption of HardyeWeinberg (HW)

Genotypes ε2ε2 ε2ε3 ε2ε4 ε3ε3 ε3ε4 ε4ε4 Sum

Observed numbers 66 1145 210 5399 2048 185 9053

Expected HW 61 1149 216 5406 2031 191

(Obs-Exp)2/Exp 0.40 0.01 0.16 0.01 0.15 0.17 0.90

Given six genotypes and the estimation of two independent allele frequencies, there are three degrees of freedom for the chi-square
statistic value of 0.90, yielding a probability level of 0.83 under the null hypothesis of HW.

Table 8.2 A Quantitative Genetic Analysis of the Phenotype of Total Serum Cholesterol
Measured in mg/dL in a Population of European Americans

Genotypes ε2ε2 ε2ε3 ε2ε4 ε3ε3 ε3ε4 ε4ε4

Overall
Variance

HardyeWeinberg
frequency

0.007 0.127 0.597 0.024 0.224 0.021

Genotypic value,
Pij

194.46 201.03 213.40 203.74 219.59 223.07

Variance 2764.6 1494.6 1464.6 1377.2 1435.7 7765.1 1524.9

Genotypic
deviation, gij

�18.604 �12.034 0.336 �9.324 6.526 10.006 34.5

Gametes ε2 ε3 ε4

Allele frequencies 0.082 0.773 0.145

Average excess �12.180 0.218 5.729

Breeding value,
gaij

�24.361 �11.962 0.437 �6.451 5.948 11.459 34.0

Dominance
Deviation, gdij

5.757 �0.072 �0.101 �2.873 0.578 �1.453 0.5

Data are from Maxwell, T.J., Ballantyne, C.M., Cheverud, J.M., Guild, C.S., Ndumele, C.E., Boerwinkle, E., 2013. ApoE modulates
the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics 195,
1397e1405.
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g(x) ¼ P(x), the phenotype for individual x, and f(xju) ¼ 1/n, the frequency of individual x in the
sample of size n. For the sample shown in Table 8.1, the mean phenotype for total cholesterol is
213.79 mg/dL. Once the mean has been calculated, the variance of the phenotype can also be
calculated using Eq. (1.4) with g(x) ¼ [P(x) � m]2. Since this is an estimate of the variance and a
degree of freedom has been lost in estimating m (Eq. 8.1), f(xju) ¼ 1/(n � 1) is commonly used to
produce an unbiased estimator of the variance. For the example on total cholesterol shown in Table 8.2,
the estimated phenotypic variance [ s2P, the variance in the phenotype over the entire population or
sample is 1524.9 mg2/dL2. Eq. (1.4) can also be used to estimate the mean and variance of just the
subset of individuals that share the same genotype.

We can also use the discrete version of Eq. (1.4) to calculate the phenotypic mean and variance just
of those individuals having a specific genotype rather than the entire population. The mean or average
phenotype of individuals with genotype ij is called the genotypic value of genotype ij and is sym-
bolized by Pij. Table 8.2 shows these genotypic values for all six ApoE genotypes, along with their
associated variances. Another method to calculate the total population mean is to sum the genotypic
values over all genotypes weighted by their genotype frequencies,

m ¼
X
ij

PijGij (8.2)

where Gij is the frequency of genotype ij. Since we are assuming a random-mating model, instead of
using the observed genotype frequencies, we use the HardyeWeinberg genotype frequencies given in
Table 8.2 to calculate the overall mean as 213.02 mg/dL, which is only trivially different from the
observed mean of 213.79 mg/dL. Since we will develop a model assuming random mating, we will use
the HardyeWeinberg mean hereafter.

Fisher was primarily concerned with phenotypic differences between individuals rather than
overall means. Hence, he characterized the phenotypic effects of a genotype not by the genotypic
value, but rather by the genotypic deviation of genotype ij, which measures how much the mean
phenotype of individuals with genotype ij deviates from the overall mean phenotype of the entire
population:

gij ¼ Pij � m (8.3)

These genotypic deviations are also shown in Table 8.2. Eq. (8.2) shows that the average genotypic
deviation in the population as weighted by the genotype frequencies will always be zero, so the
genotypic deviations focus purely on the phenotypic differences among genotypes rather than upon the
mean phenotypes themselves. Fisher now defined a simple model for an individual’s phenotype:

Pij;k ¼ mþ gij þ ek (8.4)

where ek is defined as the environmental deviation. Fisher’s terminology of an individual’s phenotype
being an additive combination of a genotypic deviation with an environmental deviation has lead to
much confusion and fostered a nature versus nurture debate. However, the environmental deviation in
Eq. (8.4) is simply the number you have to add to the genotypic value (m þ gij) to get back to a specific
individual’s phenotypic value. Any factor that causes an individual’s phenotype to deviate from the
genotypic value contributes to ek, including, in this case, the effects of any other genes that contribute
to the phenotype of total cholesterol either independently or through epistasis with ApoE. Fisher was
really constructing an orthogonal (statistically independent) decomposition of causes of variation
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among individuals at the population level into a component that was due to (1) the genetic model under
consideration (here, genotypes at the ApoE locus) and (2) a residual component of unknown source
that was inexplicable by the genetic model being used. Hence, ek should more properly be called the
residual deviation, but the terminology is so engrained that we will continue to call it the environ-
mental deviation. We only note that Fisher defined the average environmental deviation to also have a
mean value of 0, which follows from Eq. (8.1).

Because Fisher’s focus was on variation among individuals rather than the phenotype of specific
individuals or genotypic means, he was more interested in the variation of the genotypic deviations
across genotypes than the genotypic deviations per se. Fisher measured this variation by the variance
of the genotypic deviations:

s2g ¼
X
ij

�
gij
�2
Gij (8.5)

where s2g is called the genetic variance; that is, the variance of the genotypic deviations or equiva-
lently the average genotypic deviation squared (recall that the genotypic deviations have a mean of 0).
For the example in Table 8.1, the genetic variance for the phenotype of total serum cholesterol is
34.5 mg2/dL2. Because m is a constant for the population, it has no variance. Because the g’s and e’s
were defined by Fisher to be orthogonal, they have no correlation or covariance by definition. Hence,
the phenotypic variance can be partitioned into two additive components from Eq. (8.4):

s2P ¼ s2g þ s2e (8.6)

where s2e is called the “environmental variance.” It is critical to keep in mind that Eq. (8.6) only
partitions the variance of phenotypes within a population and does not refer to the phenotype of any
particular individual. An individual’s phenotype always arises from how that individual’s genotype
and epigenome respond to the environments in which that individual develops and lives. An individual
phenotype is therefore never separable into “genetic” and “environmental” components, even if the
phenotypic variance of a population can be separated into orthogonal components. Moreover, s2e is not
really an “environmental variance” but rather a residual variance; that is, the variance left over after the
genetic model has been fitted to the data. This is shown explicitly by how s2e is typically estimated
as the variance left over. For example, in our example of total serum cholesterol (Table 8.1),
s2P ¼ 1524.9 mg2/dL2, as noted earlier, and s2g ¼ 34.5 mg2/dL2 (Table 8.1). By solving Eq. (8.6) for
s2e , we have that se

2 ¼ 1524.9 � 34.5 ¼ 1490.4 mg2/dL2.
Fisher also defined the broad-sense heritability, h2B, as the proportion of the total phenotypic

variance that is due to genotypic differences in the genetic model being used:

h2B ¼ s2g

s2P
(8.7)

The broad-sense heritability of total serum cholesterol in European Americans is, from Table 8.2,
h2B [ 34.5/1524.9 ¼ 0.02. In other words, the three alleles at the ApoE locus in this population explain
about 2% of the phenotypic variance. Although this may seem low, this is actually a strong phenotypic
effect for a single locus in most human studies, and ApoE is therefore considered a major gene
affecting lipid levels in humans.
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To make an evolutionary, quantitative genetic model, we need to go beyond just characterizing the
current population and instead extend the model into the next generation by going through haploid
gametes (Chapter 3), the carriers of heritable information from one generation to the next. Accord-
ingly, Fisher devised two statistics to assign phenotypic measures to gametes, even for traits such as
total serum cholesterol levels that cannot even be expressed in gametes. The simpler of the two is the
average excess, which is the average genotypic deviation of those individuals bearing at least one copy
of the specific gamete type of interest. To calculate this conditional average, we first assume that the
genotypic deviations do not change from one generation to the next; that is, a constant “environment.”
Second, we need to calculate the conditional genotype frequencies in the next generation given that an
individual received a gamete bearing allele i. Using the concept of a conditional probability (Eq. 1.15),
these conditional genotype frequencies are:

Probðii given iÞ ¼ GðiijiÞ ¼ Gii

pi

Probðij given iÞ ¼ GðijjiÞ ¼
1

2
Gij

pi
when jsi

(8.8)

where pi is the frequency of allele i in the gene pool. The conditional probability of gamete i being
found in an ii homozygote the next generation is a straightforward application of Eq. (1.15), but the
conditional probability of gamete i being found in a heterozygote requires an explanation of the term 1

2
in Eq. (8.8). Recall from Chapter 3 that we generated genotype frequencies in the next generation by
first drawing a gamete out of the gene pool at random and then drawing a second gamete out according
to the rules of the system of mating. If all we are interested in is the genotype frequency, we noted in
Chapter 3 that there are two ways of generating the heterozygote (e.g., Tables 3.2 or 3.5). However,
here we are conditioning on the fact that the first allele has already been drawn and is known to be type
i.Hence, when we draw the second gamete from the gene pool, there is only oneway for it to result in a
heterozygotedthe second gamete must be bearing an allele other than i. Because there is only one way
of creating a heterozygote in this conditional case, we must multiply the unconditional genotype
frequency by 1

2 in addition to dividing by the frequency of the event upon which we are conditioning
(that the first gamete has allele i, with probability pi), as shown in Eq. (8.8). Given these conditional
genotype frequencies, the average excess for allele i, ai, is:

ai ¼ Gii

pi
gii þ

X
jsi

1

2
Gij

pi
gij ¼

X
j

GðijjiÞgij (8.9)

Since we are only considering for now the special case of HardyeWeinberg frequencies, we note
Eq. (8.9) reduces under random mating to:

ai ¼ p2i
pi
gii þ

X
jsi

1

2
2pipj

pi
gij ¼

X
j

pjgij (8.10)

For example, using the data in Table 8.2, the average excess for the ApoE ε2 allele under random
mating is:

aε2 ¼ ð0:082Þð�18:604Þ þ ð0:773Þð�12:034Þ þ ð0:145Þð0:336Þ ¼ �12:180 (8.11)
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Eq. (8.11) means that individuals in this population who inherit an ε2 allele on the average have a lower
total serum cholesterol level than the average person in the total population by 12.180 mg/dL.
Similarly, we can see from Table 8.2 that people who inherit the ε3 allele on average have a total serum
cholesterol level that is very close to the overall population mean (on average, only 0.218 mg/dL above
the population mean), whereas those that inherit a ε4 allele have on the average a total serum
cholesterol level that is 5.729 mg/dL above the population mean. Hence, in this population, ε2 tends to
lower cholesterol level, ε3 does not do much, and ε4 tends to increase cholesterol level. Note that we
have assigned phenotypic effects to a gamete by its expected phenotypic effects in the next generation
even though no sperm or egg actually displays the trait of serum cholesterol level.

Fisher’s second measure of the phenotypic effect of a gamete bearing allele i is the average effect
of i, ai, the slope of the least squares regression of the genotypic deviations against the number of
gametes of type i borne by a genotype. To calculate the average effect, let

Q ¼
X
i

X
j

Gijðgij � ai � ajÞ2 (8.12)

then solve for vQ/vai ¼ 0 simultaneously for every ai. This measure of the phenotypic effects of a
gamete is less intuitive than the average excess, but fortunately, there is a simple relationship between
the two measures (Templeton, 1987):

ai ¼ ai
1þ f

(8.13)

where f is the system of mating inbreeding coefficient that measures deviations from random mating
(Chapter 3). Note that when mating is random (f ¼ 0), then the average excess and the average effect
are identical. When the system of mating is one of inbreeding or assortative mating (f > 0), then the
average effect is smaller than the average excess, and the opposite is true under avoidance of
inbreeding or disassortative mating (f < 0). Given that most human populations are close to random
mating expectations at most loci, these two measures of gametic phenotypic impact are often very
similar in humans.

Fisher related the current generation and their phenotypes to the next generation and their phe-
notypes by assuming that the only things transmitted from parents to offspring are gametes and that
environmental (actually, residual) effects are not transmitted across the generations. Hence, what is
important about the parental generation with respect to the offspring generation is not the phenotypes
of the parents but rather the phenotypic effects of their gametes. Fisher therefore assigned a phenotypic
value to parents based solely on the gametes they could produce. This new phenotypic value is called
the breeding value or additive genotypic deviation, gaij for genotype ij, which is the sum of the
average effects of the gametes of genotype ij. Hence,

gaij ¼ ai þ aj (8.14)

Because we are only dealing with random mating for now, the breeding values or additive geno-
typic deviations can also be calculated by adding the two appropriate average excesses, and these
values are given in Table 8.2. As can be seen in that table, the breeding values are not identical to the
genotypic deviations. For example, the breeding value of the ε2ε2 genotype is much lower (by
5.757 mg/dL) than its genotypic deviation. The additive genotypic deviation is therefore not measuring
the phenotype of a genotype but rather is looking ahead to the next generation and measuring the
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average phenotype of the offspring of a genotype. It is the gametes that are the bridge to the next
generation, and therefore it is only the gametic effects on phenotypes that determine an individual’s
“breeding value” in a reproducing population.

The difference between a genotype’s genotypic deviation and its additive genotypic deviation is
called the dominance deviation in a single-locus model; that is, the dominance deviation of genotype
ij is gdij ¼ gij � gaij. These dominance deviations are also given in Table 8.2 for the ApoE example.
The dominance deviation is another residual term; it is merely the part of the genotypic deviation that
is left over after accounting for the additive terms attributable to gametes. In more complicated
multilocus models, we can also have an “epistatic deviation,” which is another residual term that
measures what is left over of the genotypic deviation after subtracting the effects attributable to single
loci (the additive and dominance deviations). The residual genetic factors that do not contribute to the
additive genotypic deviations are called the nonadditive genetic factors. As with the genotypic
deviations, we can also calculate the variance associated with the additive and dominance deviations
as:

s2a ¼
X
ij

Gijg
2
aij

s2d ¼
X
ij

Gijg
2
dij

(8.15)

where s2a is the variance in the additive genotypic deviations and s2d is the variance in the
dominance genotypic deviations. These variances are given in Table 8.2 for the ApoE example.
Because we are focusing on evolution and the transfer of genetic information from one generation to
next, the portion of the phenotypic variance that can be explained by the additive genetic variance is a
term of great importance and is called the heritability:

h2 ¼ s2a

s2P
(8.16)

For the ApoE example, the heritability of total serum cholesterol is, from Table 8.2, h2 ¼
34.0/1524.9 ¼ 0.02. This value is virtually identical to the broad-sense heritability for this example,
but in general, we have h2 � h2B, and it is possible for a trait to have no heritability even though the
genotypes influencing this trait have different phenotypes. Indeed, we will see in the next chapter that
this is a very common situation in evolutionary biology. The concepts of Mendelian inheritance and
heritability are quite distinct and should never be equated. Mendelian inheritance refers to how specific
genes are transmitted through gametes from parents to offspring, and how the offspring genotype
influences a phenotypic value. Heritability refers to what portion of the phenotypic variance in a
population can be transmitted as phenotypic variance to the offspring population. Inheritance and
heritability are therefore referring to completely different levels of biological organization: specific
families versus a reproducing population. Because heritability is referring to a population, it is
influenced by factors such as system of mating and allele frequencies, which are irrelevant to the
inheritance of a trait in a specific cross or family, the domain of Mendelian genetics. As a consequence,
it is impossible for inheritance and heritability to be the same. Indeed, a trait can be 100% inherited in a
Mendelian sense and yet not be heritable. Consider a hypothetical example of an autosomal recessive
genetic disease, a common Mendelian form of inheritance in humans. Table 8.3 gives a hypothetical
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example of such a Mendelian disease, where we measure the disease state by an indicator variable
(1 means you have the disease, 0 means you do not), with no environmental deviations at all. That is,
this disease is 100% inherited in a Mendelian sense. We assume a random mating population, with an
allele frequency for the disease allele (a) of 0.01. In this case, since there is no environmental variance,
the variance in the phenotype is the same as the genetic variance. Hence, in this example, the broad-
sense heritability is 1, yet the additive genetic variance is 0.0000 to four decimal points, and the
dominance variance is 0.0001, which is the same as the phenotypic variance. Hence, the heritability of
this inherited Mendelian genetic disease is 0! Obviously, Mendelian inheritance s heritability.

Fisher’s terminology has caused great confusion. He used terms that were commonplace in the
Mendelian genetics literature to explain the mapping from discrete genotypes to phenotypes in in-
dividuals and specific crosses (additive gene action, dominance, epistasis) and applied them to mea-
sures of phenotypic variation in populations (additive genotypic deviation, dominance deviation,
epistatic deviation) that would result in an orthogonal (statistically independent) partitioning of
phenotypic variation at the population level. Because of the residual nature of his dominance and
epistatic measures, Fisher tried to explain as much of the phenotypic variance through his “additive”
terms as possible. Cheverud and Routman (1995) clarified this discrepancy by showing that Mendelian
epistasis (that is, the phenotype of an individual measured at two or more loci depends upon an
interaction between loci) can contribute to epistatic variance, dominance variance, and additive
variance. Similarly, Mendelian dominance can contribute to dominance variance and additive vari-
ance. Thus, both Mendelian dominance and epistasis can and often do contribute to “additive” vari-
ance. Just because a trait has a high heritability (the additive variance explains most of the genetic
variance) does not mean that epistasis and dominance are absent or minor. Just by changing allele
frequencies, epistatic variance can be converted to additive variance or vice versa (Cheverud and
Routman, 1996).

Even more confusingly, when epistasis (or any type of interaction) is present, changes in population
frequencies can have the interaction effect contribute mostly to the additive or marginal effect of one
locus but not others. This is shown in Table 8.4 for a hypothetical disease that arises from the inter-
action of two factors (either genetic or environmental), A and B, each of which has two states such that
the disease only occurs when state A1 is coupled with state B1. Hence, the disease is 100% caused by
an interaction between A and B, and requires a specific state of both of these factors to occur. In the

Table 8.3 A Quantitative Genetic Analysis of a Hypothetical, Autosomal, Recessive Genetic
Disease in a Random-Mating Population With the Disease Allele Frequency Being 0.01

Genotypes AA Aa aa Mean/Variance

HW genotype frequency 0.9801 0.0198 0.0001

Genotypic mean 0 0 1 m ¼ 0.0001

Genotypic deviation �0.0001 �0.0001 0.9999 s2
P ¼ 0.0001

Gametes A a

Average excess �0.0001 0.0099

Breeding value �0.0002 0.0098 0.0198 s2
a ¼ 0.0000

Dominance deviation 0.0001 �0.0099 0.9801 s2
d ¼ 0.0001
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population shown in Table 8.4, A1 has a frequency of 0.9, and B1 has a frequency of 0.1. Assuming
that these two factors are statistically independent, the frequency of the A1eB1 combination that leads
to disease is 0.09. Now suppose a research group was only measuring factor A. They would observe
that the frequency of the disease in people who have state A1 is 0.1 (the frequency of B1, the other
necessary component to have the disease). Notice that the frequency of the disease given the necessary
component A1 is barely higher than the overall population frequency of 0.09. Hence, this research
group would conclude that A1 plays at most a minor role in this disease, and indeed if their sample
sizes were small, they would conclude that A1 plays no significant role in the disease at all. On the
other hand, suppose a second research group only measured the B factor in this population. They
would observe that the frequency of the disease in people who have B1 is 0.9 (the frequency of A1, the
other necessary component of this disease). Note that in this case, they would conclude that factor B1
increases the frequency of the disease 10-fold in this population. Hence, B1 would be identified as a
major factor in this disease. Nevertheless, both A1 and B1 are equally important and necessary in
causing the disease. Note also that the marginal or additive effect is assigned to the rarer factor in this
interaction system. Hence, interaction effects in populations lead to the appearance of the rarer
factors being more important than the common factors. This confoundment of frequency and apparent
causation in populations is unfortunately little appreciated in much of the literature.

A concrete example of how two interacting factors can cause shifts in quantitative genetic addi-
tivity involves the ApoE locus and another, unlinked locus involved in lipid metabolism, the low-
density lipoprotein receptor (LDLR) locus. As shown in Table 8.2, the ε4 allele at the ApoE locus is
associated with an increased level of total serum cholesterol, as measured by the average excess or
effect. However, Pederson and Berg (1989, 1990) showed this increased level of cholesterol occurs
only when the ε4 allele is combined with homozygosity for the A2 allele at the LDLR locus. Such
epistasis is not surprising given that the protein products of these two loci directly interact in a manner
that affects lipid transport and absorption into cells (de Knijff et al., 1994). The frequency of the A2

allele at LDLR is 0.78 (Pedersen and Berg, 1989), whereas Table 8.2 shows that the frequency of the ε4
allele is 0.145, both typical values for European populations. Hence, the ApoE component of this
interaction is much less common that the LDLR component. To illustrate the importance of these allele
frequency differences on a quantitative genetic analysis, we will create a hypothetical example by
using the data on ApoE from Maxwell et al. (2013) that did not score the LDLR genotypes, but
assuming the same type of Mendelian epistasis as found in Pedersen and Berg (1989) and linkage
equilibrium between the two loci. These assumptions yield the two-locus genotypic values shown in
Table 8.5. These values yield the same marginal genotypic values shown in Table 8.2 when ApoE is

Table 8.4 A Hypothetical Disease Arising From the Interaction of Two Factors

Trait A States (Frequency) B1 (0.1) B2 (0.9)

A1 (0.9) Disease (0.09) No disease (0.81)

A2 (0.1) No disease (0.01) No disease (0.09)

Component A has two trait states in the population, A1 with frequency 0.9 and A2 with frequency 0.1. Component B has two trait
states in the population, B1 with frequency 0.1 and B2 with frequency 0.9.
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considered alone. We can now perform a two-locus quantitative genetic analysis similar to the one
already performed in Table 8.2 on ApoE alone, but now we can estimate an epistatic variance as our
last residual variance. The results are shown graphically in Fig. 8.1A. The marginal variances from
ApoE alone from Table 8.2 are also shown. Note that the total genetic variance has been increased
somewhat in the two-locus analysis over the ApoE alone analysis, mostly due to increases in the
nonadditive dominance and epistatic variance components. However, most of the genetic variance and
virtually all of the additive variance have been captured by the marginal ApoE analysis alone. Fig. 8.1A
also shows the results of a marginal analysis of LDLR alone. Although now the elevated cholesterol
depends upon the LDLR A2 allele in combination with the ApoE ε4 allele, there is almost no genetic
variance (2.288 mg2/dL2) or additive variance (2.005 mg2/dL2) associated with the LDLR locus
considered by itself. Indeed, the variances associated with LDLR alone are so small as to be statistically
undetectable in many datasets. Hence, although we have deliberately incorporated strong Mendelian
epistasis into this system, the LDLR component is virtually invisible, whereas the ApoE component
appears as the major source of genetic and additive variance of the population. The impact of Men-
delian epistasis has mostly been to elevate the population’s additive variance associated with ApoE and
to hide the epistatic importance of LDLR.

We can now redo the analysis with just one change. Wewill keep exactly the same genotypic values
as shown in Table 8.5. Hence, we are not altering the inheritance of cholesterol levels at all. What we
will change are the allele frequencies. We will now assume the frequency of ε2 is 0.02, the frequency of
ε3 is 0.03, and the frequency of ε4 is 0.95. At the LDLR locus, we will now assume that the frequency of
A2 is 0.5. Note that all we have done is make the epistatic component at the ApoE locus more common
and the epistatic component at the LDLR locus rarer at the population level. Otherwise, we have
changed nothing, including the Mendelian architecture. However, Fig. 8.1B shows that the quantitative
genetic architecture has been dramatically altered by changing allele frequencies without altering the
Mendelian architecture. There is virtually no epistatic variance in the two-locus analysis (0.601 mg2/
dL2) despite extensive epistasis in the Mendelian architecture, but there are substantial additive
(35.970 mg2/dL2) and dominance (15.416 mg2/dL2) variances. In contrast to Fig. 8.1A, the ApoE locus
is no longer the “major” locus for the phenotype of cholesterol level; rather it now has only a small
additive variance (5.170 mg2/dL2) and a small dominance variance (0.016 mg2/dL2). In contrast,
LDLR is now the single locus that captures most of the two-locus quantitative variance, with an ad-
ditive variance of 30.800 mg2/dL2 and a dominance variance of 15.400 mg2/dL2. As the contrast of
Fig. 8.1A versus B shows, the results of a quantitative genetic analysis are exceedingly sensitive to
allele frequencies and are not a reliable guide to the underlying Mendelian genetic architecture. Major
loci can become minor loci and vice versa just by changing allele frequencies in the population.

Table 8.5 Genotypic Values for the Two Locus Genotypes Defined by the ApoE and Low-Density
Lipoprotein Receptor (LDLR) Loci That Incorporate Epistasis Between the ε4 Allele With
Homozygosity for the A2 Allele

Locus ApoE ε2ε2 ε2ε3 ε2ε4 ε3ε3 ε3ε4 ε4ε4

LDLR A1/- 194.46 201.03 201.03 213.40 213.40 213.40

A2/A2 194.46 201.03 221.36 213.40 223.57 229.29
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Similarly, the phenotypic effects of a specific allele can appear to change dramatically just by changing
the frequency of the allele. When ε4 had an allele frequency of 0.145, its mean effect on cholesterol
level was to increase it by 5.729 mg/dL (the average excess in Table 8.2). In contrast, when ε4 had an
allele frequency of 0.95 in the calculations made for Fig. 8.1B, its average excess was reduced to just
0.274 mg/dL. The phenotypic effect size of ε4 is therefore extremely sensitive to its frequency in the
gene pool even when its Mendelian effects are held constant. Hence, frequency and apparent effect size

FIGURE 8.1

Decomposition of the genetic variance into additive, dominance, and epistatic components and into marginal

single-locus components for the two-locus (ApoE and LDLR) genotypic values given in Table 8.5. In part A, the

allele frequencies at ApoE are those in Table 8.2 and the A2 allele frequency at LDLR is 0.78. In part B, the allele

frequencies at ApoE are 0.02, 0.03, and 0.95 for alleles ε2, ε3, and ε4, respectively, and 0.5 for the A2 allele

frequency at LDLR. LDLR, low-density lipoprotein receptor.
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are confounded in quantitative genetics, and effect size is not indicative of the Mendelian role a
specific allele plays in the genetic architecture of a trait. Because nonadditive Mendelian effects can
contribute both to the additive and nonadditive genetic variances in the population, the relative
magnitudes of variance components in a quantitative genetic analysis do not indicate the relative
importance of Mendelian additive and nonadditive gene actions (Huang and Mackay, 2016).

A potential example of this confoundment of frequency and apparent effect size is the often noted
pattern that rare alleles tend to have strong phenotypic effects, whereas common alleles have weak
effects in many quantitative genetic studies. For example, Gorlov et al. (2011) examined several
published quantitative genetic studies on various disease phenotypes that were associated with poly-
morphic sites in the human genome. Their phenotypic trait was the odds ratio (OR) of getting the
disease given the allele, where OR ¼ 1 refers to the incidence of the disease in the general population
and any OR > 1 means that the allele is associated with increased risk for the disease. Fig. 8.2 shows a
plot of the ORs versus the frequency of the alleles associated with a disease. As can be seen there is a
strong and significant correlation between the frequency of an allele and the size of its effect on the
disease odds in these populations. There are many hypotheses about why rare alleles may have stronger
phenotypic effects than common alleles. For example, rare alleles tend to be more evolutionarily recent
than common alleles, so those with strong, deleterious effects are less likely to have been selected out
of the population, particularly in the rapidly expanding human population (Chapter 4). Also, newly
arisen mutations have had less time for recombination to break down the linkage disequilibrium created
at their origin (Chapters 1 and 4), so rare alleles tend to mark a larger section of the genome than
common markers, which could accentuate their apparent phenotypic strength. Although these are valid
reasons for hypothesizing that rare alleles do have stronger phenotypic effects on the average over
common alleles, another possibility is simply that this pattern is an artifact of two statistical issues:
(1) quantitative genetic studies are based on deviations from the overall population mean (Eq. 8.3) and
common alleles make a stronger contribution to the population mean simply because they are common
and hence show less deviation; and (2) interaction effects are rarely incorporated into many of these
quantitative genetic studies or are difficult if not impossible to detect, leading to the rare alleles having
the seemingly stronger effect (Table 8.4, Fig. 8.1).

FIGURE 8.2

The association between the odds ratio and the minor allele frequency from several human quantitative genetic

studies on disease associations. In the figure, odds ratios higher than 4 are not shown, although they were included

in fitting the equation shown in orange.

Modified from Gorlov, I.P., Gorlova, O.Y., Frazier, M.L., Spitz, M.R., Amos, C.I., 2011. Evolutionary evidence of the effect of rare

variants on disease etiology. Clinical Genetics 79, 199e206.
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Besides epistasis, ApoE also illustrates pleiotropy. For example, Maxwell et al. (2013) show that
the three alleles at the ApoE locus not only influence total serum cholesterol levels but also a wide
variety of other lipid-related traits and risk for coronary heart disease (CHD). Other studies have
revealed many other traits associated with these same three alleles, including the lipid response to
meals (Carvalho-Wells et al., 2010), late-onset Alzheimer’s disease (Chouraki and Seshadri, 2014;
Lambert et al., 2013), CHD risk as a function of smoking (Gustavsson et al., 2012), response to statin
drugs in lowering cholesterol levels (Hu and Tomlinson, 2013), CHD risk as a function of gender
(Kofler et al., 2012), episodic memory decline through interactions with variation at the Complement
Receptor 1 locus (Keenan et al., 2012), risk for posttraumatic stress disorder (Peterson et al., 2015),
response to traumatic brain injury (Li et al., 2015), gender-specific life span (Kulminski et al., 2014),
verbal fluency (Marioni et al., 2016), age-related macular degeneration (McKay et al., 2011), the
amount of methylation of a CG island (Chapter 2) embedded in the gene and allele-specific gene
expression (Yu et al., 2013), susceptibility to herpes-simplex virus and to Chlamydia pneumoniae
(Trotter et al., 2011), and protein folding (Williams Ii et al., 2015). Note that many of these pleiotropic
effects of ApoE involve responses to particular environments (diet, smoking, etc.) and epistasis with
other loci. Interestingly, the different pleiotropic phenotypes associated with ApoE identify different
sets of epistatic loci in a trait-specific manner, so the ApoE locus is intertwined in a complex and
tangled web of pleiotropic effects, epistasis, gender interactions, and environmental interactions even
though most quantitative genetic studies indicate that these same trait effects are mostly “additive”
(Templeton, 2000).

CLASSICAL HUMAN QUANTITATIVE GENETIC ANALYSIS
When Fisher developed his quantitative genetic model, it was virtually impossible to measure or score
the genotypes that actually affected a quantitative trait. Hence, a table such as Table 8.2 was not
possible, as there were no specific genotypes or alleles to which genotypic values, average excesses,
etc. could be assigned. The genius of Fisher was that he also devised several methods for estimating
many of his quantitative genetic parameters with no measured genotypes. The Fisherian method most
commonly used in classical human quantitative genetic studies is that of phenotypic correlations
between relatives. Suppose we have a sample of paired individuals (e.g., parent/offpsring, etc.) and we
measure the phenotypes of both individuals in each pair, such that xi is the phenotype of the first
individual in pair i and yi is the phenotype of the other individual in pair i. To see if the two phenotypes
in this pair tend to deviate from the overall means of their respective populations (which may be the
same or different) in a similar fashion or not is measured by calculating the covariance between the X
and Y observations across all pairs, Cov(X,Y):

CovðX; YÞ ¼ Eðxi � mxÞðyi � myÞ (8.17)

where E is the expectation operator (Eq. 1.4), mx is the mean of the first population (e.g., in parent/
offspring pairs, this could be the mean phenotype of the parents), and my is the mean of the second
population (e.g., in parent/offspring pairs, this could be the mean phenotype of the offspring). If the
two members of a pair tend to deviate from their respective population means in the same direction, the
covariance will be positive, and if they tend to deviate in opposite directions, the covariance will be
negative. If they deviate at random with respect to each other, the covariance is expected to be zero.
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Now consider the single-locus Fisherian model that combines Eqs. (8.4) with (8.14) to generate the
expected phenotype of individual j:

Pj ¼ mþ gaj þ gdj þ ej (8.18)

Using this model, the covariance of a pair of individuals is expected to be:

CovðPx;PyÞ ¼ EðPx � mxÞ
�
Py � my

�
¼ Eðgax þ gdx þ exÞ

�
gay þ gdy þ ey

�
¼ E

�
gaxgay

�þ E
�
gdxgdy

�þ EðexeyÞ þ E
�
gaxgdy

�þ EðgaxeyÞ þ E
�
gdxgay

�
þ EðgdxeyÞ þ EðexgaxÞ þ EðexgdxÞ

(8.19)

Recall that Fisher defined his “environmental deviation” as a residual term relative to the genotypic
deviation and similarly defined the dominance deviation as a residual term relative to additive
genotypic deviation. This means that all expectations of unlike terms have been defined to have an
expected value of 0 (i.e., a covariance of zero). Fisher also assumed that the environmental deviations
are independent for each individual, meaning that the expected product of the two environmental
deviations is also zero. With these assumptions, the covariance over all pairs of individuals reduces to:

CovðPx;PyÞ ¼ Cov
�
gax; gay

�þ Cov
�
gdx; gdy

�
(8.20)

Now consider a specific type of pair, say a parent (x) and an offspring (y) of that parent. The
additive genotypic deviation of the parent is simply the sum of the average effects of two gametes, one
of which is passed on to the offspring. We do not know which gamete is passed on to the offspring
(remember, there are no measured genotypes in this section), but we do know from Mendel’s first law
that each gamete has a chance of ½ of being passed on. Hence, the expected value of a particular
gamete being passed on by a parent to an offspring is½. The expected additive genetic contribution of a
parent to an offspring is therefore

1

2
a1 þ 1

2
a2 ¼ 1

2
ða1 þ a2Þ ¼ 1

2
gaPar (8.21)

where “1” and “2” indicate the two gamete types that contribute to the additive genotypic deviation
(breeding value) of the parent (indexed by aPar). Let the average effect of the gamete contributed by
the other parent be am, where m indexes the other parent. Hence, the additive genotypic deviation of an
offspring is expected to be:

gaOff ¼ 1

2
gaPar þ am (8.22)

Fisher defined the dominance deviations such that these phenotypic deviations cannot be passed on
through a gamete. This means that for parents and offspring, Cov(gdxgdy) ¼ 0. Therefore, Eq. (8.20)
becomes for parent/offspring pairs:

CovðPParPOff Þ ¼ CovðgaPar; gaOff Þ

¼ Cov

�
gaPar;

�
1

2
gaPar þ am

��

¼ 1

2
CovðgaPar; gaParÞ þ 1

2
CovðgaPar;amÞ

(8.23)
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Under random mating, there is by definition no correlation between the average effects of the
gametes provided by the two parents, so the second covariance term in Eq. (8.23) is zero. Moreover,
the covariance of a variable with itself is simply the variance of that variable:

CovðX;XÞ ¼ Eðxi � mxÞðxi � mxÞ
¼ Eðxi � mxÞ2 ¼ s2x

(8.24)

Hence, Eq. (8.23) simplifies to

CovðPPar;POff Þ ¼ 1

2
s2a (8.25)

The covariance does not have a predefined range, so Fisher calculated the correlation coefficient
instead of the covariance, which is simply the covariance standardized by the square root of the
product of the variances of X and Y to limit it to a range of �1 to þ1. From Eq. (8.25), the phenotypic
correlation between parent and offspring is

rParOff ¼
1

2
s2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðPParÞ � VarðPOff Þ
p (8.26)

Fisher then assumed that both parents and offspring have the same phenotypic variance, s2P,
so Eq. (8.26) becomes

rParOff ¼
1

2
s2a

s2P
¼ 1

2
h2 (8.27)

Mendelian principles can also be used to work out the expected phenotypic correlations of many
other types of relatives. For example, full sibs also share half their genes under random mating, just as
parents and offspring do, but in addition, full sibs can share exactly the same single-locus genotype due
to inheritance of the same two parental gamete types with a probability of 14; that is,

1
4 is the probability

that the two full siblings received exactly the same alleles from each parent under Mendelian segre-
gation. Hence, the phenotypic correlation between two full siblings, say S1 and S2, is

rS1;S2 ¼
Covðfull sibsÞ

s2P
¼

1

2
s2a þ

1

4
s2d

s2P
¼ 1

2
h2 þ 1

4

s2d

s2P
(8.28)

These expected phenotypic correlations can be used to estimate the variance terms of Fisher’s
quantitative genetic model even though not a single genotype is actually known. For example, the
phenotypic correlation between parent and offspring for systolic blood pressure in one human pop-
ulation was 0.237 (Miall and Oldham, 1963). From Eq. (8.27), this implies that the heritability of
systolic blood pressure in this population is 0.474. The correlation between full siblings in this same
population was 0.333, so from Eq. (8.28), we can estimate the proportion of the phenotypic variance
that is due to dominance deviations (assuming no epistatic variance) as

�
s2d

�
s2P

� ¼ 4(0.333e0.237) ¼
0.384. Adding

�
s2d

�
s2P

�
to the heritability provides an estimate of the broad-sense heritability,

hB
2 ¼ 0.474 þ 0.384 ¼ 0.858. Thus, 85.8% of the variation in systolic blood pressure is genetic vari-

ance attributable to genotypic differences in this population, with 14.2% of the phenotypic variance
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due to “environmental” deviations. Moreover, the genetic proportion in turn can be split into an ad-
ditive part that is transmissible from parent to offspring (47.4%) and a nontransmissible, nonadditive
portion of 38.4%. Thus, by studying more than one class of relatives, a full description of the
contribution of genetic variation to phenotypic variation is possible even though not a single genotype
is actually known.

Many of the assumptions of this model are not particularly good ones for humans. For example,
mothers contribute to their offspring their mitochondrial genome, many of the gene transcripts that
affect early development, and the in utero environment. All of these factors mean that there can be
extra maternal effects that can influence phenotypic correlations. Similarly, even the postbirth envi-
ronment in humans is rarely independent for parents, offspring, and siblings with many aspects of the
environment being identical or highly correlated within families. As a consequence, it is not surprising
that parental genotypes can influence offspring phenotypes even if the offspring do not inherit the
parental genotype (Kong et al., 2018). It is possible to incorporate many of these complications and
others into the Fisherian model by examining a broader range of relatives (e.g., full sibs as well as half
sibs, some sharing a common mother but not father and others sharing a common father but different
mothers) and environmental conditions (e.g., sibs reared in the same family vs. sibs reared in different
families, often due to adoption). For a fuller treatment of these issues, interested readers should read
Lynch and Walsh (1998).

Fisher’s misleading terminology of “genetic” and “environmental” variance components has un-
fortunately led to the idea that nature (genetic) and nurture (environmental) can be easily separated,
and that if one is large, the other must be unimportant because of their additive nature (Eq. 8.6). First,
keep in mind that Fisher’s “environmental variance” is merely the residual variance left over after
trying to explain as much of the variance as possible with the genetic model. Hence, some of the
“environmental variance” may be due to unmodeled genetic components. Second, because phenotypes
arise from how genes respond to environments, if an environmental component is common, it will
appear primarily as a “genetic” component in such an interaction system (Table 8.4, where either
factor can be genetic or environmental). Third, Fisher’s entire model is based on deviations from the
mean of the total population, and any environmental factor that shifts all individual phenotypes up or
down to the same extent will greatly affect the mean phenotype of the population as well as every
individual phenotype, but it will not affect the deviations from the mean and hence be invisible to
Fisher’s model. Because of these factors, even a heritability of 1 does notmean that the environment is
unimportant. This later point is well illustrated by the early study of Skodak and Skeels (1949), a study
that is falsely cited by those who argue that “intelligence” (more properly a type of test score, such as
an IQ test) is mostly genetic with little to no role for the environment (e.g., Herrnstein and Murray,
1994). Skodak and Skeels were interested in estimating the heritability of IQ in a human population
and to help eliminate the effects of a shared family environment, they analyzed the IQ scores of a
population of adopted children and compared them to the IQ scores of their biological mothers and
their adoptive mothers. They found no significant correlation between the IQ scores of the children
with their adoptive mothers, but a highly significant correlation of 0.44 with their biological mothers.
From Eq. (8.27), this means that the heritability of IQ in this population was 0.88. Hence, the additive
genetic variability was the major contributor to IQ variation in this population of adopted children.
Does this also mean that environmental factors are not very important?

To answer that question, a more detailed examination of their data is necessary. The average IQ
score is standardized to be 100 with a standard deviation (the square root of the variance) of 15 in the
general population. The average IQ of the biological mothers was 86 with a standard deviation of
15.75, nearly a full standard deviation below the general population mean. The mothers were almost
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always in extreme poverty, which was why they placed their children up for adoption. The adoption
agencies at that time deliberately tried to place children in families of high socioeconomic status, and
the average IQ of the adoptive mothers was 110, well above the mean for the general population. The
average IQ of the adopted children was 107 with a standard deviation of 15.1da value statistically
indistinguishable from the average IQ of the adoptive mothers but significantly higher than the average
IQ of their biological mothers. This pattern of average IQ scores strongly indicates that the envi-
ronment as measured by socioeconomic status plays the dominant role in determining the mean IQ
scores of the adopted children. This appears to be the opposite conclusion of the heritability study, but
remember that the first thing eliminated in Fisher’s model is the population’s average phenotype.
Hence, heritability has nothing to do with mean IQ. The resolution of this artificial conflict is illus-
trated in Fig. 8.3. This figure shows the normal approximations to the distributions of the biological
and adoptive mothers on the top and the adopted children on the bottom. These distributions show the
large mean difference between the two maternal populations, and the fact that the children’s IQ dis-
tribution has shifted dramatically upwards toward that of the adoptive mothers. Arrows indicate a
hypothetical mapping from the mothers of each group to five of the children. The black arrows
connecting biological mothers to their children tend not to cross, indicating a strong correlation be-
tween the two. This illustrates the high heritability found in this study. In contrast, the red arrows
connecting the adoptive mothers to their adopted children frequently cross, indicating no correlation
between their IQ scores. The black arrows show the strong effect of heredity, but the means of the
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FIGURE 8.3

A pictorial representation of the results of the analysis of IQ scores by Skodak and Skeels (1949). The top part of

the graph displays the normal approximations to the IQ distributions of the biological (black) and adoptive (red)

mothers. The bottom part shows the distribution of the adoptive children in blue. Black arrows indicate the

connection between five biological mothers and their children, while red arrows indicate the connection between

five adoptive mothers and the same children.
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distributions show the strong effect of environment. In this manner, even traits that are highly heritable
can show extreme sensitivity to the environment. These patterns have been confirmed by more recent
studies on adopted children (Nisbett et al., 2012; van Ijzendoorn et al., 2005). The nature/nurture
debate has no legitimacy in population or quantitative genetics. The phenotype of any individual arises
from an inseparable interaction of genes and environment, and the ability to separate out variance
components at the population level in no way diminishes the importance of this gene-by-environment
interaction in determining each individual’s phenotype.

MEASURED GENOTYPE APPROACHES TO QUANTITATIVE GENETICS
Human quantitative genetics has been revolutionized by the ability to directly score genotypes
throughout the genome. This revolution is manifested in two primary ways. First is the candidate
locus approach to quantitative genetics, in which the known biochemical, developmental, or
physiological function of a gene directly relates it to a phenotype of interest. Table 8.2 already shows
an example of this approach. The ApoE locus has long been known to code for an apoprotein that can
solubilize lipids such as cholesterol so that lipids may be transported in our bloodstream. These
apoproteins also interact with various receptor proteins to transport or inhibit transport of lipids to the
appropriate target tissues. These known biochemical functions long ago focused attention on this locus
as a contributor to quantitative variation in serum cholesterol levels and other lipid phenotypes (Sing
and Davignon, 1985). As shown above, ApoE has indeed proven to be a contributor to many serum
lipid phenotypes, but the pleiotropic effects at this locus also reveal a serious limitation of the
candidate locus approach: our knowledge of how to go from gene function at the molecular level to
phenotypes at the individual level is rudimentary at best. Consequently, the candidate locus approach is
excellent for testing the predicted phenotypic impact of a specific locus, but our incomplete knowledge
of how genotypes influence phenotypes means that we cannot identify all the loci that contribute to a
specific phenotype of interest with just prior knowledge of function nor can we identify all the phe-
notypes associated with a specific candidate locus (recall the many phenotypes associated with ApoE,
many of which seem quite remote from its primary biochemical function). The candidate locus
approach can also be limited by interaction effects, such as epistasis. For example, the LDLR locus is
an ideal candidate locus for cholesterol phenotypes as well, and moreover, many rare mutations that
interfere or eliminate the normal function of the protein product of this gene are associated with fa-
milial hypercholesterolemia in which serum cholesterol levels are extremely high (Hobbs et al., 1990).
Nevertheless, genetic variation at LDLR appears not to have much impact on serum cholesterol levels
(Fig. 8.1A). However, when its interaction with ApoE is explicitly examined, the LDLR locus appears
as a significant contributor to serum cholesterol levels (Pedersen and Berg, 1989, 1990). Interactions
with the environment can also obscure the importance of a candidate gene. For example, genetic
studies on another lipid candidate gene ApoB did not reveal any significant contribution to interin-
dividual variation in plasma low-density lipoprotein cholesterol levels (LDL-C) (Cohen et al., 1996),
yet genetic variation at ApoB could explain about 75% of the variance in the amount of reduction of
LDL-C levels in a population of young men placed on a low-saturated fat diet (Friedlander et al.,
1995). Examining candidate loci one by one and in only one environment or in uncontrolled envi-
ronments can seriously reduce our ability to detect phenotypic effects with this approachdthe lesson
of Table 8.4 and Fig. 8.1. However, by measuring multiple loci or environments, the candidate locus

MEASURED GENOTYPE APPROACHES TO QUANTITATIVE GENETICS 255



approach can be a powerful method for identifying and measuring the interaction effects that are so
elusive to many other types of quantitative genetic approaches (e.g., Fig. 8.1).

The second major use of measured genotypes in quantitative genetics is to map the genomic lo-
cations of genetic variation that contribute to variation in a phenotype of interest. This mapping
approach requires the use of a sufficient number of genetic markers to cover all or most of the genome.
Three major types of mapping strategies have been used that differ in how they map locations within
the genome and the degree of resolution of the resulting genetic map.

LINKAGE MAPPING
The lowest resolution method is that of classical linkage mapping in which genetic markers scattered
across the genome are used to infer recombination in pedigrees. Using just classical Mendelian models
of segregation and recombination, inferences can be made about the expected phenotypic impact of a
location in the genome, say location x. It is not necessary to actually have a measured genetic marker at
location x, but it is desirable to have a sufficient density of informative markers so that double
crossovers can be ignored in the chromosomal intervals between markers, which corresponds to a
value of about 10 cM (cM ¼ centiMorgans, which is a recombination rate of 0.10 when double
crossovers in the interval can be ignored). About 500 informative markers can achieve this degree of
recombinational resolution in the human genome, although it is still desirable to have greater reso-
lution and more markers (Ober et al., 2000, 2001).

Human pedigrees are generally not very deep (Chapter 3) and much of the data used for linkage
analysis comes from just parents and offspring. The simplest type of mapping from such data is in-
terval mapping, in which the phenotypic impact of location x in the genome is evaluated by exam-
ining the genetic state of the markers that flank the x location. The basic model of recombination is
shown in Fig. 8.4, and Table 8.6 presents the recombinational model used to infer the genotypic value

FIGURE 8.4

Genomic location x is flanked by two marker loci, A and B that have a recombination frequency of r. The interval

between the scored markers is assumed to be sufficiently small such that double crossovers can be ignored. This

means that position x divides the interval into two recombinational regions, with rx being the recombination frequency

of location x to marker locus A, and r � rx being the recombination frequency of location x to marker locus B.
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(expected phenotypic means) associated with position x, Gx, as a function of the genotypic means
assigned to the observed flanking markers (loci A and B) in an informative pedigree of AB/ab � ab/ab.
Of course, other informative crosses are possible, and the genetic model needs to be modified for those
crosses. Also, since controlled breeding in humans is not possible, many pedigrees are noninformative
about any particular interval, which is another reason to use more markers than the minimum to
achieve a 10 cM resolution. Once a genotypic value has been assigned to genome position x from all
the informative pedigrees, a statistical test of significance needs to be performed. Quite often, this has
been a log-likelihood ratio test (Chapter 1), although the tradition in the human linkage mapping
literature is to use logarithms in base 10 rather than natural logarithms. This special type of a like-
lihood ratio is called the LOD score (Logarithm Of Odds). Because many tests are needed to cover
the whole genome (say every centiMorgan) and these tests are not independent due to linkage, it is
necessary to implement procedures that determine the LOD scores that are statistically significant at
the level of the entire genome (e.g., Cheverud, 2001). When a location x is inferred to be statistically
significant, it is called a quantitative trait locus (QTL). Because nearby locations are highly
correlated, in general many nearby locations all have significant LOD scores, resulting in a peak of
LOD scores above the significance threshold. Hence, a QTL is usually not a single locus in the
traditional Mendelian sense but rather a region of the genome that may contain many genes.

Interval mapping only uses the flanking markers for location x, but other markers can be infor-
mative as well. Consequently, most linkage mapping studies use various multiple marker procedures to
infer the quantitative genetic impact of location x. Also, missing data are common with pedigrees
(missing individuals, missing markers, etc.), and some procedures can handle much missing data and
others cannot. It is also possible to assign genotypic values not to a specific position x but rather to a
haplotype of observed markers (e.g., Cheng et al., 2011). Because of these various procedures and
ways of handling missing data, there can be some heterogeneity in inferred QTLs even from the same
data. For example, Basu and Pankow (2011) applied several procedures for QTL mapping for the

Table 8.6 The Observed and Expected Offspring Phenotypic Means (Genotypic Values) of the
Measured Marker Genotypes at Two Adjacent Loci in a Pedigree of AB/ab3 ab/ab Parents

Observed Marker
Genotype

Observed Average
Phenotype

Possible Genotypes
When x Is Included
and the Expected

Frequency Assuming
Model in Fig. 8.4

Expected Genotypic
Values of GXx and Gxx

AB/ab GAB AXB/axb
1/2(1�r)

GXx ¼ GAB

Ab/ab GAb AXb/axb
1/2(r�rx)

Axb/axb
1/2rx

[(r�rx)GXx þ rxGxx]/r

aB/ab GaB aXB/axb
1/2rx

axB/axb
1/2(r�rx)

[rxGXx þ (r�rx)Gxx]/r

ab/ab Gab axb/axb
1/2(1�r)

Gxx ¼ Gab

Two alleles at location X are assumed: X and x.
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phenotype of body mass index (BMI) to a set of pedigrees. One procedure, the variance component
(VC) approach (Province and Rao, 1995), was applied to all pedigrees. However, because many in-
dividuals had missing BMI measurements, the VC approach and several other procedures were applied
to a subset of the pedigrees with 30% or less missing phenotypic data. The results of QTL mapping for
six chromosomes are shown in Fig. 8.5. As can be seen, there is much similarity between the QTL
mapping using these alternative procedures and ways of dealing with missing data, but there are also
some large differences. Hence, the statistical model used in the analysis can and does affect the in-
ferences about QTLs.

As can be seen from Fig. 8.5, the QTL peaks typically span several centiMorgans, and hence often
contain many loci. As a result, it is not clear if the phenotypic effect of a single QTL is due to a single
gene or due to multiple genes in that genomic segment. Because human pedigrees generally have little
time depth (particularly for measured genotypes and phenotypes), the number of recombination events
are typically small in a linkage mapping study and the sizes of the resulting recombinant blocks are
typically large. These features result in low genetic resolution. Consequently, other mapping pro-
cedures that can make use of more recombination events and smaller linkage blocks have been
developed, as we will now see.

RUNS OF HOMOZYGOSITY
One genomic mapping technique was already discussed in Chapter 3dRuns of Homozygosity (ROH).
As discussed in Chapter 3, such runs can be used to estimate F, the probability of identity by descent of
an individual (Fig. 3.6), and are also associated with inbreeding depression and the phenotypes that
contribute to inbreeding depression (e.g., Fig. 3.7). ROH’s can be used to map the location of genes
associated with phenotypic variation by examining a sample of individuals and characterizing each
individual’s ROH’s to look for overlaps across individuals that are associated with phenotypes. This
approach is particularly useful in mapping the location of recessive genetic disease loci as the location
should be in the intersection of the ROH’s across all individuals in a population that share the disease
phenotype. However, many other phenotypic associations have been mapped in this manner as well
(Ceballos et al., 2018). This approach is most useful in populations that have a history of system of
mating inbreeding or a demographic history with a small inbreeding effective size, such as past
population bottlenecks (Ceballos et al., 2018).

ADMIXTURE MAPPING
Although most human pedigrees in linkage map studies span only one to three generations, admixture
events (Chapter 6) represent a population-level analogue of a pedigree that can go back for centuries
and thereby tap into many more recombination events. For example, recall from Chapter 6 that
African-Americans represent an admixture primarily from two parental populations (Western Euro-
peans and Western, tropical Africans) that has been going on for about 350 years (Jin, 2015). As a
result of multiple generations of recombination between chromosomes derived from different ancestral
populations, the current admixed population is expected to have accumulated many recombination
events, resulting in much smaller blocks of nonrecombined ancestral chromosomal segments
(Fig. 6.3). When the parental populations come from distant locations, as they did in the case of
African-Americans, we expect to find many AIMs (ancestral informative markers, Chapter 6) because
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FIGURE 8.5

Quantitative trait locus mapping of body mass index (BMI) using the variance component (VC) approach on all

pedigrees (Feitosa et al., 2002), the dark line with filled circles. The x-axis gives the chromosomal location in

centiMorgans and y-axis the logarithm of odds score. The VC and other procedures were applied to a subset of the

pedigrees with 30% or less missing BMI data. These include VC (dashed line), the QPTM approach (Basu and

Pankow, 2011, solid line), and the REGRESS approach (Sham et al., 2002, dotted line). Only the linkage signals

for chromosomes 1, 2, 7, 9, 10, and 12 are given.

From Basu, S., Pankow, J.S., 2011. An alternative model for Quantitative Trait Loci (QTL) analysis in general pedigrees. Annals of

Human Genetics 75, 292e304.



of the general phenomenon of isolation by distance in humans, and this is indeed the case for Western
Europeans and Western tropical Africans. One then needs to choose enough AIMs to cover the whole
genome in a manner that allows these ancestral blocks of nonrecombined genomic regions to be
identified, and computer programs exist for this purpose (Bercovici et al., 2008). For African-
Americans, only a couple of thousands of AIMs are sufficient for this purpose (Shlush et al., 2010).
The increasing abundance of genomic sequence data has also revealed many variants that are rare and
restricted to one continent. As explained in Chapter 4, the expansion of the human population size over
the past 10,000 years has lead to an overabundance of rare variants in the human gene pool. These rare
genes tend to be evolutionarily recent genes and have not had enough time to spread far under isolation
by distance (Chapter 7). Although individually rare, collectively these variants restricted to a single
continent are abundant at the whole genomic level, and with modern sequencing technology it is
possible to perform accurate ancestral origin inference of genomic segments in recently admixed
individuals (Brown and Pasaniuc, 2014).

Admixture mapping is most commonly used when the two parental populations differ in some
phenotypes. For example, nondiabetic end-stage kidney disease (ESKD) is much more common in
some African populations and African-Americans than it is in European and European American
populations (Shlush et al., 2010). ESKD is fatal unless renal replacement therapy (kidney dialysis or
transplantation) is available. Shlush et al. (2010) surveyed a sample of African-Americans enriched for
nondiabetic ESKD with an informative AIM panel to see if any genomic regions may be associated
with ESKD. AIMs are used to identify the ancestral origin of chromosome blocks across the entire

FIGURE 8.6

A hypothetical chromosome is shown from eight admixed individuals, four with the phenotype of interest (cases)

and four without (controls), with dark gray indicating the blocks derived from one of the ancestral populations and

white indicating the blocks derived from the other ancestral population. The region indicated by the bar shows an

elevated frequency of the phenotype of interest in those individuals bearing dark gray blocks, whereas most

controls are white in that region, indicating a genetic association due to ancestry from the first parental population

with this small region of the genome.
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genome for each individual. The logic of the mapping is shown in Fig. 8.6. Their study indicated a
small region on chromosome 22 of African origin that contained two genes, MYH9 and ApoL1, as
having a significant association with ESKD. Finer resolution studies of this genomic region indicated
that the MYH9 gene that encodes nonmuscle myosin heavy chain IIa (a cytoskeletal protein in many
cells, including kidney cells) had the strongest SNP associations (Behar et al., 2010; Bostrom et al.,
2010). However, Tzur et al. (2010) went beyond individual SNP associations and examined the pat-
terns of linkage disequilibrium in this region and the frequencies of SNPs and haplotypes in additional
populations. Table 8.7 shows the frequency of the risk SNPs in this region that had some of the most
significant associations with ESKD in Western Africa, European Americans, and Ethiopians from
Eastern Africa. Two other SNPs also had a strong association with ESKD in the adjacent gene ApoL1
that codes for apoprotein L-1, whose known activities include powerful trypanosome lysis, autophagic
cell death, and cellular senescence. Although the MHY9 “risk” allele had a higher frequency in the
West African population than either of the two missense ApoL1mutations, theMHY9 “risk” allele also
has a high frequency in Ethiopians, an African population with no increased risk for ESKD. Moreover,
all of these SNPs showed extremely strong linkage disequilibrium. Tzur et al. (2010) showed that the
pattern of associations, both in terms of disease association and linkage disequilibrium, could be
explained by the two ApoL1mutations occurring on the phylogenetic branch of the regional haplotype
tree marked by the older MYH9 “risk” mutation. Subsequent studies in human kidney cell tissue
culture and animal models strongly indicate that the two ApoL1 missense mutations are causative and
not the MHY9 “risk” allele (Anderson et al., 2015; Olabisi et al., 2016). In general, linkage disequi-
librium and evolutionary history can often cause a marker totally unrelated to the phenotype of interest
to show a stronger association with the phenotype when more than one causal variants exist, even to the
point of representing the only associations found in the data (Platt et al., 2010). This shows the danger
of equating strong association with an SNP or gene to causation in mapping studies and for the need for
taking an evolutionary/population perspective of associated genomic regions.

Although the majority of African-Americans with nondiabetic ESKD have one or both of the
missense risk alleles shown in Table 8.5 (Tzur et al., 2010), only 2.84% of middle-aged African-
American adults with one or more risk alleles develop ESKD over a 25 year follow-up period
compared with 1.87% of African-Americans without any risk allele. That is, the probability of having
the risk alleles given ESKD is much higher than the probability of getting ESKD given the risk alleles

Table 8.7 Some SNPs Associated With Nondiabetic ESKD on Chromosome 22 and the
Frequency of the Risk Allele in Three Human Populations

SNP rs
Number Gene

Type of
Mutation

Chr22
Location

“Risk” Allele Frequency

West
Africa

European
Americans Ethiopians

rs5750250 MYH9 Intron 13 35,038,429 0.66 0.06 0.35

rs73885319 ApoL1 Missense 34,991,852 0.46 0.00 0.00

rs60910145 ApoL1 Missense 34,991,980 0.45 0.00 0.00

Data from Tzur, S., Rosset, S., Shemer, R., Yudkovsky, G., Selig, S., Tarekegn, A., et al., 2010. Missense mutations in the APOL1 gene
are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Human Genetics 128, 345e350.
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(Grams et al., 2016). Table 8.4 provides a simple explanation for this discrepancy. From that table, the
probability of factor A1 given the “disease” is 1, whereas the probability of the “disease” given factor
A1 equals the frequency of factor B1, which is 0.1 versus 0.09 for the general population (Table 8.4).
This difference between the two conditional probabilities indicates that nondiabetic ESKD arises at
least in part from an interaction of the ApoL1 risk alleles with some other factor or factors, either
genetic and/or environmental. Chen et al. (2015) examined several sociodemographic factors and other
common risk factors for kidney disease such as smoking but did not identify any significant in-
teractions with the ApoL1 risk alleles. However, Kasembeli et al. (2015) found a greatly enhanced risk
of nephropathy of risk allele bearers who were also infected with the HIV virus. Nichols et al. (2015)
reported increased nephropathology in patients receiving therapeutic interferon, a group of signaling
proteins made and released by infected cells, particularly those infected by a virus. They further
showed that the impact of interferon is mediated by the ApoL1 transcription start site and that over-
expression of the ApoL1 risk variants is more injurious to kidney cells by inducing cell death than
overexpression of the ApoL1 variants that do not contain either risk variant. These studies all indicate a
strong interaction between the ApoL1 risk alleles with environmental factors related to viral infections.
Once again, the risk alleles do not determine the ESKD; rather they influence the reaction to the
environment that can lead to ESKD.

The ApoL1 risk alleles also show strong and dramatic pleiotropic effects. Indeed, even before these
alleles were associated with ESKD, they were discovered to confer resistance to African trypanoso-
miasis, also known as sleeping sickness (Lecordier et al., 2009). Sleeping sickness is caused by
infection with certain protozoan trypanosomes that are usually transmitted by the bite of an infected
tsetse fly. Without treatment, the disease typically results in death. Resistance to trypanosome infection
is normally mediated by apolipoprotein L-1 complexing with other molecules to induce lytic pores in
trypanosomal membranes that kill the trypanosomes. However, two subspecies of Trypanosoma brucei
can neutralize the trypanolytic activity of apolipoprotein L-1 by producing a serum resistancee
associated protein that in turn interacts with the C-terminal domain of apolipoprotein L-1 to inactivate
its lytic function. The risk alleles for ESKD both produce amino acid changes in the C-terminal region
that reduce the binding of the trypanosome’s serum resistanceeassociated protein to apolipoprotein L-
1 down to 48% for the G1 allele (the risk allele at SNP rs73885319 in Table 8.7) and down to 9% for
the G2 allele (the risk allele at SNP rs60910145 in Table 8.7) relative to the G0 allele (the alleles that
do not carry either the G1 or G2 variants) (Sharma et al., 2016). This in turn restores the lytic function,
resulting in trypanosome resistance. Hence, the G1 and G2 variants have at least two very different
pleiotropic effects: one deleterious to human health (increased risk for ESKD) and one beneficial
(resistance to sleeping sickness). Both pleiotropic effects reflect gene-by-environment interactions,
albeit with different environmental factors (viral infections vs. trypanosome infections).

GENOME-WIDE ASSOCIATION STUDIES
Admixture mapping tends to have greater genetic resolution than linkage mapping because admixture
mapping can often make use of a few centuries worth of accumulation of recombination events,
whereas linkage mapping is typically restricted to 1e3 generations of recombination. Over longer
periods of evolutionary time, even more recombination events can be accumulated that can break up
the genome into even smaller regions, as shown in Fig. 1.7 for a 9.7 kb portion of the LPL gene. GWAS
makes use of a population’s longer-term evolutionary history to tap into this trove of past
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recombination events. In both linkage mapping (Fig. 8.4) and admixture mapping (Figs. 6.3 and 8.6),
the genetic markers are used to infer the specific breakpoints of the recombination events. This
approach is often impractical when dealing with the whole genome over long periods of evolutionary
time. Instead, GWAS first depends upon the fact that when a mutation of phenotypic importance
occurs, it will initially be in linkage disequilibrium with preexisting polymorphic markers on the same
(and even different) chromosomes, but recombination will eventually break down many of these as-
sociations (Fig. 1.6). Second, GWAS depends upon the fact that recombination tends to become more
common with increasing physical distance between polymorphic sites on the chromosome, leading to
linkage disequilibrium tending to decrease with physical genomic distance over evolutionary time
(Fig. 3.4). Hence, GWAS is based on the assumption that the strongest linkage disequilibrium between
a phenotypically important polymorphism and genetic markers will be with the genetic markers that
are physically close on the chromosome to the phenotypically important locus. Finally, to make use of
the potential fine genetic resolution afforded by the accumulation of recombination events over
hundreds of thousands of years or more, it is necessary to use many more markers. So instead of
hundreds (linkage mapping) or thousands (admixture mapping) of markers scattered across the
genome, GWAS requires the use of hundreds of thousands to millions of markers to cover the genome,
with more markers finding more phenotypic associations (Caballero et al., 2015, CARDIo-
GRAMplusC D. Consortium, 2015). Typically, one tests for associations between each individual
marker and the phenotype of interest. It is also critical to correct for multiple testing, and since the
number of tests are so large, a substantial statistical penalty is incurred. Alternatively or in addition, the
GWAS can be repeated on an independent sample to see if the results replicate. Such replication must
be done carefully, however. As we have already seen, the apparent effect size of an allele on a
phenotype is strongly influenced by the allele frequency (Fig. 8.1 and 8.2), and different human
populations often have different allele frequencies at many loci. Moreover, the pattern and strength of
linkage disequilibrium and recombination also varies across human populations (Hinch et al., 2011),
which would also affect the apparent effect size. Direct GWASs performed on European ancestry
populations versus non-European ancestry populations have indeed shown that the apparent effect size
is often not replicable, including some QTLs being significant in one population but not in the other
(Carlson et al., 2013; Fu et al., 2011; Replication et al., 2014). Hence, any attempt to validate the
results of GWAS through replication in an independent sample should be made ideally with an in-
dependent sample of individuals from the same population surveyed in the first GWAS. GWAS can be
applied to samples of related individuals (such as parents and offspring) or to unrelated individuals. For
logistic reasons, samples of unrelated individuals are the more common strategy in GWAS.

Fig. 8.7 shows the results of a GWAS using about 2.5 million SNPs on 251,151 individuals for the
phenotype of age of first birth (AFB) of a child and on 343,072 individuals for number of children ever
born (NEB) (Barban et al., 2016). Ten independent genomic regions (QTLs) were identified as
significantly associated with variation in AFB, and two for NEB. The increased genetic resolution of
the GWAS is evident by comparing Fig. 8.7 with 8.5.

Although the resolution of QTL was much better compared with that of linkage mapping, the QTLs
were still about 100 kb long (Barban et al., 2016). This is long enough to contain many genes in some
parts of the genome. Therefore, the detailed pattern of linkage disequilibrium within the QTLs was
examined, which as shown by the MHY9/ApoL1 example can help eliminate some regions as likely
causal candidates. This LD analysis was not limited to SNPs in protein-coding loci, but also included
SNPs in regions that were likely to influence gene expression as inferred from the results of ENCODE
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(Chapter 2) and other databases related to gene expression and genome methylation patterns. This is
important because other GWASs have revealed eQTLs, that is expression-QTLs, that influence
patterns of gene expression, typically at multiple genes (Franzén et al., 2016; Kirsten et al., 2015; Li
et al., 2016; Maurano et al., 2012). Barban et al. (2016) also examined what was known about the
function of genes within each QTL to limit the candidates to functions involving reproduction, fertility,
and early fetal development. Using all this information, they identified likely candidate genes or
regulatory elements in 8 of the 12 QTLs. Multiple causal candidates were identified within five of these
eight QTLs, for a total of 24 candidates in the eight QTLs. As shown by the MHY9/ApoL1 example,
more than one candidate may be causal within a QTL, and moreover, the phenotypic effects could still
be due to noncandidate factors as GWAS only deals with association and not causation (recall that a
phenotypically unrelated SNP can show a strong association in a region with high LD even when none
of the functionally causal SNPs have a significant association (Platt et al., 2010)).

Because GWAS is predicated upon the assumption of an inverse relationship between linkage
disequilibrium and physical distance on the chromosome (Fig. 3.4), forces that create linkage
disequilibrium not related to physical distance can undermine GWAS. As shown in Chapter 3, one
such force is simply including in the sample individuals from two or more populations with distinct
gene pools. In that case, LD is created in the total sample between any two markers that have different
allele frequencies in the underlying populations regardless of their physical position in the genome
(Chapter 3). Moreover, males and females often show different phenotypic means, variances, and
associations (Rawlik et al., 2016). Both issues are examples of stratification. Workers in this area
generally try to avoid stratification in the first place by sampling individuals from a single deme and in
some cases performing separate analyses on males and females. However, our knowledge of many
populations is incomplete, so population stratification is always a danger. It is therefore critical to test

FIGURE 8.7

SNPs are plotted on the x-axis according to their position on each numbered chromosome against the statistical

strength of their association as measured by a transformed P-value for the phenotypes of age of first birth (A) and

children ever born (B). The solid blue lines indicate the threshold for 5% genome-wide significance

(P < 5 � 10�8), and the red line represents the threshold for suggestive locations (P < 5 � 10�6). Blue points

represent SNPs in a 100-kb region centered on the genome-wide significant hits, with the name of the gene closest

to the significant SNPs.

From Barban, N., Jansen, R., De Vlaming, R., Vaez, A., Mandemakers, J.J., Tropf, F.C., et al., 2016. Genome-wide analysis

identifies 12 loci influencing human reproductive behavior. Nature Genetics 48, 1462e1472.
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for stratification. For example, Barban et al. (2016) tested for stratification by testing the LD pattern for
the expected relationship with physical distance. Another test for stratification is based on theWahlund
effect (Chapter 6) that will induce a deficiency of heterozygotes from HardyeWeinberg expectations
when individuals from distinct demes are mixed together. Also, genetic distances between pairs of
individuals can indicate membership in different populations (Fig. 6.13), so genetic distances between
individuals can also be used to test for stratification (Scutari et al., 2016). Alternatively, others have
produced more complex statistical models that incorporate stratification into a GWAS that corrects for
a sample from multiple populations (Song et al., 2015; Wang et al., 2012; Niu et al., 2011; Lin and
Zeng, 2011; Joo et al., 2016).

Another issue is the units of genetic analysis. Although many GWAS procedures use data from
multiple nearby SNPs (as do linkage analysis experiments), the genetic model often used is one that
attributes a phenotypic effect to a single site through indirect associations caused by linkage
disequilibrium. However, recall that although mutation creates LD between an existing polymorphic
marker and a new mutation with a phenotypic effect, homoplasy (parallel mutations) can weaken that
association, as shown in Fig. 8.8A. In that figure, a phenotypically important mutation occurred close
to Marker locus 1, and specifically on a chromosome that bore the M1 allele at that marker locus.
However, a subsequent homoplasious mutation of M1 to state m1, the other allele at this marker,
creates a situation in which the phenotypically important allele is associated with both alleles at marker
locus 1, thereby weakening the phenotypic association with marker one. However, if haploytpes had
been constructed with the two marker loci, it would have been observed that all m1 associations with
the phenotype were limited to them1__M2 haplotype and not the other haplotype that bearsm1 alleles,
m1__m2. Note also that if marker 2 had no subsequent homoplasious mutations, it could display a
stronger LD association with the phenotypically important mutation than marker 1, even though
marker 1 is physically closer to the phenotypically important mutation.

Homoplasy at the phenotypically important locus can also weaken associations. In this case,
effective “homoplasy” is far more likely because the phenotypically important locus is generally not
measured. Hence, any mutation causing a similar phenotypic effect close to the markers would create a
phenotypic pseudo-homoplasy. We already saw an example of this with the G1 and G2 alleles at the
ApoL1 locus and the phenotype of ESKD. In that example, two independent mutations at different sites
both had similar phenotypic effects on risk of ESKD, and this phenotypic pseudo-homoplasy reduced
the phenotypic association with the causative ApoL1 locus while strengthening the association with a
noncausative marker in the MHY9 locus.

An analysis using haplotypes can detect these phenotypic pseudo-homoplasies that are invisible to
single-marker analyses (Templeton et al., 1987). Because of their increased power and resolution,
haplotype-based analyses have long been used in candidate gene studies, particularly when the
candidate gene lies in a region of low to no recombination, thereby allowing a reconstruction of the
haplotype tree of the candidate region (Templeton et al., 1987, 2005; Templeton, 2010; Liu et al., 2007;
Branicki et al., 2008; Ma et al., 2012). Even in regions where recombination has been significant in its
evolutionary history, haplotype analysis can reveal phenotypic associations that are otherwise difficult
to observe because recombination generates haplotype states that mimic the effects of mutational
homoplasy (Templeton et al., 2000), as shown in Fig. 8.8B in which the recombinant haplotype bearing
the phenotypically important mutation is indistinguishable from the one created by mutational ho-
moplasy. Because of the increased statistical and biological power of haplotypes to detect phenotypic
association, several methods of GWAS have been developed that use haplotypes as their units of

MEASURED GENOTYPE APPROACHES TO QUANTITATIVE GENETICS 265



analysis, sometimes with some sort of haplotype clustering that captures some of the evolutionary
history of a genomic region. These haplotype-based GWASs generally find phenotypic associations
that are not detected by SNP-centered GWASs (Browning and Browning, 2008; Cooper et al., 2011;
Jin et al., 2010; Kang et al., 2011; Xu and Guan, 2014). Many other types of genomic regions besides
single SNPs can be used as units in a GWAS (De la Cruz et al., 2010).

As with all the other quantitative genetic approaches discussed earlier, GWAS supports the
legitimacy of premise III from Chapter 1: DNA and the environment interact to produce phenotypes.

FIGURE 8.8

An initial gene pool consists of three haplotypes defined by two biallelic marker loci, with alleles M1 and m1 at

locus 1 and alleles M2 and m2 at locus 2. In between these two marker loci is a phenotypically important locus,

initially fixed for the p allele. A mutation then occurs to produce allele P� that alters the phenotype, with this

mutation occurring on the maker haplotype background ofM1__M2. In part A, a mutational homoplasy at marker

locus 1 creates a marker haplotype m1__M2 that also bears the P� allele, and in part B, a recombination event

creates a marker haplotype m1__M2 that also bears the P� allele.
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To examine potential gene-by-environment interactions in a GWAS, it is necessary to also measure
individual variation in one or more environmental variables. For example, GWAS that include envi-
ronmental variation have revealed that the genetic predisposition to obesity traits is stronger in those
individuals with a healthy diet (Nettleton et al., 2015), the genetic risk to breast cancer is altered by the
number of births a woman has had and by high alcohol consumption (Nickels et al., 2013), the genetic
risk and progression of Parkinson’s disease is modulated by caffeinated coffee consumption (Hamza
et al., 2011), and genetic variation exists in the responses to treatment with drugs such as metformin
(Birnbaum and Shaw, 2011) and warfarin (Burmester et al., 2011). In these types of studies, sometimes
a significant genetic association is only discovered in the context of some environments, but not others.
For example, a GWAS focusing on nonsyndromic cleft palate, a common birth defect, did not identify
any significant genomic regions when environmental variables were ignored but did find significant
genetic effects when maternal smoking was included (Beaty et al., 2011). In all of these cases and
many others, what is inherited is not the trait per se but rather responses to environments.

CLASSICAL QUANTITATIVE GENETICS VERSUS MEASURED GENOTYPE
APPROACHES
Many human traits have been studied with both classical and measured genotype quantitative genetic
analyses, thereby allowing a direct comparison between these two basic approaches. One of the most
consistent features to emerge from these comparisons is that the classical approaches can explain more
of the phenotypic variance than the measured genotype approaches (Vinkhuyzen et al., 2013; So et al.,
2011b). This phenomenon is called missing heritability because the heritability measures the pro-
portion of the total phenotypic variance that can be explained by additive genetic variance (and in some
studies that focus on broad-sense heritability, the genetic variance). Missing heritability is expected for
the candidate locus approach because such studies often focus only on a single locus or a finite number
of loci and not upon the entire genome. Classical approaches are estimating the heritability from all the
segregating loci in the gene pool that influence the phenotype of interest, so in general a candidate
approach will only examine a subset of those segregating loci and thereby miss much of the herita-
bility. However, many of the measured genotype approaches do indeed try to survey the entire genome,
and this is particularly true of high-resolution GWAS. Yet, GWAS typically can explain only a fraction
of the additive variance estimated from classical quantitative genetics. For example, Silventoinen et al.
(2003b) analyzed 30,111 twin pairs to measure the heritability of height in eight countries, stratified by
gender and country. For men, the heritability ranged from 0.87 to 0.93, and for women 0.68 to 0.84. In
contrast, several GWASs revealed a total of about 50 genomic regions that in total account for only
about 5% of the phenotypic variance (Gudbjartsson et al., 2008; Lettre et al., 2008; Weedon et al.,
2008; Yang et al., 2010) as opposed to about 80% for the classical heritability studies.

Where did this missing heritability go? First, it is critical to note that the classical quantitative
genetic studies are trying to estimate heritability as affected by all segregating variations in the ge-
nomes of the population, whereas GWAS is attempting to estimate specific locations in the genome
that influence variation in the trait of interest. As noted earlier, it is necessary to adjust for multiple
testing to map specific genomic locations of importance. Hence, the two types of studies are not trying
to estimate the same entities, and the GWAS, in particular, incurs a large statistical penalty that greatly
reduces the power for detecting all genomic regions associated with the trait of interest. To make the
two approaches more statistically comparable, one should use GWAS to estimate the portion of the
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variance that can be explained by all SNPs without trying to identify individual SNPs with significant
associations. For example, Yang et al. (2010) found that they could explain 45% of the phenotypic
variance in height in a GWAS without restricting it to SNPs with individually significant
associationsda 10-fold increase in the amount of variance explained by the 50 genomic regions
identified by standard GWASs. Still, there was considerable missing heritability. de los Campos et al.
(2015) called the heritability inferred from all markers in a GWAS as genomic heritability, h2g, and
showed that it is related to the classical heritability (Eq. 8.16) by the equation:

h2g ¼ h2
s2gwas

s2a
(8.29)

where s2gwas is the amount of additive variance explained by all the markers used in the GWAS and s2a
is the classical additive variance. Other studies on additional traits confirm that genomic heritability
estimates are generally much larger than the portion of the variance identified by individually sig-
nificant genomic regions under GWAS but also generally do not explain all of the classic heritability
(Keller et al., 2012; Ge et al., 2015; So et al., 2011a). These studies indicate that removing the sta-
tistical penalty for multiple testing from GWAS recovers much of the missing heritability, but not all.

Yang et al. (2010) argued that the missing heritability that remained after estimating the genomic
heritability of height was due to the fact that GWAS depends upon linkage disequilibrium between the
markers and the causal loci, and this LD is typically imperfect. Indeed, de los Campos et al. (2015)
argue that if the markers used include the causal variants, then there should be no missing heritability
as this eliminates the LD problem. Therefore, they argued that in theory using sequence data should
eliminate the missing heritability problem. However, they also recognize that this prediction does not
seem to be empirically borne out, and other work also shows that full sequence data improve GWAS
but still allow missing heritability (Caballero et al., 2015).

One explanation for the persistence of missing heritability even if full sequence data were available
is the impact of rare variants on phenotypic variation. As shown in Chapter 4, rare variants, even
deleterious ones, are actually very common in humans as a class because of our unique demographic
history (Lohmueller, 2014; Uricchio et al., 2016). Moreover, as shown earlier in this chapter, rare
variants are expected to have larger than average phenotypic effects. However, precisely because the
variant is rare, its effects will often be undetectable or minor in a GWAS study performed on unrelated
individuals (the most common scenario). In contrast, classic human quantitative genetic studies
depend upon using related individuals. Although a rare variant by definition is rare in the population, if
it is in a family, it is typically not rare in a set of relatives from that family. Rare variants can therefore
contribute greatly to the phenotypic correlation between relatives in that family. Different families
would be expected to have different rare variants, but in every case of a family with a rare variant, that
rare variant could strongly contribute to phenotypic correlations among relatives. Hence, many rare
variants in a pedigree-based study of related individuals (the classic approach) should greatly
contribute to the overall phenotypic correlations of relatives, and hence to heritability (e.g., Eq. 8.27).
In contrast, a GWAS focusing on unrelated individuals would miss these familial enrichments of rare
variants. An example of the strong effects of pedigree sampling is shown by the GWAS of height using
3375 sibling pairs rather than unrelated individuals that yielded a heritability of 0.80 (Visscher et al.,
2006)da value virtually indistinguishable from the classical heritability studies.
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Although performing a GWAS on related individuals can capture the effects of rare variants
(Ionita-Laza and Ottman, 2011), it can also be affected by other factors shared among close relatives
that we will discuss later. Hence, the reason why family sampling recovers missing heritability is still
an open question. Several methods have been developed that focus more cleanly upon the role of rare
variants. One general warning is applicable to all these studies: many of the DNA scoring techniques
have scoring errors that can dramatically impact the false-positive rate for rare variants, so great care
must be used to ensure quality of the data (Johnston et al., 2015). The most direct assessment of rare
variants, although it does not typically address missing heritability, is to sequence candidate genes with
large sample sizes. For example, Cohen et al. (2004) sequenced three candidate genes for the
phenotype of high-density lipoprotein cholesterol (HDL-C) and identified multiple rare alleles that
contributed to the phenotypic tail of low-plasma HDL-C. Another study that resequenced one of these
candidate loci, ApoA1, also found that rare variants contribute to low HDL-C and the risk for
myocardial infarction in the general population (Haase et al., 2012). A more ambitious candidate gene
study resequenced 408 brain-expressed genes in 285 patients with autism spectrum disorder or
schizophrenia and found three genes that had a significant excess of rare missense mutations in one or
both of the disease cohorts, indicating that resequencing affected individuals (equivalent to a tail of a
phenotypic distribution) could identify otherwise rare variants with a relatively small sample size
(Myers et al., 2011). Mancuso et al. (2016) integrated the candidate approach with GWAS by carrying
out targeted resequencing of all previously known prostate cancer GWAS regions (63 autosomal re-
gions). They found many rare SNPs (frequencies of 0.1%e1%) that collectively explained 12% of the
risk for prostate cancer and 42% of the GWAS variance in risk. These studies demonstrate that rare
variants should not be ignored.

A GWAS method that captures some aspects or relatedness without many of the confounding
variables is to sample individuals who are not known to be related but use the SNPs to identify a cluster
of individuals who share a common haplotype (Gusev et al., 2011). This approach uses the fact that
even “unrelated” individuals share common ancestors if one goes back even a few generations
(Chapters 3 and 5), particularly if the population sample is from a single geographic area (Chapter 6)
that as pointed out earlier enhances the sharing of rare variants. Once these haplotypes have been
identified, we have a situation similar to that illustrated by Fig. 8.6, although in this case we are looking
at identity-by-descent (IBD) blocks from a common ancestor on a much smaller genomic scale than in
the typical admixture mapping design. Rare variants of phenotypic importance have been found in
these shared IBD haplotypes (Gusev et al., 2011). Another method for investigating the role of rare
variants is to sample the two tails of the phenotypic distribution. Because rare variants are expected to
have higher than average phenotypic deviations from the mean, the tails of the phenotypic distribution
should be enhanced for rare variants. The power of this approach can be increased by also contrasting
the genetic variants found in the phenotypic tails to those from the middle of the phenotypic distri-
bution (Bacanu et al., 2011). Another approach is to collapse all the low-frequency variants into a
single bin or category and examine the phenotypic effect of the bin. For example, Bowes et al. (2010)
used this approach followed by further investigation of individual rare variants with strong phenotypic
signals to map a rare variant for rheumatoid arthritis.

As noted above, performing a GWAS on a sample of related individuals can often find missing
heritability. So far, we have focused on the ability of such studies to find missing heritability because of
shared rare variants among related individuals. However, related individuals can also share environ-
ments, epigenetic effects, and phenotypically correlated parents (assortative mating, Chapter 3). These
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factors can all affect the apparent additive variance in a manner that is often confounded and hard to
separate. For example, we earlier pointed out that a GWAS on height in sibling pairs found a genomic
heritability virtually identical to the classical heritability, indicating that this approach had found the
missing heritability. Our first explanation was that the sibling design captured the effects of rare
variants. However, another explanation stems from the fact that there is strong assortative mating in
most human populations for the phenotype of height (Silventoinen et al., 2003a). Although most
human populations are randomly mating at most loci, assortative mating can strongly affect the gamete
frequencies that contribute to the phenotype that influences mate choice (Chapter 3). By inducing a
phenotypic correlation between mates, assortative mating can also induce a genetic correlation be-
tween mates. This genetic correlation between the parents in turn can inflate the additive genetic
variance (Eq. 8.23), often substantially (Lynch and Walsh, 1998). Classic human quantitative genetic
designs, such as that of Silventoinen et al. (2003b) on height in twin pairs, as well as GWAS on sibling
pairs (Visscher et al., 2006), can capture the effect of phenotypically correlated parents, whereas a
GWAS on unrelated individuals typically does not. Hence, the missing heritability in height could be
explained by assortative mating. Unfortunately, system of mating is rarely examined in GWASs, but
the system of mating should be considered, as the assumption of random mating is invalid for many
phenotypes.

Sampling of siblings or parents and offspring also taps into other types of correlations that can
inflate apparent heritability. One problem is that of shared environments among relatives and parental
genotype effects (Kong et al., 2018) that can inflate the apparent additive genetic variance and result in
an overestimate of classical heritability, often quite substantially in humans (an average of 47% for
many traits according to Munoz et al., 2016). If shared environments are the source of the “missing
heritability,” then a GWAS on unrelated individuals produces a more accurate estimate of heritability
(Vinkhuyzen et al., 2013). The problem of shared environments is a serious one in classical quanti-
tative genetics, so often some effort is made to reduce the sharing of environments, such as in the
adoptive study of Skodak and Skeels (1949), but it is difficult to eliminate all shared environments,
such as the in utero shared environment of full siblings. Hence, some missing heritability may not be
true heritability at all. Intertwined with the problem of shared environments is the potential for
epigenetic inheritance (Chapter 2). Epigenetic effects can increase the phenotypic correlation of rel-
atives due to shared environments, and also due to the inheritance of epigenetic states from parent to
offspring, that have been well documented in other organisms, including mammals (Chen et al., 2016;
Cui et al., 2007; Lawson et al., 2013), and with some evidence in humans (Hochner et al., 2015;
Carouge et al., 2016; Hamada et al., 2016; Schagdarsurengin and Steger, 2016). Theoretical studies
indicate that epigenetic variation, both that directly inherited and that induced by shared environments,
can greatly increase familial correlations and thereby contribute to missing heritability (Furrow et al.,
2011).

A final problem that can lead to missing heritability is that many GWASs are based on a single-
locus quantitative genetic model of phenotypic association that ignores epistasis with other loci.
Epistasis greatly complicates GWAS both computationally and statistically. For example, suppose n
markers are surveyed in a GWAS. As already mentioned, n needs to be a large number in a GWAS, so
correcting for multiple testing imposes a severe penalty. However, n defines a total of 1

2

�
n2 � n

�
potential pairwise interactions. This large number of just pairwise interactions greatly increases both
computational time and the statistical burden of correcting for multiple testing, severely reducing
power for detecting interactions. Moreover, because of the general phenomenon of the confoundment
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of frequency and apparent causation (Table 8.4), many of the genes contributing to a phenotype
through epistasis will be invisible to a single-locus marginal analysis (Fig. 8.1). Hence, even if sta-
tistical power were not an issue, many genes in epistatic networks would be invisible to standard
GWAS methods as they would have little to no marginal effects. Finally, the widespread observation
that the classical nonadditive variance is often small does notmean that epistasis is rare. Because of the
confoundment of frequency and apparent causation, the primary impact of Mendelian epistasis is often
to contribute to the additive variance with the effects being assigned primarily to a subset of the
interacting genes (Fig. 8.1).

A direct approach to epistasis is the candidate approach in which prior knowledge is used to
identify specific sets of genes (or their products) that are likely to be interacting with respect to a
phenotype of interest. For example, Pedersen and Berg (1989) did not choose the ApoEeLDLR pair of
genes at random, but rather chose this pair because both were known to be biologically important for
serum lipid transport to target tissues and that the protein products of these two genes were involved in
direct binding in modulating their phenotypic roles. Others have used this approach to discover sig-
nificant interactions among several candidate genes for a variety of phenotypes (Corsetti et al., 2011;
Keenan et al., 2012; Kumar et al., 2012; Yi et al., 2015). Such studies reveal some interesting patterns
about epistasis. For example, Keenan et al. (2012) found a significant interaction between the ApoE-4
allele and the CR1 gene with respect to cognitive decline and Alzheimer’s disease. As mentioned
earlier, ApoE has many pleiotropic effects, but it interacts with different genes for different pheno-
types. Indeed, ApoE is involved in a complex and tangled web of pleiotropic effects, trait-specific
epistasis, and gender interactionsdand all involving traits that quantitative genetic studies have
inferred are mostly “additive” (Templeton, 2000). The study by Yi et al. (2015) provides another
warning about focusing only on marginal effects of single loci. They studied six genes in the cyto-
chrome P450 pathway, a pathway implicated in the risk of stroke. No significant marginal effects were
found for any of these genes, yet significant interactions that increased the risk for stroke were
detected. Thus, studies that focus only on genes or genomic regions that have significant marginal
associations can miss much phenotypically important genetic variation that contributes to missing
heritability.

Another use of candidate genes in a GWAS is to reduce the dimensionality of the problem by
looking only at the pairwise interactions between a candidate gene and the other SNPs used in the
GWAS. Maxwell et al. (2013) used this approach to investigate epistasis with ApoEwith regard to lipid
phenotypes and CHD and found four other loci that significantly interacted with ApoE in their GWAS,
with many more loci close to the significance threshold. Interestingly, none of these interacting loci
had significant marginal associations, so none of them would have been found by a standard single-
locus GWAS. This approach can be extended by using prior knowledge indicative of potential
geneegene interactions to identify sets of candidate genes and then restrict the search for pairwise
interactions to the SNPs or genes or haplotypes within these sets, thereby greatly reducing the
dimensionality. Studies using this approach find significant interactions involving loci that are not
found in standard, single-locus GWASs (Barrenas et al., 2012; Chen and Thomas, 2010; Nakka et al.,
2016).

The most direct way to access potential pairwise interactions across the whole genome is to
examine all pairwise marker associations, which has been done in low-resolution studies. For example,
Bell et al. (2011) performed a GWAS for type 2 diabetes using 70,236 markers that examined all
pairwise associations. They found 79 significant SNP pairs even with the severe statistical penalty to
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correct for so many comparisons. Interestingly, 82% of the loci identified through significant in-
teractions for type 2 diabetes had no significant marginal effects. As the number of markers increases,
the computational and statistically difficulties with the direct approach go up exponentially. Therefore,
several procedures have been developed that basically entail a two-stage process, with the first stage
used to reduce the dimensionality to the more likely pairwise comparisons to show interactions fol-
lowed by an analysis of the pairs that survived the first-stage screening. Such studies have detected
significant interactions for a variety of human phenotypes (De Lobel et al., 2010; Hemani et al., 2014;
Ma et al., 2013; Zhao et al., 2016).

As shown above, there are many factors that can lead to missing heritability, and probably all of
them contribute to some extent for certain populations and traits. However, the studies mentioned
above show that much, and perhaps all, of this missing heritability can be recovered. All in all, there is
a high degree of concordance between the classical unmeasured genotype and the measured genotype
approaches to quantitative genetics. Both approaches have also shown that human populations contain
much genetic variation that interacts with environments to produce phenotypic variation for virtually
every trait studied.
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NATURAL SELECTION 9
Wehave now discussed all three of the major premises upon which population genetics and genomics
are based: DNA can replicate, DNA can mutate and recombine, and the information encoded in the
DNA interacts with the environment to produce phenotypes. As pointed out in Chapter 1, the
evolutionary force of natural selection integrates all of these premises in a manner that results in
adaptive evolution (Fig. 1.9). This integration is achieved by focusing upon a special set of phenotypes
that arise from how genotypes interact with their environment. The first of these is viability, the ability
to live in an environment, frequently measured by the probability of surviving from conception or birth
until adulthood and thereafter. We already have seen an example of this in Chapter 1 in our discussion
of sickle-cell anemia. Recall that two alleles at the b-Hb locus are the A and S alleles. Individuals with
the SS genotype are likely to suffer from sickle-cell anemia (Fig. 1.8), which greatly reduces their
viability, particularly as measured by survival to adulthood. The AS genotype does not suffer from
sickle-cell anemia but is resistant to falciparum malaria, a major cause of childhood death in many
regions of the world. Consequently, depending on the environment (in this case, the presence or
absence of the malarial parasite Plasmodium falciparum), the genotypes defined by these two alleles
can greatly affect the probability of living to adulthood as a function of the environment. We will
discuss this example in more detail in this chapter to gain additional insights into the meaning and
mechanism of natural selection.

A second phenotype of great interest to evolutionary biologists is the phenotype ofmating success,
the probability of a reproductively mature individual successfully finding a mate in the context of the
environment. There is a large variance in mating success among humans, particularly males, so there is
much opportunity for fitness differences to arise from this phenotype (Courtiol et al., 2012). This
fitness component varies across cultural environments, particularly in terms of the marriage system
and determinants of social status (von Rueden and Jaeggi, 2016). An example of genetically influenced
mating success is provided by the Phenylalanine hydroxylase (Ph) autosomal locus that codes for the
enzyme phenylalanine hydroxylase. This enzyme converts the amino acid phenylalanine into tyrosine.
A large number of loss-of-function mutations have occurred at this locus (Scriver and Waters, 1999),
and homozygosity for loss-of-function alleles is associated with the clinical syndrome known as
phenylketonuria or PKU. Let k designate the set of loss-of-function alleles, and K the set of functional
alleles. The kk homozygotes cannot catalyze phenylalanine, so they have a buildup of phenylalanine
and its degradation products, such as phenylketones. The phenylketones are typically found at high
levels in the urine of the kk homozygotes, an easily scored phenotype that gives the syndrome its name.
Consequently, screening for PKU in newborns was the first widespread population screening program
for a genetic disease, starting in the mid-20th century, and it is now routinely screened in many
countries (Levy and Albers, 2000). The reason for this screening is not for the phenotype of high levels
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of phenylketones in the urine per se, but rather for other pleiotropic phenotypes associated with kk
homozygosity. Among these pleiotropic traits is the tendency for kk homozygotes to suffer from
mental retardation in response to their dietary environment. The primary source of phenylalanine is our
diet. The kk homozygotes typically have normal mental abilities at birth. While in utero, the kk ho-
mozygote is not eating but is obtaining its nutrients directly from the mother. Typically, the mother is a
carrier of PKU with the genotype Kk, which means that she can catalyze phenylalanine to tyrosine.
After birth, the kk homozygote cannot metabolize the phenylalanine found in a normal diet, and mental
retardation will likely soon develop. If a baby with the kk genotype is identified soon after birth and
placed on a diet with low levels of phenylalanine, the baby will usually develop a normal level of
intelligence. Thus, the kk genotype can give rise to radically different mental ability phenotypes
depending upon the dietary environment. Prior to PKU screening, most kk individuals were institu-
tionalized because of their mental retardation and had virtually no mating success. However, after
PKU newborns were placed into a low phenylalanine dietary environment, many kk individuals led
normal lives, including normal levels of mating success.

The mating success of the first cohort of kk individuals treated with a low phenylalanine diet
revealed an unanticipated genotype-by-environment interaction. Although individuals who are kk are
generally advised to maintain a low phenylalanine diet throughout their life, such diets are highly
restrictive and more expensive than normal diets (Singh et al., 2014). Moreover, the beneficial effects
of the low phenylalanine diet are strongest in children. Once the brain has fully developed, kk
individuals often do not perceive much of an impact of diet on their mental abilities. As a result,
compliance with the diet tends to drop off with age, with more than 70% of kk adults no longer using
the treatment diet (Berry et al., 2013). When noncompliant kk women married and had children, the kk
mothers had high levels of phenylalanine and its degradation products in their blood because they were
no longer eating a low phenylalanine diet. Recall that the developing kk fetus with a Kk mother
typically develops normally. Although most of the children born to treated women that were
noncompliant as adults had the genotype Kk, these Kk fetuses were exposed to an in utero maternal
environment that inhibited normal brain development. Such Kk children of kkmothers on a normal diet
during pregnancy were born with irreversible mental retardation, leading to their institutionalization
and zero mating success. Given this interaction with the in utero environment produced by non-
compliant kk women, there is now the strong recommendation that dietary treatment should be life-
long, particularly in women (Vockley et al., 2014). This recommendation, when followed, restores the
mating success of the Kk offspring of kk women. Hence, the mating success of kk women and their Kk
children is highly dependent upon the dietary and in utero environments to which they are exposed.

The third phenotype of great interest to evolutionary biologists is fertility or fecundity, typically
measured by the number of children a mated individual produces. For example, Huntington’s disease
(HD) is the most common, inherited neurodegenerative disease in humans. HD is associated with an
autosomal dominant allele,H, at the protein-coding Huntingtin locus (Finkbeiner, 2011). Although the
disease is fatal, the age of onset is quite variable, such that many Hh individuals do not express the
disease until they have survived to adulthood, married, and had children. Many studies have used
unaffected siblings (half of the children of an HD parent are typically Hh and half are hh that are
unaffected) or other near relatives as a control for the phenotype of fertility. Frontali et al. (1996)
examined the fertility of HD patients and their healthy relatives with a 50% prior risk in a region of
Italy for individuals born between 1870 and 1950. Because of limitations from the older generations,
fertility was measured by the number of children surviving to age 15 years or older. The data were
pooled by decade, and the results are shown in Fig. 9.1. As can be seen, before 1920, theHh individuals
consistently had higher fertility than their hh relatives. However, starting in the 1920s and thereafter,
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there was no significant difference in fertility between these two genotypes. A likely explanation is a
change in the demographic environment toward an increasing age of marriage and first pregnancy that
became quite apparent around the time of the Second World War and thereafter. This increasing age of
first reproduction allowed less time for theHh individuals to reproduce before the onset of HD, thereby
causing them to lose their fertility advantage over their unaffected relatives. Hence, the fertility
assigned to the Hh and hh genotypes was sensitive to the demographic environment in which the
individuals lived.

The common feature shared by the three phenotypes of viability, mating success, and fertility is
that they are all necessary to successfully replicate one’s DNA and pass it on to the next generation,
thereby linking premise 3 that phenotypes are gene-by-environment interactions to premise 1 that
DNA can replicate (Fig. 1.9). These three phenotypes are often put together into a single phenotype of
reproductive success called fitness. Viability, mating success, and fertility are called fitness compo-
nents. Fitness and all of its components are a function of how genotypes respond to environments. If
DNA truly determined phenotypes without any environmental influence, there could be no adaptive
evolution, and therefore no humans and no life at all on this planet. Fitness, and natural selection,
always depends upon the environmental context.

A ONE-LOCUS, TWO-ALLELE MODEL OF NATURAL SELECTION
Fig. 3.1 shows the simple one-locus, two-allele model for a random mating population that goes from
one generation to the next. No fitness components were incorporated into that model, and it was
completely neutral in the sense that it assumed all genotypes had the same viability. This assumption

FIGURE 9.1

Mean number of children surviving at least to 15 years born to Huntington’s disease patients (open squares) and to

their 50% at prior-risk unaffected relatives (closed squares), subdivided according to decade of birth.

From Frontali, M., Sabbadini, G., Novelletto, A., Jodice, C., Naso, F., Spadaro, M., et al. 1996. Genetic fitness in Huntington’s

Disease and Spinocerebellar Ataxia 1: a population genetics model for CAG repeat expansions. Annals of Human Genetics 60,

423e435.
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means that the zygotic genotype frequencies are the same as the adult genotype frequencies. It was also
assumed that all adult genotypes had the same mating success and fertility so that all genotypes made
equal contributions to the gene pool (the population of gametes that gives rise to the next generation).
We now modify this model to incorporate the three fitness components.

The modified model is shown in Fig. 9.2. This model starts with a gene pool of an isolated, infinite-
sized deme with two alleles, A and a, at an autosomal locus with allele frequencies of p and q ¼ 1�p,
respectively. Gametes are drawn from this gene pool according to the rules of its system of mating
(which may or may not be random mating) to produce the zygotes of the next generation, with zygotes
of genotype i having a zygotic frequency of zi. Unlike Fig. 3.1, in which zygotic frequencies are the
same as the adult genotype frequencies, we now assume that the various genotypes are interacting with

FIGURE 9.2

Derivation of the impact of natural selection upon allele frequencies for a single autosomal locus with two alleles, A

and a. The fitness components for genotype i are li (viability),mi (mating success), and bi (number of offspring given

alive and mated). Averages used are l ¼ zAAlAA þ zAalAa þ zaalaa, ml ¼ zAAmAAlAA þ zAamAalAa þ zaamaalaa,

and w ¼ zAAbAAmAAlAA þ zAabAamAalAa þ zaabaamaalaa.
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their environment in such a way to produce potentially different viabilities, measured by li, the
probability of genotype i surviving to adulthood in this discrete generation model. Hence, the zygotic
genotype frequencies are multiplied by their probability of surviving to adulthood, divided by the
average viability l ¼ zAAlAA þ zAalAa þ zaalaa to obtain the adult genotype frequencies, zili

�
l , which

sum to one. The adults also interact with their environment to produce potentially different proba-
bilities of mating success, mi. This yields the frequency of mated adults to be zilimi

�
ml where

ml ¼ zAAmAAlAA þ zAamAalAa þ zaamaalaa. Dividing by ml ensures that the mated adult genotype
frequencies also sum to one. Finally, the mated adults are assumed to interact with their environments
to produce potentially different numbers of offspring, symbolized by bi for genotype i. The contri-
bution of living, mated genotype i to the gamete types in the gene pool is proportional to bi times the
meiotic probability of producing a specific gamete type. As shown in Fig. 9.2, the frequency of
A-bearing gametes that actually get passed on to the following generation is proportional to
ðbAAmAAlAAzAAÞ þ 1

2 ðbAamAalAazAaÞ. The product bimili represents the probability that a zygote with
genotype i will live to adulthood and mate ðmiliÞ multiplied by the number of successful gametes it
contributes to the next generation given that it is alive and mated (bi). Accordingly, bimili is the overall
reproductive contribution (number of successful gametes that are passed on to the next generation) of a
zygote with genotype i; that is, bimili is the genotypic value of the phenotype of overall reproductive
success throughout the entire life span measured from fertilization, and accordingly, bimili is defined
as the fitness of genotype i. Let wi ¼ bimili be the genotypic value of the phenotype of fitness for
genotype i. In this simple model, the three fitness components of viability, mating success, and fertility
combine in a multiplicative fashion to yield the phenotype of reproductive fitness. This is not always
the case in more complicated models of natural selection, but fitness is always some function of
viability, mating success, and fertility.

To obtain allele frequencies that sum to one, we need to divide the proportional gamete-type
contributions such as ðbAAmAAlAAzAAÞ þ 1

2 ðbAamAalAazAaÞ by the average fitness: w ¼ wAAzAAþ
wAazAa þ waazaa, as shown in Fig. 9.2. In terms of the phenotype of fitness, the allele frequency of A in
the next generation shown in Fig. 9.2 can be expressed as:

p0 ¼
wAAzAA þ 1

2
wAazAa

w
(9.1)

Recall from Chapter 1 that evolution is measured by a change in gamete frequencies. By subtracting
the starting allele frequency, p ¼ zAA þ 1

2zAa, from Eq. (9.1), the change in allele frequency over this
generation is:

Dp ¼ p0 � p ¼
wAAzAA þ 1

2
wAazAa

w
�
�
zAA þ 1

2
zAa

�

¼
zAAðwAA � wÞ þ 1

2
zAaðwAa � wÞ

w

(9.2)
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Note that the terms ðwi � wÞ in the numerator of Eq. (9.2) are the genotypic deviations (Chapter 8)
for the phenotype of fitness. The conditional frequency of an A-bearing gamete being found in zygotic
genotype AA is zAA=p and in genotype Aa it is

1
2zAa

�
p (Eq. 8.8). Eq. (9.2) can therefore be expressed as:

Dp ¼ p

w

"
zAAðwAA � wÞ

p
þ
1

2
zAaðwAa � wÞ

p

#
¼ p

w
aA (9.3)

where aA is the average excess of allele A for the phenotype of fitness (Eq. 8.9). Although the above
derivation is only for a two-allele model, Eq. (9.3) is also valid for a locus with multiple alleles. In all
cases, the amount of change in allele frequency for any one allele that is induced by natural selection is
proportional to that allele’s average excess for the phenotype of fitness.

Eq. (9.3) is the fundamental equation of natural selection for a measured genotype that states
that the change in allele frequency is proportional to the average excess of fitness for that allele.
Because the average excess is the only part of Eq. (9.3) that can vary in sign or take on the value of zero
(except for the trivial cases of p ¼ 0 or q ¼ 0), evolution (a change in allele frequency) occurs only
when an allele’s average excess of fitness is nonzero. If A has a positive average excess of fitness, the A
allele increases in frequency; if A has a negative average excess of fitness, it decreases in frequency;
and if A has a zero average excess of fitness, its frequency is unaltered by natural selection. The
evolutionary impact of natural selection is determined solely through gametes. Fitness variation across
genotypes is necessary for natural selection, but the evolutionary impact of natural selection is
determined exclusively by how the genotypic variation contributes to the gametic measure of average
excess. In other words, only the heritable (Eq. 8.16) component of fitness can yield evolutionary
change under natural selection. The simplistic definition of natural selection as “survival of the fittest”
is wrong when “the fittest” refers to individuals and their phenotypes. Rather, natural selection favors
gametes with positive average excesses for fitness.Natural selection can only be understood in terms of
the average excesses of fitness of gametes and not the fitnesses of individual genotypes.

SICKLE-CELL AND MALARIAL ADAPTATIONS: AN EXAMPLE OF THE
MEASURED GENOTYPE APPROACH TO NATURAL SELECTION
In Chapter 1 we pointed out that the sickle-cell allele, S, provides resistance to malaria and can
strongly affect the fitness component of viability to adulthood. Wewill now examine this locus in more
detail to illustrate the application of Eq. (9.3) as a means of understanding how natural selection
operates (Templeton, 1982). In particular, this more detailed analysis will illustrate the importance of
the average excess of fitness of an allele as the predictor of the course of natural selection and the
counterintuitive results obtained when one looks at natural selection as either optimizing individual
fitness (“the survival of the fittest”) or optimizing a population’s average fitness, two frequent
misconceptions.

Two of the allelic actors in this evolutionary drama were introduced in Chapter 1, the A and the S
alleles at the autosomal locus that codes for the b-chain protein of hemoglobin. We discussed the
various phenotypes associated with the genotypes determined by these two alleles in Chapter 1,
including that AA genotypes are susceptible to malaria, AS genotypes are more resistant to malaria,
and SS genotypes tend to suffer from hemolytic anemia. In an environment in which many children
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are infected by the malarial parasite, this results in birth to adult viability differences, with AS
individuals having the highest viability. We now introduce a third allelic actor, the C allele that is
common in some African populations and their descendants. The C allele is a missense mutation in
the sixth codon, the same codon that mutated to produce the S allele, but the C mutation results in a
glutamate to lysine amino acid change rather than to a valine, as was the case for the S allele. What is
most critical for illustrating natural selection is that both the S and C alleles are associated with
resistance to faliciparum malaria (Cyrklaff et al., 2011). As mentioned in Chapter 1, S is a dominant
mutation for malaria resistance, whereas C is a recessive mutation for malaria resistance (Modiano
et al., 2008).

Table 9.1 presents the estimated relative viabilities for the six genotypes produced by the A, S,
and C alleles for a West African population living in a malarial environment (Cavalli-Sforza and
Bodmer, 1971). The relative fitnesses in a nonmalarial environment are obtained by ignoring the
impact of the phenotype of malarial resistance upon the phenotype of fitness. A relative fitness is
one in which the fitness of one genotype is set to some standard value (usually 1) and all other
fitnesses are measured relative to this standard. This transformation has no impact whatsoever on
Eq. (9.3) and hence upon the predicted evolutionary outcome of natural selection. Note that the
average excesses in the numerator of Eq. (9.3) depend only upon the genotypic deviations of the form
ðwi � wÞ=w where wi is the fitness of genotype i and w is the average fitness. Suppose all fitnesses are
measured relative to genotype j. The relative fitness of genotype i is given by wi/wj and the average
relative fitness is given by w

�
wj. Hence, the new average excess of relative fitness is simply the

average excess of the original fitness measure divided bywj. The denominator in Eq. (9.3) is w
�
wj for

relative fitness where w is the average of the original fitnesses. Both the numerator and the
denominator of Eq. (9.3) are divided by wj, which therefore cancels out. Eq. (9.3) is therefore
mathematically invariant to any relative fitness transformation. Table 9.1 also presents the relative
fitnesses of the genotypes in a nonmalarial environment by ignoring the impact of the phenotype of
malarial resistance upon the phenotype of viability.

Tropical Africa is plagued by falciparum malaria even today, with 395,000 deaths (mostly
children age 5 or less) in Africa in 2015 despite extensive efforts to control malaria that have resulted

Table 9.1 The Phenotypic Attributes and Relative Fitnesses (Viabilities) of the Six Genotypes
Formed by the A, S, and C Alleles at the b � Hb Locus in Humans in Wet, Tropical Africa

Genotype Phenotypic Attributes

Fitness In a
Nonmalarial
Environment

Fitness In a Malarial
Environment

AA Malarial susceptibility 1.00 0.89

AS Malarial resistance 1.00 1.00

SS Hemolytic anemia 0.20 0.20

AC Malarial susceptibility 1.00 0.89

SC Hemolytic anemia 0.70 0.70

CC Malarial resistance 1.00 1.31

The fitness of the AS heterozygote is set to one. The malarial fitnesses are estimated from data given in Cavalli-Sforza and Bodmer
(1971).
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in a dramatic reduction in malarial deaths (World Malaria Report, 2015, http://www.who.int/malaria/
publications/world-malaria-report-2015/report/en/). As a result, there is still strong selection for
malarial resistance in Africa (Elguero et al., 2015). However, much of tropical Africa appears not to
have had endemic and epidemic malaria in the past. Wiesenfeld (1967) argued that malaria did not
become a common disease in much of Africa until the introduction of the Malaysian agricultural
complex. Agriculture originated in many locations of the world. A cereal-based system based on
annual plants such as wheat, oats, and barley originated near Africa in the Near East, but many of
these plants are not well adapted to a wet, tropical environment. In contrast, a root/tree agricultural
system based on perennial plants such as bananas and yams originated in Southeast Asia that could
thrive in a wet, tropical environment. About 2000 years ago, humans from the Malay Empire
colonized the island of Madagascar off the east coast of Africa, leaving a genetic signature of their
origins from Southeast Asia in the inhabitants of Madagascar to this day (Brucato et al., 2016). These
colonists brought with them the Malaysian agriculture complex, which soon thereafter spread to the
African mainland. This new agricultural complex greatly changed the environment of much of
Africa. In particular, this complex led to a slash-and-burn agricultural system that created breeding
sites and optimal habitat for the mosquito Anopheles gambia, the primary vector for transmitting the
deadly malaria parasite Plasmodium falciparum. Moreover, the agricultural system allowed human
populations to become much more dense and stable in Africa. These two factors combined to allow
falciparum malaria to become a sustained epidemic disease and a major source of mortality
throughout much of Africa. These dates are consistent with the ages of the C and S alleles in Africa.
Wood et al. (2005) used a coalescent-based approach to estimate the time since the C allele began to
increase in frequency in Africa to be between 75 and 150 generations (1875 and 3750 years ago).
The S allele on the Senegal haplotype background (Fig. 3.3) began to increase in frequency between
45 and 70 generations (1125 and 1750 years ago) (Currat et al., 2002), and the Benin S haplotype
arose between 10 and 28 generations (250e700 years ago) (Modiano et al., 2008). In light of these
ages of first increase, it is reasonable to assume that the initial African populations adopting the
Malaysian agriculture complex had mostly the A allele, with the S and C alleles being absent or at
least rare, consistent with these alleles being either neutral or deleterious in a premalarial
environment (Table 9.1).

Assume that the initial gene pool before malaria become a selective agent had the frequency of
A close to 1 with S and C at very low frequencies. With the onset of malaria as a selective force, a naı̈ve
“survival of the fittest” conception of natural selection would suggest that the C allele would go to
fixation due to natural selection since the CC individuals are clearly the “fittest” by a large margin
(Table 9.1). However, Eq. (9.3) tells us that we must focus on the average fitness effects of gametes, the
bridges to the next generation, rather than the fitnesses of individual genotypes. We will consider
initially the case of random mating, so the average excess of the phenotype of fitness for gametes
bearing allele i is (from Eq. 8.10):

ai ¼ pAðwAi � wÞ þ pSðwSi � wÞ þ pCðwCi � wÞ (9.4)

where pA, pS, and pC are the frequencies of the A, S, and C alleles, respectively. Assume that the
population shortly after the adoption of the Malaysian agricultural complex had pA ¼ 0.998,
pS ¼ 0.001, and pC ¼ 0.001. Since these three allele frequencies must sum to one, we can predict the
response to natural selection just by calculating the average excesses of two of the three alleles. We
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will focus on the S and C alleles, as they are the alleles associated with resistance to malaria. Using the
malarial environment fitnesses from Table 9.1:

aC ¼ pAð0:89� wÞ þ pSð0:70� wÞ þ pCð1:31� wÞ
aS ¼ pAð1� wÞ þ pCð0:70� wÞ þ pSð0:2� wÞ

(9.5)

The initial average excesses of the S and C alleles from Eq. (9.5) are 0.109 and 1.11 � 10�5,
respectively. Note that even though the C allele is associated with the fittest genotype by far
(Table 9.1), its average excess is four orders of magnitude smaller than that of the S allele. Hence, from
Eq. (9.3), natural selection will strongly increase the frequency of S and barely change the frequency of
C. What may be even more surprising to the “survival of the fittest” advocates is that in the next
generation, the average excess of S is still 0.109 but the average excess of C is now�3.86 � 10�5; that
is, natural selection is now operating against the C allele! The reason is that the C allele is found mostly
paired under random mating with the A allele and increasingly with the S allele as selection causes pS
to rise. Hence, the “fitness” of a C-bearing gamete is determined primarily by the AC genotype, which
is not resistant to malaria, and to a lesser extent the SC genotype, which has even lower fitness due to
anemia (Table 9.1). The genotype that is least important under random mating and these initial
conditions in influencing the “fitness” of a C-bearing gamete is CC, the fittest genotype. As the S allele
becomes increasingly common, the average excess of the C allele become more and more negative.
The result is that natural selection rapidly increases the frequency of the S allele because most of its
copies initially are in the high (but not highest) fitness genotype AS and soon begins to eliminate the
C allele as almost all of its copies are in the low fitness genotypes of AC and SC. The solid lines in
Fig. 9.3 show the response to natural selection from these starting conditions in a random mating

FIGURE 9.3

A plot of the allele frequencies of the S and C alleles under natural selection with the fitnesses given by the

malarial environment column of Table 9.1 in a random mating population (f ¼ 0, solid lines) and an inbreeding

population (f ¼ 0.05, dashed lines) with initial allele frequencies of 0.001 for both the S and C alleles.
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population as determined by Eqs. (9.3) and (9.5). As can be seen, S rapidly increases in frequency,
whereas C slowly declines in frequency.

As time proceeds, natural selection eventually eliminates the C allele, reducing this to a two-allele
(A and S) system. Fig. 9.4 shows a plot of the average excess of fitness of the S allele as a function of
the frequency of S in the gene pool of a random mating population. As can be seen, the average excess
of S is positive for allele frequencies below 0.12, zero at 0.12, and negative when above 0.12. When the
average excess is positive, Eq. (9.3) indicates that the allele frequency will increase in the next gen-
eration, whereas the allele frequency will decrease when the fitness average excess is negative. The
arrows in Fig. 9.4 indicate the direction of evolution (as measured by allele frequency change due to
natural selection). Note that both arrows point to the frequency of 0.12 for the S allele, indicating that
this is a stable equilibrium under natural selection. Note further that when the S allele frequency is
0.12, the average excess of S is zero, as is that for the A allele. Hence, at this equilibrium point, fitness
is not heritable (Chapter 8). Once again, it is important to make the distinction between inheritance and
heritability. Table 9.1 clearly shows that fitness differences are inherited in this system, yet Eq. (9.3)
makes it clear that any equilibrium solution must result in no heritability of fitness; that is, there is no
additive variance for the phenotype of fitness at equilibrium. We can use this equilibrium property to
calculate the equilibrium allele frequency by solving the equation aS ¼ aA ¼ 0, which for our
two-allele system is:

aS ¼ pSðwSS � wÞ þ ð1� pSÞðwAS � wÞ ¼ pSðwAS � wÞ þ ð1� pSÞðwAA � wÞ ¼ aA

pSwSS þ ð1� pSÞwAS ¼ pSwAS þ ð1� pSÞwAA

ð1� pSÞðwAS � wAAÞ ¼ pSðwAS � wSSÞ
(9.6)

We can simplify Eq. (9.6) by using selection coefficients that measure how much the genotypic
value of relative fitness deviates from the standard fitness of 1. Since by definition wAS ¼ 1, the

FIGURE 9.4

The average excess of fitness of the S allele in a randommating population with the S and A alleles as a function of

the S allele frequency, pS, using the fitnesses given in Table 9.1.
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selection coefficient of the SS homozygote is s ¼ (1�wSS) and the selection coefficient of the AA
homozygote is t ¼ (1�wAA). Using these definitions, the last line in Eq. (9.6) reduces to:�

1� pSeq
�
t ¼ pSeqs

pSeq ¼ t=ðsþ tÞ
(9.7)

where pSeq is the equilibrium allele frequency of S. From Table 9.1, s ¼ 0.80 and t ¼ 0.11, yielding
pSeq ¼ 0.12 from Eq. (9.7) and consistent with Fig. 9.4. The A/S system is an example of a balanced
polymorphism in which natural selection favors an intermediate allele frequency due to a stable
balance of positive and negative fitness in different genotypes that contribute to the average excesses of
the polymorphic alleles.

At the equilibrium pSeq ¼ 0.12, the average fitness of the population rises to 0.90, from an initial
value of 0.89. Moreover, at equilibrium, only 2pSeq(1�pSeq), 21% of the population, has high fitness,
while the other 79% of the population are either susceptible to malaria or suffer from anemia. In
contrast, if natural selection were simply “survival of the fittest,” the population would have gone to
fixation for the C allele, have an average fitness of 1.31 (Table 9.1), and 100% of the individuals would
have high fitnessdand indeed, a much higher fitness than the AS individuals. Yet, the C allele is
relatively rare in Africa, whereas the S allele is widespread. This shows that natural selection does not
necessarily favor the genotype with the highest fitness nor does natural selection favor the population
with the highest average fitness. Natural selection simply favors the gamete types with the highest
average excess for the phenotype of fitness.

The more general form of the average excess (Eq. 8.9) reveals that many factors influence the
average excess in addition to genotypic fitnesses. In particular, the average excess is also influenced by
genotype frequencies and gamete frequencies. Hence, any evolutionary factor that alters genotype and/
or gamete frequencies can alter the average excess, and thereby the response to natural selection. The
course of natural selection is therefore influenced by the system of mating (Chapter 3), genetic drift
(Chapters 4 and 5), gene flow and population structure (Chapter 6), and even evolutionary history
(Chapter 7) that determines the initial state of a gene pool. As a consequence, adaptive evolution can
never be fully understood just in terms of fitnesses. Many of these interactions of fitness differences
with other evolutionary forces will be examined in later chapters, but for now a couple of examples
with sickle cell will be used to show the importance of factors other than fitnesses in influencing the
course of adaptive evolution.

Suppose the initial population exposed to malaria as a selective agent was identical to the situation
described above with just one difference: instead of random mating, suppose the population had an
inbreeding system of mating with f ¼ 0.05. Combining Eq. (8.9) with a multiallelic version of Eq.
(3.16), the average excesses of the S and C alleles are now:

aC ¼ ½pAð1� f Þ�ð0:89� wÞ þ ½pSð1� f Þ�ð0:70� wÞ þ ½pCð1� f Þ þ f �ð1:31� wÞ
aS ¼ ½pAð1� f Þ�ð1� wÞ þ ½pSð1� f Þ þ f �ð0:20� wÞ þ ½pCð1� f Þ�ð0:70� wÞ (9.8)

Note that when f ¼ 0, Eq. (9.8) reduces to Eq. (9.5). Eq. (9.8) indicates that under inbreeding
(f > 0) the fitnesses of heterozygotes are given less weight in the average excess, whereas the fit-
nesses of homozygotes are given more. Starting with the same initial conditions as before
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(pA ¼ 0.998, pS ¼ 0.001, and pC ¼ 0.001), the average excess of fitness are initially 0.069 for S and
0.021 for C, in contrast to 0.109 and 1.11 � 10�5, respectively, for the random mating case. Note that
the average excess of S has been reduced, whereas the average excess of C has increased by three
orders of magnitude! This occurs because the beneficial fitness effects of the S allele are found in the
AS heterozygote, which has reduced weight under inbreeding, whereas the beneficial fitness effects
of the C allele are found in the CC homozygote, which has increased weight under inbreeding. The
dashed lines in Fig. 9.3 show the plots of the first 25 generations of selection on this system, and in
contrast to the solid lines in Fig. 9.3 (random mating), both the S and C alleles increase in frequency,
although both alleles increase in frequency very slowly. Indeed, after 80 generations, about the
2000 years that this malarial selective environment has existed in tropical Africa, the allele
frequency of S is 0.067 and that of C is 0.003. Also, at this point, the average excess of C has been
reduced to 0.003, due mainly to the increasing frequency of S and its deleterious contribution to the
average excess of C when C is found in an SC heterozygote. Eventually, after many hundreds of
generations, the C allele acquires a negative average excess and is eliminated by natural selection,
with S going once again to a stable polymorphism with the A allele, but with the reduced equilibrium
allele frequency of 0.08 versus 0.12 in a random mating population. However, the slow response to
selection in this case means that very little adaptive evolution will have occurred in the 2000 years
available to the present time. Thus, the system of mating has a major impact on the course and
dynamics of adaptive evolution in this case.

Consider now the case in which the initial frequency of S is still 0.001, but that of C is 0.05. This
is not an unreasonable assumption in light of the fitnesses under a nonmalarial environment given in
Table 9.1. S is a deleterious recessive disease in the premalarial environment, whereas C is effec-
tively neutral with respect to A in the premalarial environment and could easily drift to a higher
frequency. Fig. 9.5 shows a plot of the allele frequency changes over the first 25 generations for both
random mating and for f ¼ 0.05. When f ¼ 0.05, the average excess of S is 0.053 at the initial
generation, due principally to the deleterious effect of the much higher frequency C allele, and
therefore more SC heterozygotes. The average excess of C has been further increased to 0.039. The
average excess of C continues to increase during these 25 generations, reaching 0.083 by generation
25. In contrast, starting with generation 23, the S allele acquires a negative average excess, and
thereafter decreases in allele frequency due to natural selection until it is eliminated. The average
excess of the C allele never becomes negative, and only reaches 0 when the frequency of C is 1. A
similar situation also happens under random mating, but with much slower dynamics than the
inbreeding case. Thus, there is an interaction between system of mating and initial conditions on
either slowing down or speeding up the adaptive response. As can be seen under random mating in
Fig. 9.5, both the C and the S alleles increase in frequency under natural selection. In contrast to the
initial conditions shown in Fig. 9.3, the average excess of the C allele continues to increase, while
that of S decreases. Eventually, the C allele will go to fixation. However, this will take thousands of
years. Before fixation, the C allele defines a transient polymorphism; that is, a polymorphic state
that exists during the time period that natural selection is driving an allele to fixation but has not yet
reached the fixation state. As can be seen by contrasting Fig. 9.5 with Fig. 9.3, the initial conditions
(that is, history) matters in determining the outcome of selection, both qualitatively and
quantitatively.
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A QUANTITATIVE GENETIC, UNMEASURED GENOTYPE MODEL OF
NATURAL SELECTION
Although the sickle-cell allele provides some protection against malaria, there are a large number of
other loci that are known to increase resistance to malaria (Hedrick, 2011; Malaria Genomic
Epidemiology, 2015). There are also related traits that reduce the chance of infection, such as genetic
variation in attractiveness to the mosquito vectors that transmit malaria (Verhulst et al., 2013). Hence,
fitness in a malarial environment is a polygenic trait, and the human adaptation to malaria has involved
many loci. Such polygenic adaptation is known to occur for many other infectious diseases (Daub
et al., 2013). Although our abilities to identify the genes involved in such polygenic responses to
natural selection have improved, identifying all the genes is a difficult task (Chapter 8). Accordingly, it
is still useful to examine how selection operates in a polygenic system without measured genotypes.

A critical difference between the measured versus the unmeasured genotype approaches to
natural selection is in the very concept of fitness. As shown in the preceding section, when genotypes
are measured, fitness is assigned to a specific genotype (e.g., Table 9.1). When genotypes are not
measured, fitness is assigned to other traits. For example, fitness (reproductive success) can be
assigned to a morphological trait such as jaw size, a physiological trait such as insulin resistance, a
behavioral trait such as measures of maternal care, etc. All of these traits can be affected by many
loci, and many different genotypes can often yield the same trait value. Hence, fitness is now being
assigned to a phenotypic class and not genotypic classes. Let x be the phenotypic value of some trait

FIGURE 9.5

A plot of the allele frequencies of the S and C alleles under natural selection with the fitnesses given by the

malarial environment column of Table 9.1 with initial allele frequencies of 0.001 for the S allele and 0.05 for the C

allele in an inbreeding population with f ¼ 0.05 (dashed lines) and in a random mating population (solid lines).
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for an individual, and w(x) the fitness value assigned to this phenotypic value. Assuming a contin-
uously distributed trait x and a continuous fitness function w(x), the mean trait value of x before any
selection is:

m ¼
Z
x
xf ðxÞdx (9.9)

and the mean fitness is:

w ¼
Z
x
wðxÞf ðxÞdx (9.10)

where f(x) is the probability distribution that describes the phenotypic frequencies of x in the
population (from Eq. 1.4). The fitness function for trait x, w(x), weights all individuals (but not
genotypes) by their overall gametic contribution to the next generation, but to obtain a proper
frequency distribution of the selected individuals we need to divide by the average trait fitness. Hence,
the mean phenotype of the selected individuals (that is, individuals weighted by their fitness) is:

ms ¼
R
xxwðxÞf ðxÞdx

w
(9.11)

The difference between the mean of the selected parents (Eq. 9.11) and the original mean before
selection (Eq. 9.9) is called the intensity of selection, S ¼ mS � m. The phenotypic response to
selection is measured by how much the offspring mean changes from the original mean of the parents
before selection; that is, R ¼ mO � m where mO is the phenotypic mean of the offspring generation
before selection on that generation. The response to selection depends upon the trait’s heritability.
From Eq. (8.27), the correlation between a parent and an offspring is half the heritability. Since
offspring have two parents, what is more relevant to the response to selection is the correlation between
an offspring and the average phenotype of both parents, called the midparent value, or 1

2xm þ 1
2xf ,

where xm is the phenotype of the mother and xf is the phenotype of the father. In analogy to the
derivation of Eq. (8.27), the additive genetic deviation of the offspring is expected to be
gao ¼ 1

2gam þ 1
2gaf . The covariance between the midparent value and the offspring phenotype is

therefore:

Covðmidparent; offspringÞ ¼ Cov

�
1

2
gam þ 1

2
gaf ;

1

2
gam þ 1

2
gaf

�

¼ 1

4
VarðgamÞ þ 1

4
Varðgaf Þ ¼ 1

2
s2a

(9.12)

The total phenotypic variance of the midparent values is half the original phenotypic variance
because it is a variance of an average of two values. Therefore, the correlation between midparent
value and offspring phenotype is:

rpo ¼
1

2
s2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
s2p � s2p

r ¼

ffiffiffi
1

2

r
s2a

s2p
¼

ffiffiffi
1

2

r
h2 (9.13)
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Fisher showed that in general the least-squares regression coefficient (recall the average
effects from Chapter 8) can be related to the correlation coefficient between any to variables, say
X and Y, by:

bYX ¼ rXY

ffiffiffiffiffiffi
s2Y
s2X

s
(9.14)

Substituting Eqs. 9.13 into 9.14 yields that the linear regression coefficient between midparent
value and offspring phenotype is:

bop ¼ rpo

ffiffiffiffiffiffiffiffi
s2o
1

2
s2p

vuuut ¼
ffiffiffi
1

2

r
h2

ffiffiffi
1

1

2

vuut ¼ h2 (9.15)

where bop is the slope of the regression line. Using this regression coefficient that equals the herita-
bility, the mean trait value of the next generation can be predicted to be (see Fig. 9.6):

R ¼ h2S (9.16)

Hence, only the additive genetic variance is involved in determining the response to selection for a
given intensity of selection. Indeed, if a trait has no additive variance, even the strongest selection
intensities will have no effect on the mean trait values of the next generation.

Fitness, the reproductive success of an individual, is itself just another phenotype or trait. Fisher
(1930), who first derived Eq. (9.16), also considered the response to selection of fitness itself; that is, he
let w(x) ¼ w(w) ¼ w. For the phenotype of fitness, Eq. (9.9) becomes the average fitness, m ¼ w. The
mean fitness after selection, Eq. (9.11), becomes

mS ¼
R
ww� wf ðwÞdw

w
¼

R
ww

2f ðwÞdw
w

(9.17)

FIGURE 9.6

The response (R) to selection as a function of heritability, h2, and the intensity of selection (S). The y-axis is drawn

to intersect the x-axis at m, the overall mean phenotype of the parental generation before selection.
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Rewriting w2 as
�
w2 � w2

� þ w2, Eq. (9.17) can be re-expressed as:

mS ¼
R
wðw� wÞ2fðwÞdwþ w2

w
¼ s2 þ w2

w
(9.18)

Note that s2 is the variance in the phenotype of fitness in the population. The standard quantitative
genetic measure S of the intensity of selection is:

S ¼ mS � m ¼ s2 þ w2

w
� w ¼ s2 þ w2 � w2

w
¼ s2

w
(9.19)

and the response to selection, R, is Dw when x ¼ w. Hence, when fitness itself is the trait under study,
Eq. (9.16) becomes:

R ¼ h2S

Dw ¼
�
s2a

s2

��
s2

w

�

Dw ¼ s2a
w

(9.20)

where s2a is the additive genetic variance for the phenotype of fitness. Fisher called Eq. (9.20) the
Fundamental Theorem of Natural Selection, although his derivation of it was more complicated
than the one given above. Eq. (9.20) is the unmeasured genotype analogue of the measured genotype
Eq. (9.3). Both equations reveal the same fundamental insight into natural selection: natural selection
favors those gametes with positive fitness effects (measured by average excess in Eq. (9.3) and by
average effect in Eq. (9.20), as the average effects determine s2a). Recall from Chapter 8 that the
average excess and the average effect are proportional to each other, and if one is zero, then the other is
zero. Thus, the same lessons learned from the measured genotype example of sickle-cell anemia are
applicable to any trait under natural selection. Although genetically based variation in fitness across
individuals are essential for natural selection to occur, all the factors that influence both average excess
and average effect play a role in the course of adaptation. Accordingly, the adaptive evolution of all
traits is affected by fitness differences, initial historical conditions, systems of mating, gene flow, and
genetic drift. Once again, adaptive evolution is not simply “survival of the fittest.”

Both Eqs. (9.3) and (9.20) indicate that an equilibrium under natural selection only occurs when the
average excesses and the average effects are all zero; that is, s2a ¼ 0. Consequently, both genotypic
fitness and trait fitness have no heritability at a selective equilibrium. Indeed, Merilä and Sheldon
(1999) found in an extensive literature review that traits most closely related to fitness have lower to no
heritabilities relative to traits not clearly related to fitness. Interestingly, they also found that fitness-
related traits tended to have higher genetic variance; that is, a greater proportion of the genetic
variance is nonadditive variance for fitness-related traits than for traits not clearly related to fitness. We
saw this in the sickle-cell example with the A/S polymorphism. At the equilibrium allele frequency
(0.12 for S in a random mating population), the average excesses are 0, the additive genetic variance is
0, yet the genetic variance is large because we have individuals in the population with fitness ranging
from 0.2 to 1dbut all of this genetic variance in measured genotype fitness is also nonadditive at
equilibrium.
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Because a variance can never be negative, Eq. (9.20) also implies that the course of adaptation must
always increase the average population fitness until equilibrium is reached. At first glance, this pre-
diction may seem to contradict a point made with the sickle-cell example in which a random mating
population with initial low frequencies of both the S and C alleles evolved from an average fitness of
0.89e0.90, whereas if the population had evolved to fix the C allele its average fitness would have been
1.31. However, there is no contradiction. Wright (1932) developed the concept of an adaptive surface
or landscape that is a plot of the average fitness as a function of the gamete frequencies for a given
population structure. Wright also argued that due to pleiotropy and epistasis, there are typically
multiple ways of adapting to an environment, yielding an adaptive landscape that consists of more than
one peak (a local maximum of average fitness) separated by fitness valleys (areas of lower average
fitness). Indeed, the pleiotropy associated with the traits of anemia and malarial resistance result in a
two-peak adaptive landscape for the S/C example discussed earlier, as shown in Fig. 9.7. Eq. (9.20)
indicates that natural selection must always operate to increase average fitness, which means that if the

FIGURE 9.7

The adaptive surface defined by the A, S, and C alleles at the b � Hb locus in a random mating population using

the fitnesses given in Table 9.1 for a malarial environment. The gene pool space is shown by the triangle near the

bottom, with the allele frequencies given by the perpendicular distances from a possible state point to the sides of

the triangle and with the vertices associated with fixation of a particular allele labeled by the letter corresponding

to that allele. The vertical axis gives w as a function of these three allele frequencies. Part A shows the entire

adaptive landscape. Two peaks exist in this adaptive surface, as indicated by large white dots at pA ¼ 0.88,

pS ¼ 0.12, and pC ¼ 0 with w ¼ 0:90 and at pA ¼ 0, pS ¼ 0, and pC ¼ 1 with w ¼ 1:31. Small black dots indicate

the initial state of the gene pool for four populations: one starting at pA ¼ 0.95, pS ¼ 0.025, and pC ¼ 0.025; a

second at pA ¼ 0.85, pS ¼ 0.025, and pC ¼ 0.125; a third at pA ¼ 0.85, pS ¼ 0.125, and pC ¼ 0.025; and a fourth at

pA ¼ 0.75, pS ¼ 0.125, and pC ¼ 0.125. Black lines from these small dots plot the evolutionary trajectory across

generational time as defined by Eq. (9.3). Because the saddle separating these two adaptive peaks is shallow, part

B expands the portion of the adaptive landscape that contains the saddle and the polymorphic A/S peak.

Data from Cavalli-Sforza, L. L.,Bodmer, W. F. 1971. The Genetics of Human Populations, San Francisco, W. H. Freeman

and Company.
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initial conditions place a population on the “slope” of a low peak, natural selection will cause the
population to “climb” to the top of that small peak because crossing the fitness “valley” would mean
that the average fitness would have to decline initially, thereby violating Eq. (9.20). Hence, Eq. (9.20)
ensures that natural selection will cause evolution toward the nearest local optimum in terms of
average fitness, but it does not ensure that natural selection will cause evolution toward the global
optimum. Indeed, Eq. (9.20) often implies that natural selection will prevent the evolution of a pop-
ulation to a global optimum from many initial conditions, as is apparently the case throughout much of
Africa, for which selection has favored the A/S polymorphic low-peak optimum over the fixation-for-C
high-peak optimum (see the examples given in Fig. 9.7).

Although Eq. (9.20) states that natural selection will cause a population to evolve toward a local
optimum for the phenotype of fitness, Eq. (9.20) does not imply that selection causes a population to
evolve to the value of trait x that is associated with maximum fitness [the maximum over x of w(x)] if x
is not fitness itself (Crow and Nagylaki, 1976). As before, let x be some trait value that is related to
fitness through the function w(x). Suppose selection has already taken the population to the local
average fitness peak, and let the phenotypic distribution of the trait at equilibrium be given by feq(x).
Then, we have:

weq ¼
Z
x
wðxÞfeqðxÞdx

xeq ¼
Z
x
xfeqðxÞdx

(9.21)

where weq is the average fitness at the local equilibrium, and xeq is the average value of the trait in the
equilibrium population. Eq. (9.20) tells us that weq is a local maximum, but is w

�
xeq

�
a local

maximum; that is, does weq ¼ w
�
xeq

�
? In other words, does natural selection optimize the average

value of x in terms of its fitness impact? Much of the nongenetic literature on natural selection answers
this question in the affirmative and assumes that natural selection optimizes the mean value of adaptive
traits that contribute to fitness but that are not fitness themselves. To answer this question, first use
Taylor’s theorem from calculus to expand w(x) around the point xeq:

wðxÞzw
�
xeq

�þ w0�xeq��x� xeq
�þ 1

2
w00�xeq��x� xeq

�2
(9.22)

where w0�xeq� is the first derivative of w(x) evaluated at x ¼ xeq, and w00�xeq� is the second derivative
of w(x) evaluated at x ¼ xeq. We now take the expectation (Eq. 1.4) of both sides of Eq. (9.22) with
respect to the equilibrium distribution of trait values, feq(x), to obtain:

weqzw
�
xeq

�þ 1

2
w00�xeq�s2eqðxÞ (9.23)

where s2eqðxÞ ¼
R
x

�
x� xeq

�2
feqðxÞdx is the variance of the trait values x at equilibrium. Therefore,

natural selection optimizes the average trait value to yield maximum average fitness if and only if
w00�xeq�s2eqðxÞ ¼ 0. This condition in turn is satisfied only under two situations: either the trait has no
phenotypic variance at equilibrium

�
s2eqðxÞ ¼ 0

	
or the trait is related to fitness in a strictly linear

fashion near equilibrium
�
w00�xeq� ¼ 0

�
. Neither of these conditions is biologically realistic, so in

general natural selection does not optimize individual traits that contribute to fitness.
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The lack of optimization of traits by natural selection can be even more extreme when selection
operates upon two or more genetically correlated traits. Correlations among traits can occur for a
variety of reasons, such as pleiotropic effects from a common genetic basis to various developmental
constraints and interactions (Melo et al., 2016). When such correlations exist, selection on one trait can
cause another trait to evolve, even if there is no direct selection on that trait. Moreover, there can even
be selection against a deleterious trait, but if the deleterious trait is positively correlated with a
selectively favored trait, the deleterious trait can actually increase in the population because of natural
selection. For example, Savell et al. (2016) studied human morphological differences as a function of
the environment as measured by latitude. Many latitudinal gradients in morphology had long been
known and were often taken as evidence of local adaptation. However, their multitrait analysis indi-
cated that some traits, such as radial and tibial length, were directly selected, whereas the femur length
appeared neutral despite also showing a latitudinal gradient. Moreover, their analysis indicated that the
humerus was under direct selection for longer values with latitude, but the directional selection on the
radial and tibial lengths caused correlated selection on the humerus that overwhelmed its own trait-
specific direct selection, resulting in a nonadaptive response. Hence, they concluded that average
trait values themselves are not good indicators of local adaptations in the absence of information about
the correlations among traits.

We have already seen a measured genotype example of nonadaptive evolution driven by natural
selection that is due to underlying genetic correlations among traits. As African populations adapted to
malaria through natural selection on the trait of malarial resistance to increase the frequency of the S
allele at the b � Hb locus, the frequency of highly deleterious hemolytic anemia also increased
because of selection for the genetically correlated trait of malarial resistance. In this case, the traits of
malarial resistance and hemolytic anemia are positively correlated because of pleiotropic effects of the
common genetic factor, the S allele. Once again, this example shows that natural selection can actually
lead to the evolution of nonadaptive traits as well as adaptive traits. Indeed, the most common genetic
diseases and disease risk factors in human populations are likely due to the action of natural selection
acting on correlated traits (Crespi, 2010; Williams and Weatherall, 2012; Karlsson et al., 2014;
Cagliani et al., 2013; Galanello and Cao, 2011; Genovese et al., 2010; Cao and Galanello, 2010).
Selection works only through the gametic effects on the phenotype of fitness and optimizes it from the
gametic/additive genetic variance perspective, at least in a local sense (Eq. 9.20). Natural selection
does not optimize any other trait except under highly restrictive conditions, and natural selection can
even lead to the evolutionary increase of genetic disease and disease predisposition when correlations
exist between different traits.

When we add the C allele to the A/S example, we observe another case of pleiotropy and interaction
effects that lead natural selection to select against an adaptive allele. As shown in Table 9.1, both the S
and C alleles are adaptive in a malarial environment, so should they not both be favored by natural
selection in a malarial environment? However, because of the pleiotropic trait of hemolytic anemia that
arises in SC heterozygotes, there is a two-peak adaptive landscape (Fig. 9.7). This means that natural
selection can either favor the S allele, resulting in the A/S balanced polymorphism, or favor the C
allele, resulting in a transient polymorphism and ultimate fixation of C, but natural selection cannot
favor both alleles in the long term because of this pleiotropic effect. As a likely consequence of this
negative fitness correlation between the S and C alleles, the frequencies of these alleles are also
negatively correlated across African populations (Fig. 9.8) despite the fact that both alleles are
adaptive to the same environmental variable (malaria).
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The common lesson from the above-mentioned examples is that natural selection and adaptive
evolution can never be properly understood just through fitness alone. Genetically influenced variation
in fitness is a necessary condition for natural selection and adaptation, but even a complete knowledge
of the fitnesses of all genotypes or the fitness effects of all traits is insufficient to predict the outcome of
adaptive evolution. Population structure, genetic architecture, and historical conditions all modulate
the course of adaptive evolution.
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DETECTING SELECTION
THROUGH ITS INTERACTIONS
WITH OTHER EVOLUTIONARY
FORCES

10
Recall from the last chapter the fundamental equation of natural selection for an allele at a single locus:

Dp ¼ p

w
aA (10.1)

where p is the frequency of allele A, aA is the average excess of fitness of allele A, and w is the average
fitness of the population. Evolutionary forces, including natural selection, do not operate in isolation
but rather interact with other evolutionary forces. Typically, what we can observe from genetic surveys
of populations arises from the interaction of forces, rather than just one evolutionary factor in isolation.
For example, we showed in Chapter 4 that the amount of expected heterozygosity in the absence of
natural selection is determined by the parameter q ¼ 4Nm that measures the balance of mutation
inputting new variation (m) and genetic drift causing the loss of variation (1/[2N]) (Eq. 4.35). Similarly,
in Chapter 5, we showed that fst, one of the most frequent observable statistics used to monitor
population structure, arises from the balance of gene flow and local genetic drift (Eqs. 6.6 and 6.16).
The same is true for natural selection. We have already seen the strong interactions between natural
selection and system of mating through the direct effects that both of these evolutionary forces have on
the average excess (Figs. 9.3 and 9.5). In this chapter, we will investigate additional interactions of
natural selection with other evolutionary forces. Many of these interactions can be approximated by a
linear equation of the form:

Dp ¼ p

w
aA þ DpðotherÞ (10.2)

where Dp(other) refers to changes in the allele frequency of A due to other evolutionary factors besides
natural selection. These interactions often result in observable patterns that form the basis of tests for
the detection of natural selection.

INTERACTION OF SELECTION WITH MUTATION
As discussed in Chapters 1 and 2, mutation and recombination are the generators of genetic variation.
Because natural selection can only operate on the variation that actually exists, there are always strong
interactions between selection and the processes of mutation and recombination. We start with a
simple model of selection and recurrent mutation. Suppose that allele A repeatedly mutates into
another allelic class, say a, at a rate of m per generation, but a does not mutate back to A. This is a
realistic model for several of the genetic diseases in humans. For example, in Chapter 9, we discussed
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the genetic disease of phenylketonuria (PKU) that is associated with homozygosity for loss-of-func-
tion mutations; that is, mutations that destroy the function of the protein product. Over 500 distinct
mutations have been identified that can cause this loss-of-function of the PKU protein product to
convert phenylalanine into tyrosine (Scriver, 2007). Patently, there are many ways to lose the function
of this protein, but to undo the loss, an exact reversal of the original loss-of-function mutation would
usually be needed. Hence, there is a substantial mutation rate to the allelic category of loss-of-function
mutations, but a much smaller rate of mutation back into the functional category. Nonrandom
mutagenesis (Chapter 2) can accentuate this asymmetry. Many of the single-base substitutions that
yield loss-of-function mutations at PKU are due to C to T transitions at highly mutagenic CpG
dinucleotide sites (Chapter 2), but this nonrandom mutagenic activity is highly directional and is not
prone to reversal. This is a common pattern for many genetic diseases associated with loss-of-function
mutations, so a one-directional mutation model of class A (functional) to class a (nonfunctional) is a
reasonable approximation in many cases. Let m be the overall mutation rate to loss-of-function alleles
from the functional category A. Let q ¼ 1 � p be the frequency of the allelic class a, so the evolu-
tionary force of mutation induces the following change in allele frequency per generation:

DqðmutationÞ ¼ pm (10.3)

Now let the relative fitness of AA be 1, the fitness of Aa be 1-hs, and the fitness of aa be 1-s, where
s > 0 and represents the selection coefficient (Chapter 9) against aa homozygotes, and 0 � h � 1 is a
measure of dominance for the phenotype of fitness such that h ¼ 0 means that A is completely
dominant over a for fitness, h ¼ 1 means that a is completely dominant over A for fitness, and in-
termediate values indicate incomplete dominance. Then, in a random-mating population, the average
excess for fitness of the allelic class a is as follows:

aa ¼ pð1� hs� wÞ þ qð1� s� wÞ (10.4)

Note that the average excess of a is always negative for every q > 0, so the only possible equi-
librium under natural selection alone is for qeq ¼ 0. Selection on variants that always have a negative
average excess of fitness is called negative or purifying selection. However, Eq. (10.3) is positive for
every p > 0, so Eq. (10.2) has a negative and a positive component of allele frequency change:

Dq ¼ q

w
aa þ DqðmutationÞ ¼ q

w
½pð1� hs� wÞ þ qð1� s� wÞ� þ pm (10.5)

Given that the a alleles are always deleterious, it is reasonable to assume that the a alleles are rare at
equilibrium, so both peq and w should be close to one. Under these approximations, Eq. (10.5) sim-
plifies to

Dq ¼ q½ð1� qÞð�hsÞ þ qð�sÞ� þ m ¼ �q½hsþ qsð1� hÞ� þ m (10.6)

Setting Dq ¼ 0, the equilibrium allele frequency that represents the balance of recurrent mutation
adding a alleles and natural selection eliminating them is defined by

qeq ¼ m

hsþ qeqsð1� hÞ (10.7)

Because many genetic diseases associated with loss-of-function mutations have a recessive
genotype-to-phenotype map, the special case of h ¼ 0 is of particular interest. For this special case,
Eq. (10.7) yields
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qeq ¼
ffiffiffi
m

s

r
(10.8)

Note that the equilibrium frequency for the loss-of-function class of alleles depends on the ratio of
the mutation rate to the intensity of natural selection as measured by the selection coefficient s.
Moreover, because of recessiveness and random mating, the deleterious alleles are eliminated by
selection proportional to q2, the frequency of the genotype with low fitness. As a consequence, the
deleterious allele class accumulates to a frequency proportional to the square root of the mutation rate,
which is typically orders of magnitude greater than the mutation rate itself. For example, consider the
case of a completely lethal allele such that s ¼ 1, the strongest natural selection possible. If the mu-
tation rate were 10�6, then Eq. (10.9) indicates that the equilibrium frequency of this lethal allele
category would be 10�3dthree orders of magnitude higher than the mutation rate! Hence, even lethal
recessive alleles can accumulate in the gene pool at appreciable frequencies in a random mating
population (a good assumption for most loci in most human populations).

When h > 0, an approximation to Eq. (10.7) that is good when qea is small is as follows:

qeqz
m

hs
(10.9)

Note that the equilibrium frequency is now directly proportional to the mutation rate, which means
that natural selection is more effective in eliminating mutations that have a deleterious effect on their
heterozygous carriers. Indeed, the intensity of selection that determines the equilibrium is approxi-
mated by hs, the selection against the heterozygote, and the selection against the homozygote, s, is
irrelevant. For example, suppose the mutation rate is 10�6 and that hs ¼ 0.01, that is, a 1% fitness
disadvantage to the heterozygotes. With these parameter values Eq. (10.9) indicates that the equi-
librium allele frequency would be 10�4, a whole order of magnitude smaller than that of a recessive
lethal. Moreover, we would get approximately the same equilibrium frequency regardless of selection
on the homozygotedboth a lethal (s ¼ 1) or a 1% fitness decline (s ¼ 0.01 and h ¼ 1) would
approximately result in the same equilibrium frequency. Hence, the heterozygote’s fitness effect, even
if seemingly minor, dominates the balance of mutation and purifying selection, and the fitness of the
homozygote is only relevant when there is complete recessiveness under random mating.

The above deterministic models ignore the effects of genetic drift, but the unique demographic
history of humans over the last 10,000 years of sustained population growth further increases the
chances of persistence of deleterious alleles under drift and selection (Table 4.1), even ones with
significant heterozygous effects (Maher et al., 2012). All of these phenomena combine to increase the
mutational load (Chapter 4) of the human species. Modern genetic surveys can directly monitor this
mutational load. For the exome portion of the human genome (Chapter 2), it is possible to make
predictions of loss-of-function due to missense and in-frame indel mutations based on evolutionary
patterns and models of how proteins act (Cooper and Shendure, 2011; Liu et al., 2016). Other types of
mutations (e.g., nonsense, frameshift, and major deletion mutations) tend to destroy functionality
completely, although in some cases translational plasticity can ameliorate the fitness impact of such
mutations (Jagannathan and Bradley, 2016). A recent exomic survey of 50,726 adults of European
ancestry revealed 4.2 million single-nucleotide variants and indels in the exome, of which 176,000
were predicted to result in loss-of-function (Dewey et al., 2016). On the average, each individual
carried 21 loss-of-function alleles. Another study indicated that individuals typically carry 76e190
rare deleterious nonsynonymous variants in protein-coding genes and 10e20 other loss-of-function
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deleterious variants (The 1000 Genomes Project Consortium, 2012). These same data were used to
examine variation at experimentally defined transcription factor binding sites (Chapter 2), and it was
concluded that individuals typically carry 18e69 variants in such binding sites that are potentially
deleterious (The 1000 Genomes Project Consortium, 2012). These results indicate a substantial
mutational load in the human gene pool for both coding and noncoding but functional DNA.

One prediction of Eqs. (10.8) and (10.9) is that loss-of-function mutations will increase in fre-
quency in the human genome as the selection against them (s and hs) decreases. In the extreme case in
which s ¼ 0, the mutations become neutral and can go to fixation under neutral evolution (Chapter 4),
and the recurrent nature of loss-of-function mutations insures such fixation over long periods of time.
A common mechanism of reducing or eliminating selection against loss-of-function mutations is
functional redundancy. One mechanism of functional redundancy is gene duplication (Chapter 2).
Once a gene has duplicated, mutations can occur in the copy without destroying the function of the
original gene. If the copy is initially functional itself, it can acquire mutations that allow it to evolve
new or more tailored functions (Long et al., 2013), as occurred for the globin family of genes
(Chapter 2). However, sometimes the duplicated gene simply becomes redundant or is copied in an
initial manner that results in loss-of-function (Chapter 2). In either case, loss-of-function mutations
accumulate in such genes, making the copies pseudogenes, which are abundant in the human genome.
Functional redundancy can also arise due to a change in the environment or from the species evolving
and adapting to a new ecological niche. For example, most mammals have a functional gene GULO
that codes for the enzyme 1-gulano-lactone oxidase, the final catalyst in the metabolic pathway that
produces ascorbic acid (vitamin C). However, monkeys and apes (including humans) cannot syn-
thesize ascorbic acid and must obtain it from their diet (Chatterjee, 1973). The evolution of these
primates was associated with a shift from nocturnal insectivory to diurnal frugivoryda dietary tran-
sition that went from a low vitamin C diet to an abundant vitamin C diet. Under these new dietary
conditions, the GULO gene became functionally redundant, so the GULO gene has become a pseu-
dogene in these primates, including humans, through the accumulation of frameshift mutations, de-
letions of a number of exons, and stop codons (Nishikimi et al., 1994). When the dietary environment
of some humans shifted again, such as on the long sea voyages in the 16th through 18th centuries in
which fresh fruits were not available, the deleterious consequence of these loss-of-function mutations
becomes apparent through the disease of scurvy. Humans as a species have evolved in such a manner as
to radically change many aspects of their environment, so environmentally induced functional
redundancy has been common in human evolution. For example, Wang et al. (2006) identified 80
nonprocessed pseudogenes (Chapter 2) that were inactivated by fixation of loss-of-function mutations
in the human lineage after its separation from chimpanzees. The functions of these inactivated genes
disproportionally involved chemoreception (such as smell) and immune functions. McLean et al.
(2011) identified putative regulatory regions in noncoding DNA that were highly conserved in
chimpanzees and other mammals. They identified 510 deletions in such regions that are specific to the
human lineage. Almost all these deletions occurred near genes involved in steroid hormone signaling
and neural functionda highly nonrandom functional pattern. This massive, human-specific loss of
regulatory elements suggests relaxed selection on the older regulatory pathways involved in hormonal
and neural functions, perhaps as function was transferred to newly evolved, human-specific regulatory
pathways.
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INTERACTIONS OF SELECTION WITH MUTATION AND GENETIC DRIFT
In Chapter 4, we showed that the probability of fixation of a neutral mutation is 1/([2N]), that the rate of
fixation of neutral mutations at an autosomal locus is m (the neutral mutation rate), and that the amount
of polymorphism as measured by the expected heterozygosity is q/(1 þ q) where q ¼ 4Nm. Note that
for neutral mutations, the mutation rate determines the rate of fixation and influences the amount of
polymorphism. When selection is added to the models, the relationship of fixation and polymorphism
to mutation rate is altered. An important mathematical tool for investigating the interaction of selection
with drift and mutation has been diffusion equations, which is beyond the scope of this book. However,
a good introduction to the use of this tool in population genetics can be found in Crow and Kimura
(1970). In particular, using the fitness model given in the previous section, but now letting the selection
coefficient be S ¼ �s (this has the benefit of making negative selection have a negative selection
coefficient, and positive selection on a favorable mutation having a positive selection coefficient), then
the probability of fixing a mutation, u, with selection coefficient S and with h ¼ ½ (codominance) is
given by (Crow and Kimura, 1970)

u ¼ 1� e�2NevS=N

1� e�4NevS
(10.10)

where u is the probability of fixation, Nev is the constant variance effective size, and N is the constant
census size (number of adult breeders). Fig. 10.1 shows a plot of Eq. (10.10) for the special case of an
ideal population with Nev ¼ N. As can be seen, when selection is positive (S > 0), the probability of
fixation rapidly increases with increasing intensity of selection and exceeds the neutral rate (which is
given by the intercept at S ¼ 0). In contrast, when selection is negative, the fixation probability is
below the neutral intercept, and particularly for the population size of 1000, it is virtually zero for even
selection coefficients small in magnitude.

When S is small but positive and 4NevS is much larger than 1, an approximation to Eq. (10.10) is

uz 2S

�
Nev

N

�
(10.11)

FIGURE 10.1

The fixation probability as a function of the se-

lection coefficient S in two ideal populations, one

of size 100 (red) and one of size 1000 (blue).
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Using the same type of derivation as in Eq. (4.31), the rate of evolution of mutants with a selection
coefficient of S is, using approximation 10.11,

Rate of Selected Evolution ¼ 2NmS �
2NevS

N
¼ 4NevSmS (10.12)

where mS is the mutation rate to mutants with selection coefficient S. Since this approximation is only
valid when 4NevS is much larger than 1, the rate of evolution (fixation) is clearly much larger than the
mutation rate, thereby violating the neutral expectation. This violation can be substantial even for S’s
that are small in magnitude if the variance effective size is large. Similarly, we can see from Fig. 10.1
that deleterious mutations have very little chance of fixation unless the population is extremely small,
so the fixation rate of deleterious mutations is much smaller than the mutation rate and is close to 0 for
many populations.

The deviations in fixation rates from neutral expectations outlined above can be used to test the null
hypothesis of neutrality through a simple two-dimensional contingency test (Templeton, 1987). This
contingency approach requires a genetic survey of individuals within a species and at least one
(preferably more) individual(s) from one or more closely related species. The genetic variants revealed
by the survey are then subdivided into two evolutionary categories: polymorphic (those variants that
represent intraspecific polymorphisms) and fixed (those variants that represent fixed differences be-
tween species). The variants are also subdivided into different mutational classes on the basis of some
genetic criterion, and these classes are chosen such that it is likely that they differ in the type and/or
amount of natural selection that affects them. The cross classification of the variants into the evolu-
tionary categories and the mutational categories defines a standard two-dimensional contingency table.
Although the different mutational classes may experience different mutation rates, under the hy-
pothesis that all mutational classes are neutral, we expect homogeneity in the relative frequencies of
the mutational classes across the evolutionary categories. Positive selection will lead to an excess of
fixed versus polymorphic variants relative to neutral variants, whereas negative selection will lead to
an excess of polymorphic versus fixed variants relative to neutral variants. Hence, a simple standard
contingency test of homogeneity (either a chi-square test of homogeneity or an exact test) can be used
to test the null hypothesis of neutrality. If one of the mutational classes is regarded as more likely to be
neutral than the others, then a comparison of the fixed/polymorphic ratios in the other classes relative
to the likely neutral class can indicate whether selection has been positive or negative when the hy-
pothesis of homogeneity is rejected.

This contingency test approach to detecting selection was first applied to a survey of chromosomal
inversion variants in several Hawaiian fruit fly species from the genus Drosophila, with the inversions
classified by chromosomal locations that were thought to be differentially sensitive to selection in
Hawaiian Drosophila (Templeton, 1987). McDonald and Kreitman (1991) were the first to apply this
test to DNA sequence data on a protein-coding locus in the fruit fly Drosophila melanogaster. They
used the same two evolutionary categories as in the original Templeton contingency test (polymorphic
vs. fixed), and they used synonymous versus nonsynonymous (missense, replacement) mutations
(Chapter 2) as their mutational categories. These classifications yield a simple 2 � 2 contingency
table, a special case known as the McDonaldeKreitman or MK test. Because it is generally regarded
that synonymous mutations are more likely to be neutral than nonsynonymous mutations, the MK test
can also indicate the nature of the overall selection on the nonsynonymous class when the hypothesis
of homogeneity is rejected. For example, Fig. 10.2 shows the haplotype tree for the protein-coding
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mitochondrial gene cytochrome oxidase II (COII) that was sequenced in humans, two species of
chimpanzees, and gorillas (Templeton, 1996). Table 10.1 shows these data tabulated into a contingency
table. Using a Fisher’s Exact Test (FET, a standard test for testing homogeneity in 2 � 2 contingency
tables), the null hypothesis of homogeneity is rejected with a probability level of 0.001. Hence, these
data strongly indicate that selection has been operating on this locus. Using the synonymous mutations
as the neutral control, Table 10.1 shows a strong excess of polymorphic versus fixed nonsynonymous

FIGURE 10.2

The haplotype tree for the mitochondrial

gene cytochrome oxidase II in humans,

two species of chimpanzees (Pan troglo-

dytes and Pan paniscus) and the gorilla

(Gorilla gorilla). The branch lengths are

drawn proportional to the number of

inferred mutations. Thick, solid lines

indicate interspecific fixed mutations, and

thinner dashed or dotted lines indicate

intraspecific polymorphic mutations. The

intraspecific mutations are further sub-

divided into those occurring on intraspe-

cific interior branches (dashed lines) and

those occurring on tip branches (thin,

dotted lines). Red indicates synonymous

mutations, and black nonsynonymous.

Table 10.1 MK Contingency Table of Synonymous/Nonsynonymous Mutations Versus
Polymorphic/Fixed Evolutionary Positions for the Cytochrome Oxidase II Gene

Polymorphic Fixed

Synonymous 42 113

Nonsynonymous 14 8
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mutations compared with the synonymous class, thereby indicating strong negative selection on this
protein-coding locus.

The Templeton contingency test is not limited to 2 � 2 classifications. Additional power and
biological insights can be gained by making finer classifications in both dimensions. For example, the
intraspecific, polymorphic mutations can be further subdivided into those that occurred on tip branches
(the thin, dotted lines in Fig. 10.2) versus those that occurred on interior branches (the dashed lines in
Fig. 10.2). Mutations on interior branches tend to be older, tend to be more frequent in the population,
and have had mutational descendants (Chapter 5)dall signs of some degree of evolutionary success.
Hence, if selection had occurred, it should have been stronger on interior mutations than on tip mu-
tations. Similarly, we can make more mutational classes based on our knowledge of molecular biology.
In this case, the COII protein is split into two halves with drastically different functions. The
N-terminal half of the protein is part of the transmembrane portion of the cytochrome oxidase com-
plex, whereas the C-terminal half protrudes into the cytosol and contains the sites crucial for the
transfer of electrons to oxygen and for the cytochrome C binding site. This functional difference
implies that amino acid states are subject to stronger biochemical constraints on the C-terminal half of
the protein than on the N-terminal half. These finer classifications yield contingency Table 10.2. An
exact test rejects the null hypothesis of homogeneity with a p-level less than 0.000. Hence, neutrality is
rejected even more strongly than with the MK test by using these finer classifications. Moreover, more
insight can be gained by testing for homogeneity between subsets of rows and columns in Table 10.2.
The hypothesis of homogeneity is accepted when contrasting synonymous mutations in the N-terminal
versus synonymous mutations in the C-terminal (P ¼ .590), supporting the use of synonymous mu-
tations in this protein as neutral markers. The null hypothesis of homogeneity is also accepted for
contrasting N-terminal synonymous versus nonsynonymous markers (P ¼ .270), indicating that the
N-terminal half of COII is evolving in a neutral fashion. In contrast, the hypothesis of homogeneity
between the C-terminal synonymous versus nonsynonymous markers is strongly rejected (P ¼ .004),
indicating strong, negative selection against nonsynonymous mutations in the highly functionally

Table 10.2 Contingency Table of Synonymous/Nonsynonymous Mutations in the N- and
C-termini of the COII Protein Versus the Evolutionary Positions of Fixed, Intraspecific Interior,
and Intraspecific Tip for the Cytochrome Oxidase II Gene

Tip Interior Fixed

N-Terminal Synonymous 8 10 60

N-Terminal Nonsynonymous 2 3 6

C-Terminal Synonymous 12 12 53

C-Terminal Nonsynonymous 7 2 2

From Templeton, A.R., 1996. Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the
evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144, 1263e1270.
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constrained portion of the protein. Hence, the two halves of this gene are subject to very different
regimes of natural selection, a biological insight invisible to the MK test.

Cagan et al. (2016) applied the MK test to 4877 human transcripts, using chimpanzees and gorillas
as the outgroups and found statistically significant evidence of positive selection at 39 genes and
negative (purifying) selection at 111 genes in the human lineage. The set of positively selected genes
was enhanced for genes related to immune response (possible adaptive responses to pathogens) and
neurological functions, but the genes with the strongest signals of negative selection are also involved
in brain function. The suggestion to subdivide the “polymorphic” class into intraspecific tips versus
interiors (Templeton, 1996) also allows one to test for selection that occurred just within humans. For
example, Subramanian (2012) examined synonymous versus nonsynonymous SNPs on tip versus
internal branches using data from 10 human genomes belonging to Europeans, Asians, and Africans
and inferred that up to 48% of the nonsynonymous SNPs were deleterious.

A related test for natural selection is based on the ratio of nonsynonymous substitutions per
nonsynonymous site (dN) to the number of synonymous substitutions per synonymous site (dS) (Hurst,
2002). The basic idea of this approach is that the dN/dS ratio, often symbolized by u, should be one
under neutrality, greater than one for positive selection (assuming again that the synonymous sites are
the neutral controls), and less than one for negative selection. The advantage of these ratios is that they
can be estimated and tested by maximum likelihood or Bayesian approaches for each branch of an
evolutionary tree, thereby identifying specific lineages or time periods in which selection become
more or less intense. These ratios can even be applied to specific codons to infer which amino acid
positions are under selection. Abi-Rached et al. (2010) used this approach to study the evolution of
genes coding for cell surface receptors and the genes coding for major histocompatibility complex
(MHC) class I molecules that bind these receptors. These ligandereceptor interactions are important in
immune defense and placental reproduction. They discovered that humans evolved very rapidly under
positive selection whereas the chimpanzee lineage remained relatively stable. Furthermore, they
identified many amino acid sites under positive selection that were involved in ligand binding. In a
survey of more than 6 million codons in nearly 13,000 genes, Lindblad-Toh et al. (2011) performed au
analysis on individual codons and inferred strong purifying selection (u < 0.5) on 84.2% of the codons
and strong positive selection (u > 1.5) on 2.4% of the codons during human evolution. At the gene
level, 84.8% of the genes had uniformly high purifying selection, and 15.2% of the genes showed
positive selection at some codons. Virtually all of the genes in this survey therefore showed a signature
of some sort of selection in humans.

An important caveat about u analysis is the difficulty of determining the number of non-
synonymous and synonymous sites that is needed to calculate the numerator and denominator (Hurst,
2002). One can just look at a codon table to see how many substitutions would be synonymous or
nonsynonymous, but these numbers are applicable only if a nucleotide has the same chance of
mutating to any other possible nucleotide. As discussed in Chapter 2, this is far from the case in human
genomes. Consequently, it is important to choose a model of mutation that is realistic for the data to be
analyzed. Programs such as ModelTest (Posada, 2008) can help in this regard. Choosing an appropriate
mutational model also helps in correcting for multiple hits (homoplasy) in estimating the phylogenetic
trees of the genes of interest (Arbiza et al., 2011), which can also affect the results of a u analysis
(Hurst, 2002). However, all the mutational models in ModelTest and in the current programs for
executing a u analysis treat single-nucleotide mutagenesis as a single-nucleotide process. As shown in
Chapter 2, this is not the case. A few studies have used more realistic multi-nucleotide mutational
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models for single-nucleotide mutations (e.g., CpG dinucleotide methylated-C transitions are one of the
major mechanisms of single-nucleotide substitutions in the human genome). Such studies have uni-
formly shown that multi-nucleotide mutation models greatly improve the fit of the estimated phylo-
genetic gene trees to the data above those of single-nucleotide models, including single-nucleotide
models that incorporate rate heterogeneity across nucleotides (Bérard and Guéguen, 2012; Baele et al.,
2008). Because such models greatly increase computational time, their impact on u analysis has yet to
be investigated. u analysis is also sensitive to alignment errors, so much care needs to be taken in
aligning sequences, which can be challenging when there are many indels in the phylogeny (Fletcher
and Yang, 2010).

Contingency tables and u statistics can be combined with parametric models of evolution to es-
timate the strength of selection, the rate of adaptive evolution, and the distribution of fitness effects
when synonymous mutations are assumed to be neutral (Eyre-Walker and Keightley, 2007, 2009;
Messer and Petrov, 2013; Arbiza et al., 2013; Gronau et al., 2013; Racimo and Schraiber, 2014). These
authors also caution about biases in these estimators. First, the “neutral” class may not be completely
neutral. For example, synonymous sites in protein-coding genes can have functional consequences,
such as translation efficiency, and thereby be selected (Waldman et al., 2011; Sauna and Kimchi-
Sarfaty, 2011; Keightley and Halligan, 2011; Brule and Grayhack, 2017). Second, bias can also
enter when the neutral variants are tightly linked to selected variants, as will be discussed in the next
section. Third, a mutational class can have a mixture of positive and negative selection within it,
leading to bias. Despite these biases, much insight into selection has been achieved by these ap-
proaches. For example, Gronau et al. (2013) extended the contingency framework to incorporate
explicit probabilistic and selection models to extend this approach to study selection on noncoding
elements such as transcription factor binding sites and noncoding RNAs, using flanking sites as their
neutral control. They found evidence of both positive and negative selection on these noncoding el-
ements during human evolution. This example also demonstrates that these approaches are not limited
to protein-coding genes; rather, they can be applied to any situation in which different mutational
classes can be hypothesized to be under different levels of selection (Templeton, 1987).

Another approach to discovering positive selection in the human lineage is to compare genomic
regions in humans to homologous regions in outgroup species (typically other apes, primates, or even
mammals in general) to identify regions that are conserved in the outgroup species but that are highly
divergent in humans. Such sections of the genome are called human accelerated regions (HARs) and
represent candidate regions for positive selection specifically in the human lineage. Sometimes HARs
are found in protein-coding genes. For example, Gautam et al. (2015) found that genes involved in
keratinization of human skin, which modulate transepidermal water loss, are under accelerated evolution
in humans. Because these are protein-coding genes, they also performed an u analysis that indicated
positive selection in the human lineage. However, most HARs (more than 96%) have been found in the
noncoding regions of the genome, and often regions with little or no annotation (Hubisz and Pollard,
2014), thereby obscuring their significance to human evolution. Moreover, many HARs are identified by
nucleotide substitutions, but often much of their divergence is due to structural variations (insertions,
deletions, duplications) that are often filtered out or hard to accurately infer with many types of
sequencing. With increasing knowledge of the functions of noncoding DNA (Chapter 2), it has become
more likely that many HARs do indeed have adaptive significance and were driven by positive selection.
Specifically, many HARs are found in noncoding DNA that serve as regulatory sequences (Gittelman
et al., 2015; Lindblad-Toh et al., 2011; Perdomo-Sabogal et al., 2014; Reilly and Noonan, 2016), and
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experiments have often shown that these presumptive regulatory HARs are enriched for epigenetic
marks and active transcription (Dong et al., 2016). Noncoding HARs are enriched in regulating
genes involved in neuron and brain function, skeletal morphology, transcription factors, alternative
splicing, and immune function (Perdomo-Sabogal et al., 2014; Dong et al., 2016; Gittelman et al.,
2015; Hsiao et al., 2016). Indeed, the highest genomic density of HARs has been found at or near the
NPAS3 gene that plays a crucial role in mammalian brain development, and these HARs act as
transcriptional enhancers during development within the nervous system and brain (Kamm et al.,
2013). Levchenko et al. (2018) found that many noncoding HARs had novel enhancer activities that
were implicated in human-specific development of certain brain areas, including the prefrontal
cortex. These studies indicate that much of the human evolutionary divergence from our common
ancestor with chimpanzees was driven by positive selection on regulatory elements rather than
protein-coding genes, as long ago hypothesized by King and Wilson (1975). Interestingly, most of
the derived HAR states in living humans are also shared by Neanderthals and the Denisovan (Hubisz
and Pollard, 2014), indicating that most human-specific regulatory evolution occurred before the
evolution of archaic humans. However, Zehra and Abbasi (2018) did find three brain-specific
transcription factor binding sites that were unique to Homo sapiens on comparisons with Nean-
derthal and the Denisovan genome, indicating some recent accelerated evolution.

Another class of tests for the presence of natural selection is based on the site frequency spectrum
(SFS) under neutrality (Chapter 4). One of the oldest of these tests and still one that is commonly used
is Tajima’s D statistic (Tajima, 1989b). Recall that q ¼ 4Nm measures the balance of neutral mutation
and genetic drift, and that the expected heterozygosity under neutrality is q/(1 þ q). Most modern
genetic surveys measure heterozygosity at the nucleotide level, and the average per nucleotide het-
erozygosity is typically a very small number. Hence, under neutrality, the expected heterozygosity is
approximately q. Moreover, expected heterozygosity can be directly estimated from genetic survey
data. In particular, let pij be the number of nucleotide differences between sequences i and j from a
sample of n genes. There are n/(n � 1)/2 unordered pairs (i.e., ij is pooled with ji) in a sample of n
sequenced genes, so an estimate of the expected heterozygosity at the nucleotide level based on the
average number of nucleotide differences between all pairs of n sequences is as follows:

P ¼
2
Pj
i¼1

Pn
j¼2

pij

nðn� 1Þ (10.13)

whereP is the estimator of q. Assuming the infinite sites model and constant population size, the SFS
under neutrality is given by Eq. (5.16). Under the infinite sites model, each mutation is at a different
nucleotide and no homoplasy can occur, so the number of mutations that occurred in this sample of n
genes is simply S, the number of segregating (variable) nucleotides sites. Hence, an estimator of q
under the infinite sites model and neutrality is (a restatement of Eq. 5.15)

q
_ ¼ SPn�1

i¼1

1

i

(10.14)

Eqs. (10.13) and (10.14) are both estimators of expected heterozygosity, but Eq. (10.13) does not
assume either neutrality or the infinite sites model. In contrast, Eq. (10.14) is valid only under
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neutrality in a constant-sized population under the infinite sites model. Tajima (1989b) therefore
suggested that a discrepancy between these two estimators can be regarded as a measure of deviation
from neutrality. This discrepancy is measured by the standardized difference:

D ¼ P� q
_ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var

�
P� q

_
�s (10.15)

where Var(P�q
_
) is an estimate of the sampling variance of the difference betweenP and q

_
under the

infinite sites model. The expected value of this D statistic is zero under neutrality. Significant de-
viations above 0 imply balancing selection promoting higher than expected heterozygosity, whereas
significant deviations below 0 imply positive selection that sweeps away variation during the fixation
process. Tajima (1989a) also pointed out a serious flaw in this test; namely, it is sensitive to the
assumption of a constant-sized population. As shown in Fig. 5.3, the human SFS deviates far from that
expected under a constant population size. The D statistic can yield significant deviations when
population size is not constant even if the assumption of neutrality is true. Hence, selection and
demography are confounded in the interpretation of a significant D statistic.

The D statistic has been extended and generalized in a large number of ways (Achaz, 2009), with
many of the alternatives attempting to eliminate the confoundment of demography and selection. For
example, Fay and Wu (2000) replace q

_
with yet another estimator of expected heterozygosity under

neutrality:

qH ¼
Xn�1

i¼1

2Sii
2

nðn� 1Þ (10.16)

where Si is the number of derived variants found i times in a sample of n sequences. A derived variant
is due to a mutation that arose after the most recent common ancestral molecule (Chapter 5), typically
as determined from outgroup data. Their measure of heterozygosity gives much weight to derived,
common variants but excludes the ancestral variant. Under neutrality, the ancestral variant is
generally common and derived variants rare (Castelloe and Templeton, 1994), so when a derived
variant is common it is likely due to natural selection and not demography. Therefore, Fay and Wu
(2000) use the statistic H ¼ (PeqH) to test for neutrality rather than Eq. (10.15). Simulations indicate
that H outperforms the original D statistic (Ferretti et al., 2010). An applied example is shown in
Fig. 10.3. Rafajlovic et al. (2014) calculated Tajima’sD and Fay andWu’sH across the human genome
using a sliding window of 100 kb and a step size of 10 kb on all windows with 5 or more SNPs using
1000 genome data. The results are shown in the top row of Fig. 10.3 for three human populations of
African, European, and Chinese origin. The H statistic has a mean close to zero for all three pop-
ulations, whereas the D statistic is negative for the African population and positive for the Eurasian
populationsda pattern that may reflect their different population growth histories. Rafajlovic et al.
(2014) also investigated another way of adjusting for demographic history in the genomic era. With so
many SNPs available in genomic surveys, they were able to subsample 40 genomic regions that were
far apart in the genome to obtain a sample of 40 SFS’s. They then assumed a simple demographic
model of a past constant population size that at a certain time in the past instantaneously changed to a
potentially new constant number for a certain number of generations until instantaneously changing a
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second time to yet another potentially different constant number that persists to the present. Maximum
likelihood was used to estimate the parameters of this model using the average of 40 SFS’s sampled
from each population. The D and H statistics were then adjusted to this estimated demographic model.
The result of this explicit demographic adjustment is shown in the bottom row of Fig. 10.3. The three
populations shown in Fig. 10.3 had very different estimated demographic histories, with both Eurasian
populations having a recent population bottleneck followed by even more recent population growth,
whereas the African population had an older population expansion followed by a very recent popu-
lation decline. These explicit demographic adjustments had a major effect on the D statistic, with the
African D increasing and the Eurasian D’s decreasing such that all the adjusted D’s had similar dis-
tributions with a mean close to zero (neutrality). This demographic adjustment had less impact on the

FIGURE 10.3

The distribution of D and H test statistics over all sliding windows across the genome in three populations: YRI,

the Yoruba from Nigeria; CEU, a panel of individuals of western European ancestry; and CHB, Han Chinese from

Beijing, China. The top row gives the original test statistics, and the bottom row gives the demography-adjusted

tests using an estimated demographic history for each population.

From Rafajlovic, M., Klassmann, A., Eriksson, A., Wiehe, T., Mehlig, B., 2014. Demography-adjusted tests of neutrality based on

genome-wide SNP data. Theoretical Population Biology 95, 1e12.
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H statistic but did change the variance of the distribution for the African population in a manner that
made the entire distributions of all three populations more similar. The lesser impact on the H statistic
indicates that the H statistic is indeed more robust to demographic history, but these results indicate
that adjusting for a population-specific demographic history with genomic data can further improve
this method for testing selection. It is still not clear how well these crude models adjust for de-
mographic history, and Koch and Novembre (2017) found that the SFS can have complex responses to
more realistic, nonequilibrium models of recent human population demographic histories, thereby
making it difficult to separate out the effects of drift versus selection.

Demography is only one complication of SFS statistics; another is the assumed mutational model.
As pointed out in Chapter 5, the S in Eqs. (5.15), (10.14), and (10.16) represents the number of
mutations that have occurred to generate the current variation under the infinite sites model. As
illustrated in Chapter 5, this relationship between S and the number of mutations is seriously violated
when applied to human genome data because of the extensive occurrence of homoplasy due to the
nonrandom nature of mutation at the molecular level (Chapter 2). Hu et al. (2016) considered a finite
sites model that allowed homoplasy (but was limited to three alleles) as well as a model that allowed
variation in the mutation rate across loci. Their simulations showed that both homoplasy and unequal
mutation rates across loci bias Eq. (10.15) away from the true value of q. There has been little work on
the impact of nonrandom mutation at the molecular level on these statistics, and none with the more
realistic multisite models of mutation (Chapter 2). One potential method of minimizing this problem
and simultaneously controlling for shared demographic history is simply to look at the overall genomic
distribution of D orH values and regard only the outliers as likely indicators of selection. For example,
Clemente et al. (2014) scanned the genomes of native Northeast Siberians for positive selection using a
sliding 200 kb window D statistic and regarded only the lowest 1% of the windows with negative D’s
as indicators of positive selection. They found 133 windows with highly negative D’s. However, given
that the genome is also highly nonrandom in the types of nonrandom mutations that occur in different
genomic regions (Chapter 2), it is still not clear how many of these 1% outliers are outliers because of
selection or because of having outlier mutational properties.

Bitarello et al. (2018) proposed a different outlier approach to detect long-term balancing selection
that does not depend on an explicit mutational model but instead on the prediction of a stable, in-
termediate equilibrium allele frequency that can occur under many forms of balancing selection (e.g.,
Eq. 9.7). Consider a window in the genome that contains n SNPs. Then they calculate the statistic

NCDðtf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðpi � tf Þ2
.
n

s
(10.17)

where pi is the minor allele frequency at SNP i, and tf is the target frequency (that is, an assumed
equilibrium allele frequency under balancing selection). They assume that their genomic window is
small enough that only a single allele (haplotype) is captured by all n SNP’s, so there is only a single
common tf for the entire window. They also recommend using an outgroup to look for fixed SNPs
(pi ¼ 0), as fixation would indicate a lack of balancing selection in a genomic region. They analyzed
two European and two African populations with 1000 genome data with a chimpanzee outgroup using
a 3-kb sliding window with 1.5 kb steps. Any window with less than 10 informative SNPs was
excluded, as well as windows with less than 500 bp of orthology with chimpanzees. With these ex-
clusions, they were able to analyze 81% of the autosomal genome. In each window, they considered
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three minor allele frequencies as the tf: 0.3, 0.4, and 0.5. They considered a genomic window as being
an outlier for a given tf if the value of NCD(tf) was in the 0.05% lower tail of the distribution of NCD as
determined by computer simulations of the neutral case. Fig. 10.4 shows some of their results. As can
be seen, many regions of the genome indicate balancing selection that collectively overlap about 8% of
the protein-coding genes in the human autosomal genome, with the strongest signals being found for
immune-related genes.

Fu and Li (1993) derived yet another version of the D statistic based on coalescent theory
(Chapter 5). Coalescent theory predicts that natural selection can alter the shape of a haplotype tree in
predictable ways given the mode of selection (Page and Holmes, 1998) (Fig. 10.5). Fu and Li (1993)
focused on the fact that selection should alter the number of mutations on exterior or tip branches
relative to the total branch length of the tree. However, at the time of their work there were few
haplotype trees available for nuclear genomes, so much of their derivation of a D analogue depended
on the infinite sites model and the assumption of a constant population size. Unfortunately, different
demographic factors can also influence the shape of a neutral coalescent tree in ways that mimic
selection. For example, a tree with many short tip branches can be the result of a recent selective sweep
of a favored haplotype or it could be due to rapid population growth (Fig. 10.5). Similarly, a tree with a
few long internal branches and many small tip ones could reflect balancing selection favoring the
retention of a set of polymorphic haplotype lineages for long periods of time or it could reflect long-
term population subdivision (Fig. 10.5). Therefore, haplotype tree shape also suffers from a con-
founding of selection with demography. Both because of its mutational and demographic assumptions,
the Fu and Li test is not appropriate for human data. However, many other tests based on haplotype tree
topology have since been proposed (Burkett et al., 2014; Hunter-Zinck and Clark, 2015; Li and Wiehe,
2013; Vahdati and Wagner, 2016; Wang et al., 2014; Ferretti et al., 2017; Yang et al., 2018).

FIGURE 10.4

NCD genome scan for one analysis at tf ¼ 0.5 for the Luhya population from Webuye, Kenya. The y-axis is the p

value on a log-scale, and the x-axis is the ordered location of analyzed windows on the genome. Each point is a

scanned (gray and black, alternating between adjacent chromosomes), significant (blue), or outlier (pink) window.

Significant windows were defined based of simulations.

Modified from Bitarello, B.D., De Filippo, C., Teixeira, J.C., Schmidt, J.M., Kleinert, P., Meyer, D., et al., 2018. Signatures of long-

term balancing selection in human genomes. Genome Biology and Evolution 10, 939e955.
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Fig. 10.5 shows that one feature of a coalescent tree that is sensitive to selection is the time to the
most recent common ancestor (TMRCA, Chapter 5), ranging from very short TMRCAs with positive
selection to very long with balancing selection that can maintain polymorphic lineages for long periods
of time. However, Fig. 10.5 also shows that short TMRCA’s can be induced by population growth and
long TMRCA’s by population subdivision. Hunter-Zinck and Clark (2015) controlled for these de-
mographic historical effects by a common strategy: searching for outliers in the genome or in a
genomic region. The idea of this strategy is that demographic history should affect all loci, whereas
natural selection distorts the coalescent genealogy in a locus-specific manner. They therefore scanned
consecutive 10-kb windows of some genomic regions to obtain an estimate of the TMRCA distri-
bution, and then used a statistical distance score to identify windows that were significant outliers for
TMRCA. Fig. 10.6 shows the results of applying their method, called TSel, across a portion of the
genome that yields a significantly old TMRCA outlier near a gene that had previously been inferred to
have balancing selection (Leffler et al., 2013).

Leffler et al. (2013) scanned the human genome for extreme TMRCA outliers using chimpanzees
as an outgroup to find trans-specific polymorphisms (Fig. 5.8) shared by humans and chimpanzees.
Their strongest signal was for the MHC, which was also the strongest signal in Fig. 10.4. This strong
signal is not surprising given that trans-specific polymorphisms in this complex are known between
humans and Old World monkeys, indicating the maintenance of a polymorphism for 35 million years
(Zhu et al., 1991). This complex has long been associated with disease resistance to a variety of
pathogens. When the fitness of an individual depends on how it interacts with other individuals (either
of the same species or a different species), a common result is frequency-dependent selection, which
will be discussed in more detail in Chapter 11. What is important here is that frequency-dependent
selection can be a powerful force for maintaining polymorphisms through a negative-feedback

FIGURE 10.5

Coalescent gene tree shapes and depths as affected by various evolutionary processes.

Modified from Page, R.D.M., Holmes, E.C., 1998. Molecular Evolution: A Phylogenetic Approach, Blackwell Science, Ltd. Oxford.
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fitness loop. In the case of humanepathogen interactions, many pathogens can escape the human
immune system if they can mimic a genetically based human antigen, and the pathogens are under
strong selection to mimic the most common antigens. Therefore, a human bearing a rare antigen
generally has a fitness advantage, and the allele coding for this rare antigen therefore increases in
frequency. However, as the allele increases in frequency, it induces stronger selection on the pathogen
to mimic its associated human antigen, thereby causing the allele to lose its fitness advantage. Such a
phenomenon is known as a rare allele advantage and can be a powerful selective regime for main-
taining polymorphisms over long periods of time. An extensive survey of MHC across many species
indicates that such negative-frequency dependence (i.e., favoring rare alleles) is the best explanation
for the MHC data (Sutton et al., 2011), and this conclusion is supported by experimental work as well
(Kubinak et al., 2012). It is not surprising that many other genes that show trans-specific polymorphism
in humans with other species that extend far back in evolutionary time tend to be associated with
hostepathogen interactions (Cagliani et al., 2010; Malaria Genomic Epidemiology, 2015; Ségurel
et al., 2012; Teixeira et al., 2015). Indeed, the survey of Leffler et al. (2013) revealed 125 genomic
regions in addition toMHC, and these regions were significantly enriched for membrane glycoproteins
(which frequently function as antigens) that further indicate that ancient balancing selection in humans
has evolved due to hostepathogen interactions.

Not all cases of balancing selection are ancient, as illustrated by the sickle-cell balanced poly-
morphism discussed in Chapter 9. The detection of more recent balancing selection, as well as many
other forms of selection, requires a knowledge of how selection and recombination interact, the subject
of the next section.

FIGURE 10.6

The TSel Score that measures outliers for

TMRCA over consecutive 10-kb windows

in the region of the VASH1 gene on

chromosome 14.

Modified from Hunter-Zinck, H., Clark,

A.G., 2015. Aberrant time to most recent

common ancestor as a signature of natural

selection. Molecular Biology and Evolution

32, 2784e2797.
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INTERACTIONS OF SELECTION WITH MUTATION, GENETIC DRIFT, AND
RECOMBINATION
Genetic variation is created not only by mutation but also by recombination (Chapter 1). Since se-
lection is constrained by the available variation, interactions between selection and recombination are
universal. We start our investigation by going back to the model presented in the previous section on
the interaction of selection with drift and mutation. That model showed that a deleterious mutation has
very little chance of going to fixation (Fig. 10.1), particularly if the population size is large. However,
when a mutation occurs, it is in linkage disequilibrium with the polymorphic sites on the genetic
background on which it occurred (Chapter 1). Assortment and recombination quickly destroy that
disequilibrium for unlinked or loosely linked genes, but disequilibrium can persist for closely linked
genes for long periods of time (Chapter 3). This means that when selection eliminates the DNA lineage
defined by the deleterious mutation, it also eliminates copies of alleles at other nearby sites that
retained their original association with the deleterious mutation. This is an example of a hitch-hiking
effect in which selection at one locus influences the evolutionary dynamics of nearby sites through
linkage disequilibrium. By eliminating deleterious mutations, selection is effectively reducing the
number of DNA lineages in the coalescent process in the genomic regions that retain disequilibrium
with deleterious mutations. This reduces the coalescent and inbreeding effective sizes of that genomic
region; that is, genetic drift is strengthened. Note that this is not a simple reduction in overall effective
size for a given genomic region, but rather one that varies with recombinational distance from the
deleterious mutant (Zeng and Charlesworth, 2011). In addition, the strength of a hitch-hiking effect is
time-dependent because the longer a mutation persists in the population, the more opportunity there is
for recombination and the decay of disequilibrium (Nicolaisen and Desai, 2013). This reduction in
effective size means that even neutral variation in the affected genomic region will be reduced
(Fig. 4.8). From Eq. (4.35), the expected heterozygosity of neutral variation at the nucleotide level in
an ideal population of size N is approximately 4Nm. Hudson and Kaplan (1995) showed that the
heterozygosity of neutral variation in a linked region around a deleterious mutation is approximately

Heqz 4Nm

 
1� msh

2ðshþ rÞ2
!

(10.18)

where s is the selection coefficient, h is the measure of dominance of the deleterious mutations
(Eq. 10.4), and r is the recombination frequency between the deleterious locus with a nearby neutral
polymorphic site. Note that the portion of Eq. (10.18) in parentheses is less than one when negative
selection occurs, so selection reduces the heterozygosity in a region determined by the recombination
rate with the deleterious site beyond the background levels due to genetic drift alone. The evolutionary
impact of selection on deleterious mutations to reduce variation at nearby regions in the genome is
called background selection.

Given that the reduction in neutral variation implied by Eq. (10.18) is proportional to m, it seems at
first that the impact of background selection should be very minor. However, as discussed earlier, m can
refer to the mutation rate of a whole class of deleterious mutants in a gene, and not to a specific
mutation at the molecular level. Hence, m can be much larger than the per nucleotide mutation rate.
Eq. (10.18) also shows that the impact of background selection increases with decreasing r. Recall
from Chapter 2 that recombination in the nuclear genome is concentrated into hot spots, which means
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that there are regions of low to no recombination between these hot spots. Background selection is
expected to have a larger effect in those low recombination regions. Moreover, there is no recombi-
nation in most of the Y-chromosome and all of the mitochondrial genome. This means that all
deleterious mutations in mtDNA or Y-DNA reduce the inbreeding effective size of the entire mtDNA
genome or Y-chromosome. Moreover, many genes can accumulate deleterious mutations in such re-
gions of no recombination, which in turn enhances the magnitude of background selection (Char-
lesworth, 2012). As a consequence, genetic diversity levels in the Y-chromosome are extremely low in
humans in a manner that cannot be explained by just the uniparental, haploid inheritance of the Y nor
by demographic factors (Wilson-Sayres et al., 2014). The mitochondrial genome still shows high
levels of diversity, but this is likely due to a much higher mutation rate than nuclear DNA. The
enhanced impact of background selection in nonrecombining regions means that mt- and Y-DNA
underestimate effective sizes and overestimate population growth rates (Ewing and Jensen, 2016).
Genetic diversity is also reduced in those regions of the nuclear genome that have low recombination,
indicating that purifying selection and background selection are important forces for shaping patterns
of variation throughout the human genome (Lohmueller et al., 2011).

Hitch-hiking effects can be even more extreme when a beneficial mutation arises. If selection
drives the beneficial mutation to fixation, all alleles at nearby loci or sites that never recombined with it
during the fixation process will also be driven to fixation, and those alleles that retain some of the initial
linkage disequilibrium will increase in frequency. Fixation of such a beneficial allele due to positive
selection therefore usually causes a strong decrease in expected heterozygosity over a local genomic
region that contains the positively selected mutant, a phenomenon called a hard selective sweep. Such
hard selective sweeps also cause an unusually long, derived haplotype to go to fixation or at least
increase in frequency around the selected allele before fixation occurs. This genomic signature
gradually disappears as new mutations accumulate in the region over time, so regions of decreased
heterozygosity are not appropriate for detecting very old selective sweeps. However, this genomic
signature is a powerful detector of more recent sweeps. For example, as modern humans expanded into
the higher latitudes, there was selection for lighter skin color (to be discussed in Chapter 12). Fig. 10.7
shows part of a genome scan for regions of low heterozygosity in two human populations: the Yoruba,
a sub-Saharan population not exposed to selection for light skin color; and the CEU HapMap panel of
European ancestry, a population subjected to selection for lighter skin color (Lamason et al., 2005).
One of the major skin color loci, SLC24A5, is located on chromosome 15 and has two alleles asso-
ciated with an amino acid difference at amino acid 111 that has a large impact on skin color. The
ancestral allele, G, is nearly fixed in sub-Saharan populations, whereas the derived allele, A, is nearly
fixed in European populations. As can be seen from Fig. 10.7, heterozygosity in the region of this gene
has virtually been eliminated in Europeans, whereas it is still high in Africans. Moreover, this region of
depleted heterozygosity is characterized by an extended haplotype in Europeans.

Many statistics have been developed to detect these signatures of positive selective sweeps in the
human genome. As shown in Fig. 10.7, one such statistic is simply the expected heterozygosity.
Typically, one calculates the statistic of interest for some predefined window size of the genome,
commonly 10 kb as was done for the analysis shown in Fig. 10.7, but sometimes other criteria (such as
a minimum number of SNPs with certain allele frequency characteristics) are used to define the size of
the window. The entire genome is then scanned using either a sliding window or consecutive windows.
Once the scan is completed, there is a search for significant outliers. The outlier strategy is used to
control for the effects of a shared demographic history, as discussed in the previous section. For
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example, Fig. 10.8 shows the lengths of the regions with low heterozygosity in the CEU sample in the
genome scan of Lamason et al. (2005), showing that the SLC24A5 region is an extreme outlier.

Besides expected heterozygosity, selective sweeps can be detected by statistics that detect long-
range haplotypes that have caused alleles within them to rise to high frequencies: the long-range
haplotype score (LRH), the integrated haplotype score (iHS), the extended haplotype homozygosity
score (EHH), linkage disequilibrium decay (LDD), and shared genomic segment analysis (SGS),
among many others (Sabeti et al., 2007; Cai et al., 2011; Crisci et al., 2012). Simulations have also
been used to estimate the specific haplotypes under selection, their selection coefficients, and their
ages (Chen et al., 2015). Power can also be enhanced by taking into account local variation in
recombination rates, when that information is available (Jacobs et al., 2016).

There are many complications that can make the detection of a positive selective sweep more
difficult. One complication has already been mentioned: background selection can also result in
genomic regions with low heterozygosity. The haplotype-based approaches are less sensitive to
background selection and are therefore better indicators of positive selection (Enard et al., 2014). In

FIGURE 10.7

Reduced heterozygosity in the region of the SLC24A5 locus in people of European ancestry (CEU) versus high

heterozygosity in a sub-Saharan African sample (YRI).

Modified rom Lamason, R.L., Mohideen, M-a. P.K., Mest, J.R., Wong, A.C., Norton, H.L., Aros, M.C., et al., 2005. SLC24A5, a

putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782e1786.
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addition, background selection tends to preserve the ancestral forms, whereas a positive selective
sweep favors the derived form. Hence, statistics that make a distinction between ancestral and derived
SNPs or haplotypes, such iHS, can distinguish between these modes of selection (Fagny et al., 2014).
Huber et al. (2016) include outgroup data not only to infer derived SNP states but also to account for
local variation in the mutation rate in the window being investigated. They also correct for background
selection with an explicit estimate of the reduction in local effective size due to background selection.
Their scan of the human genome detected many regions inferred by other statistics to be due to positive
selection but also many new regions. This observation and simulation results indicate that an explicit
correction for background selection increases the power for detecting a positive selective sweep and
reduces the false positive rate due to background selection. Interestingly, the strongest signal they
detected for a selective sweep in the human genome was in the region containing the gene KIAA1217, a
gene affecting lumbar disc herniation (a likely consequence of bipedal walking), yet this genomic
region had been missed by most previous scans for selection.

It is also important to keep in mind that background selection and selective sweeps are not
necessarily mutually exclusive. For example, after a beneficial mutation occurs, it is possible that
deleterious mutations will arise in some of the DNA lineages bearing that beneficial mutation before it
goes to fixation. As shown in Chapter 4, fixation of a beneficial mutant is not ensured by natural
selection even in a large population because of the genetic drift effects that are important while the

FIGURE 10.8

A plot of regions with low heterozygosity in a genome scan of the CEU population showing the length of the

region of low heterozygosity against genome position. The largest region of low heterozygosity is indicated by an

asterisk and corresponds to the SLC24A5 region shown in Fig. 10.7.

Modified from Lamason, R.L., Mohideen, M-a. P.K., Mest, J.R., Wong, A.C., Norton, H.L., Aros, M.C., et al., 2005. SLC24A5, a

putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782e1786.
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mutant is in its initial low frequency stage. Pénisson et al. (2017) used probability generating functions
to look at the impact of a random accumulation of linked deleterious mutations onto DNA lineages
bearing a beneficial mutation, a phenomenon they called lineage contamination. They showed that
the combined effects of lineage contamination and background selection (which strengthens drift)
depress the probability of survival of the beneficial mutation by a factor that depends on the ratio of the
deleterious mutation rate in the vicinity of the beneficial mutation to the mean selective advantage of
the beneficial mutation. At high enough mutation rates, lineage contamination can depress fixation
probabilities of beneficial mutations so much that they approach zero. Balancing selection can also
lead to an accumulation of deleterious mutations around the alleles being maintained as poly-
morphisms by selection. As mentioned earlier, trans-specific polymorphisms indicate that the MHC
region is under strong selection for maintaining polymorphisms, and many putatively deleterious
coding variants have been detected in theMHC region. The mean frequency of these variants declines
with physical distance from the classical alleles thought to be maintained by selection (Lenz et al.,
2016).

As noted earlier and as predicted by Eq. (10.8), humans accumulate many recessive deleterious
alleles in their genomes. Hence, when a beneficial mutation occurs, it may occur on the same chro-
mosome as one or more deleterious alleles at nearby loci, thereby being in linkage disequilibrium with
deleterious alleles at its mutational creation. This is similar to the phenomenon of lineage contami-
nation, but in this case the contamination exists from the very first appearance of the beneficial mu-
tation. Such an initial condition can reduce the probability of ultimate fixation of the beneficial
mutation and prolong the fixation time when fixation does occur (Assaf et al., 2015). This situation can
also result in a staggered sweep in which the initial rate of increase of the beneficial mutation is
lowered by hitch-hiking deleterious alleles, followed by a sudden increase in the rate of increase if a
recombination event decouples the beneficial mutation from the linked deleterious alleles (Assaf et al.,
2015).

Another complication arises from the nonrandom nature of mutation at the molecular level that
results in frequent homoplasy (Chapter 2). For example, as pointed out in Chapter 1, the S allele at the
b-Hb locus likely arose at least five different times in recent human evolution and is therefore found on
five distinct haplotype backgrounds. Shriner and Rotimi (2018) argued for a single mutational origin of
the S allele, but they only considered models that had the same mutation rate at every sitedan
inappropriate model for the human genome that would underestimate homoplasy by orders of
magnitude (Chapter 2). Regardless of the history of this particular mutation, homoplasy is extremely
common in the human genome, yet a hard selective sweep is based on the assumption of just a single
initial haplotype background. Moreover, many different beneficial mutations can occur at the same
locus (e.g., the S and C alleles at the b-Hb locus), and it is possible that multiple adaptive mutations can
occur before any one of them has reached fixation. For example, another class of alleles associated
with positive selection in a malarial environment are mutations at the X-linked locus for glucose-6-
phosphate dehydrogenase (G-6-PD) that lead to an activity deficiency in the enzyme. Over 50
distinct mutations in this locus have led to activity deficiencies that have risen at least to a frequency of
1% in some local population (Ralph and Coop, 2015), thereby resulting in multiple haplotype back-
grounds. Moreover, many of these G-6-PD-deficient alleles may represent standing variation prior to
selection and therefore may already be present on many different haplotype backgrounds. For
example, the most common G-6-PD-deficient allele in sub-Saharan African populations is A�, and this
allele exists on 10 haplotype backgrounds in Africa (Chen and Slatkin, 2013). We also saw in Chapter
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9 that the C allele at the b-Hb locus seems to have had a unique origin in sub-Saharan Africa, but that it
was effectively neutral before malaria became a major selectively agent and could have risen to a
substantial frequency in some local populations due to genetic drift. Once, again, we have the pos-
sibility that this unique mutation could have acquired several distinct haplotype backgrounds due to
recombination and subsequent mutation at other nearby linked sites. A soft selective sweep occurs
when the selected allele or allelic class exists on multiple haplotype backgrounds and not just a single
one as with a hard selective sweep. Some statistics have been developed specifically to detect such soft
selective sweeps. For example, Chen and Slatkin (2013) placed the multisite haplotype patterns
associated with the G-6-PD A� allele into a coalescent model with recombination that was used to
estimate a positive selection coefficient of 0.05. A prediction of a soft sweep from standing variation is
that the gene tree will have longer internal branches than a hard sweep and will have more
intermediate-frequency haplotypes. This results in a negativeD-type statistic when distinct haplotypes
are treated as alleles. In general, a soft sweep from standing variation is more difficult to detect than a
hard sweep (Berg and Coop, 2015). Garud and Rosenberg (2015) discuss some other haplotype ho-
mozygosity statistics that can detect both hard and soft sweeps. One statistic is H12 that pools the two
most frequent haplotypes together and calculates their pooled expected homozygosity plus the ho-
mozygosities of all the remaining haplotypes. Another statistic is H2/H1 where H2 is the sum of the
expected homozygosities of all haplotypes except for the most-common haplotype, and H1 is the sum
of the expected homozygosities of all haplotypes, both with no haplotype pooling. The H2/H1 can be
normalized given the value of H12, and this normalized statistic improves the discrimination between
hard and soft sweeps.

A final complication for detecting selective sweeps is an incomplete selective sweep in which
positive selection has increased the frequency of a beneficial allele but has not taken it to fixation in the
population under study: that is, a transient polymorphism or a balanced polymorphism. For example,
as shown in Chapter 9, the C allele at the b-Hb locus has, under some initial conditions, fitness
properties in a malarial environment that should lead to its fixation, but it can take tens of thousands of
years for that fixation to occur. During this time period, we have a transient polymorphism, which is
one example of an incomplete selective sweep. Statistics to detect such an incomplete sweep are based
on the prediction that an incomplete selective sweep divides the homologous genomic regions in the
population into two groups: one carrying the beneficial allele with very low polymorphism at nearby
linked loci and the other carrying the ancestral allele with a normal pattern of sequence variation
(Vy and Kim, 2015). An incomplete selective sweep therefore results in great imbalance in the pre-
dicted gene tree, with the portion of the tree with the selected mutation having fewer gene lineages due
to the selective sweep in that portion of the gene genealogy. Yang et al. (2018) have proposed a
Tajima’s D-like statistic that tests for selection through tree asymmetry and have shown through
simulations that this test of asymmetry is robust to demographic history and statistically conservative
to deviations from the infinite sites model.

Another reason for an incomplete sweep is that the positive selection is such that it will maintain a
polymorphism rather than lead to fixation, as illustrated by the A/S polymorphism at the b-Hb locus
discussed in Chapter 9. The signature of positive selection that results in a balanced or stable poly-
morphism is more complicated. In the previous section, we saw how ancient balanced polymorphisms
that result in trans-specific polymorphisms can be detected, and that even intraspecific balanced
polymorphisms can be detected through outlier TMRCA’s (Hunter-Zinck and Clark, 2015). We also
saw how ancient and recent balanced polymorphisms can be detected by assuming an equilibrium
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frequency (Fig. 10.4). However, both ancient and intraspecific balanced polymorphisms also affect
nearby, linked neutral sites (DeGiorgio et al., 2014). When a neutral mutation arises that is tightly
linked to an allele subject to balancing selection, it has an enhanced probability of not being lost. Often
this same neutral mutation does not occur on the parts of the gene tree defined by the other alleles
maintained by balancing selection This results in balancing selection increasing the number of
polymorphisms at linked neutral sites, an increase in minor allele frequencies at these sites, and
different alleles associated with the deepest DNA lineages of the gene tree that are defined by the
alleles subject to balancing selection. A potential and dramatic example of this pattern is provided by
the Gephyrin locus that codes for a protein that plays a crucial role in synapse formation and plasticity
in the nervous system, along with other important functions. Climer et al. (2015) found a highly unique
pattern of SNP variation at this locus. Two haplotypes, differing by 284 SNPs, were found to be
polymorphic in all 11 HapMap populations surveyed, albeit with different haplotype frequencies
(Fig. 10.9). Most intermediate haplotypes were completely absent or rare. This situation of having two
highly divergent haplotypes with intermediates rare or absent is called a yin-yang haplotype pair. The
Gephyrin yin-yang pair is an order of magnitude larger than any other yin-yang pair found in the
human genome and covers the entire Gephyrin gene as well as about 300 kb upstream and downstream
from the gene. Using the chimpanzee as an outgroup, both the yin and yang haplotypes were highly
and equally divergent from the ancestral state, with each haplotype having about 50% derived and 50%
ancestral alleles at these 284 SNPs. Hence, the yin and yang haplotypes represent a recent poly-
morphism unique to humans. Recombinants between the yin and yang haplotypes are very rare, despite
this being a region of moderate recombination with the yin-yang region being about 10 cM long.
Several tests for positive selection, including iHS (which is good for detecting recent positive selec-
tion) and Fay and Wu’s H statistic, indicate strong positive selection in the yin-yang region. Inter-
estingly, there is no evidence for selection in the coding region based on synonymous versus
nonsynonymous mutations, so the positive selection appears to be operating on functional elements
within noncoding regions. The result of this positive selection is not a selective sweep, but rather a
polymorphism that is found in all modern human populations such that both the yin and yang lineages
have persisted long enough to have spread throughout the world and to have acquired over 100
distinctive sets of derived alleles during human evolution. This pattern strongly indicates balancing
selection in the Gephyrin region.

Another method of measuring the signal or recent balancing selection is through sharing haplo-
types through identity-by-descent (IBD) across individuals using dense SNP surveys (Albrechtsen
et al., 2010), and indeed Fig. 10.9 can also be interpreted as many individuals sharing haplotypes
across the globe that are IBD due to their associations with the yin-yang polymorphisms maintained by
selection (Climer et al., 2015). For another example, a scan of the human genome for outliers for high
IBD tracts revealed the strongest signal on chromosome 6 in the MHC region (HLA in humans)
(Fig. 10.10). As mentioned above, trans-specific polymorphisms and outlier coalescent times indicate
that this region is under very strong selection to maintain polymorphisms. Simulations revealed that
balancing selection due to overdominance (heterozygote superiority, as illustrated by the A/S poly-
morphism described in Chapter 9) is not likely to yield excess IBD after equilibrium is achieved,
whereas frequency-dependent selection does yield excess IBD sharing (Albrechtsen et al., 2010).
Using these gene genealogical signatures and the other signatures discussed previously, balancing
selection has been found to be an important force in human evolution (Key et al., 2014).
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GENOMICS AND SELECTION ON QUANTITATIVE TRAITS
The direct target of selection is typically some phenotypic trait that is influenced by many genes, as
discussed in Chapter 9. The approaches for detecting selection given above look for the signatures that
selection leaves in the genome, but rarely incorporate any information about genotype-to-phenotype
relationships. However, as shown in Chapter 8, genomics can often identify multiple genes that in-
fluence traits that are potential targets of selection. Moreover, the phenotypic trait itself often indicates
the environmental factors that might be most important in the interaction between genes and envi-
ronment that gives rise to natural selection (Chapters 1 and 9). A potentially powerful way of detecting
natural selection and understanding its biological and environmental basis is therefore to integrate
studies on GWAS (Chapter 8) with genome scans for selection in appropriate environmental contexts.
Berg and Coop (2014) performed such integrated tests for several human traits and found greater
power to detect selection than the single locus equivalents. The increased power arises from the fact
that they looked for positive covariance between like-effect alleles at multiple loci in the GWAS rather

FIGURE 10.9

The genotypes at 1036 SNPs within the yin-yang region and adjacent regions on either side for individuals from 4

of the 11 HapMap populations surveyed: Toscani in Italy (TSI), Maasai from Kenya (MKK), Luhya from Kenya

(LWK), and Gujarati Native Americans from Texas (GIH). SNPs are indicated by vertical lines and individuals by

horizontal lines. Dark blue indicates homozygosity for one allele at a SNP, red homozygosity for the alternative

allele at a SNP, and light blue heterozygosity at the SNP. A solid dark blue horizontal line represents an individual

that possesses two yin haplotypes, a solid red line represents a yang homozygote, and a solid light blue line a yin-

yang heterozygote.

From Climer, S., Templeton, A.R., Zhang, W., 2015. Human gephyrin is encompassed within giant functional noncoding yin-yang

sequences. Nature Communications 6, 11.
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than just one allele at a single locus. For example, GWAS analysis indicates that four loci explain
approximately 35% of the phenotypic variance in skin pigmentation in an AfricaneEuropean admixed
population. Using these results, they estimated the additive effects (Chapter 8) of alleles at these four
genes. They constructed a genetic pigment score based on the additive effects of all four loci. As will
be discussed in more detail in Chapter 12, the environmental factor that is suspected as being the
primary selective agent on skin pigmentation is the intensity of ultraviolet radiation B, which is highly
correlated with latitude. They found a significant correlation between the genetic pigment scores with
latitude (Fig. 10.11), indicating selection on these four genes. Their observed correlation was likely
weakened by the fact that many other genes that influence skin pigmentation were ignored and by their
use of quantitative genetic estimators from just one population (recall from Chapter 8 that the additive

FIGURE 10.10

Identity-by-descent (IBD) sharing for chromosome 6 showing the strongest outlier in the human genome. The

genomic region containing HLA (MHC) is shown below the peak. The dashed line shows the genome-wide

significance threshold.

Modified from Albrechtsen, A., Moltke, I., Nielsen, R., 2010. Natural selection and the distribution of identity-by-descent in the

human genome. Genetics 186, 295e308.
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effects are very sensitive to allele frequency differences, which are extreme in this case), but they still
obtained a significant correlation with a candidate environmental agent as measured by latitude. In
another example, Turchin et al. (2012) rejected the hypothesis of neutrality for several genes that had
been identified as contributing to height in Europeans that revealed that alleles associated with
increased height are elevated in frequency in Northern Europeans compared with Southern Europeans.
Moreover, the estimated selection coefficients on any individual gene were extremely small, but the
collective signature of selection on these height-related genes was highly significant.

DETECTING SELECTION WITH SAMPLES OVER TIME
Natural selection is often expected to cause changes over time in the frequency of an allele, partic-
ularly when dealing with positive selection on a newly arisen beneficial mutation. For balancing and
negative selection, natural selection may cause allele frequencies to be unusually stable over time and
resistant to changes induced by other evolutionary forces, such as genetic drift and mutation. In both
situations, natural selection leads to outliers with respect to allele frequency changes over time.
Statistical techniques for detecting and estimating selection from data gathered over multiple gener-
ations through time have long been used in experimental population genetics, particularly with or-
ganisms with short generation times such asDrosophila (e.g., Templeton, 1974). Such multigeneration
approaches traditionally have had limited applicability in humans. One method was to identify pop-
ulations with deep pedigrees and to use that information coupled with genetic surveys on current
individuals to infer the fate of genetic variants over time and the role of selection on shaping those
fates. A recent example of this approach is the work of Peischl et al. (2018) on French Canadians, a

FIGURE 10.11

A plot of the additive effect genetic skin

pigmentation score of four genes against

absolute latitude, a proxy for the intensity

of ultraviolet radiation B in the environ-

ment.

Modified from Berg, J.J., Coop, G., 2014. A

population genetic signal of polygenic

adaptation. PLoS Genetics 10, e1004412.
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population that colonized Quebec in the 17th century followed by a large expansion in population size
and occupied territory. They discovered a pattern of “relaxed selection” on the expansion front with
more deleterious variation in the front than in the core population that represented the original set-
tlement. This pattern arose in just 6e9 generations and was consistent with greater genetic drift effects
on the expanding front. Recall that Eq. (4.9) shows that drift interacts with a growing population size to
enhance the survival of selectively deleterious mutants, and Fig. 10.1 shows that deleterious alleles
have an increased chance of fixation when genetic drift is strong. Although Peischl et al. (2018) called
this pattern “relaxed selection,” there is no evidence in this case of the selection coefficients becoming
smaller in magnitude. This situation is better described as nonrelaxed selection interacting with
enhanced genetic drift coupled with the effects of population growth at the wave front of the
expansion. As emphasized throughout this book, evolutionary properties emerge from the relative
strengths of several evolutionary forces, and by increasing the role of drift and population growth at the
wave front, the evolutionary impact of natural selection is diminished even though selection itself is
not relaxed. This pattern of genetic variation being more influenced by genetic drift and population
growth at the population’s wave front has also been called genetic surfing (Peischl et al., 2016), and
the term “relaxed selection” should be avoided unless there is actual evidence that the selection co-
efficients have diminished in magnitude over time.

Few human populations have extensive and deep pedigrees, making the approach discussed
above of limited applicability. However, the advances in studying ancient DNA (Chapter 7) have
made samples across time more and more feasible, thereby allowing the use of methods for time
serial samples in humans (Malaspinas, 2016). For example, Mathieson et al. (2015) assembled
genome-wide data on 230 ancient individuals from western Eurasia dated between 6500 and 300
BCE. This was a very dynamic period in European history characterized by the transition to agri-
culture and the admixture of ancient populations. By contrasting the ancient DNA with modern
European genome data, they inferred that most present-day Europeans can be regarded as a mixture of
three ancient populations: western hunter-gatherers, early European farmers, and steppe pastoralists.
Hence for a neutral allele, we would expect that the current allele frequency should be close to a linear
combination of the allele frequencies of these three ancient populations (Eq. 6.22). This linear
predicted allele frequency constituted their null hypothesis under selective neutrality. They then
scanned the modern European genome database to identify allele frequencies that were significant
outliers from the predicted allele frequency under the null hypothesis of neutrality. They only looked
for large outliers, which means they could only detect positive selection in their scan. They found 12
genes with multiple SNP outliers above the genome-wide significance threshold (Fig. 10.12). Their
strongest signal was for the allele causing lactase persistence in the gene LCT in Europe, which shows
a large increase in frequency in the last 4000 years in Europe. As will be discussed in more detail in
Chapter 12, this allele has been under strong selection when humans began to use cattle for milk as a
food resource. Three other genes under significant selection in Fig. 10.12 are also related to diet:
FADS1-2, associated with plasma lipid and fatty acid concentration; DHCR7, associated with vitamin
D levels that is a strong selective force in higher latitudes (Chapter 12); and SLC22A4, hypothesized
to have experienced a selective sweep to protect against ergothioneine deficiency in agricultural diets.
Two other signals of allele frequency change driven by selection are in the pigment genes SLC45A2
and HERC2, which are also associated with vitamin D selection in higher latitudes (Chapter 12). Two
other regions are known targets of selection: TLR1-6-10, that appears related to resistance to leprosy,
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tuberculosis, or other mycobacteria; and MHC, that is also related to pathogen resistance as noted
earlier.

Mathieson et al. (2015) also examined selection on a quantitative trait, height, over time in Eu-
ropeans. Recall that Turchin et al. (2012) found significant selection on height between two
contemporary European populations by contrasting the frequencies of alleles between the two pop-
ulations, with the alleles assigned phenotypic effects on height (Chapter 8). Mathieson et al. (2015)
performed a similar contrast between modern and ancient allele frequencies. However, the phenotypic
effects of alleles on height could only be estimated in the modern population. Recall that the average
excess and average effects are functions of allele frequencies and that changes in allele frequencies can
change both their magnitude and sign, as demonstrated in Chapter 9. Hence, the analysis with ancient
DNA depends on the assumption that the allele frequencies have not changed much over time such that
the current average effects or excesses have for the most part not changed their sign over the time
period between the ancients and the moderns. Given this assumption, they detected significant se-
lection for both increased and decreased height in several comparisons between ancient and modern
European populations, as well as between pairs of ancient populations.

FIGURE 10.12

A genome scan for allele frequency outliers of modern Europeans versus a neutral predicted allele frequency

based on admixture of three ancient populations. The red dashed line represents a genome-wide significance level

of 0.5 � 10�8. Genome-wide significant points that were filtered because there were fewer than two other

genome-wide significant points within 1 Mb are shown in gray. Twelve genes survived this filtering and their

names are indicated above their genomic position.

Modified from Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S.L.A., et al., 2015. Genome-wide

patterns of selection in 230 ancient Eurasians. Nature 528, 499e503.
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DETECTING SELECTION THROUGH INTERACTIONS WITH ADMIXTURE AND
GENE FLOW
One major type of interaction of selection with other evolutionary forces is the interaction of selection
with admixture and gene flow in a subdivided population. This interaction gives rise to several
additional tests for natural selection, particularly local adaptation, but discussion of these tests will be
deferred until Chapter 12.

DETECTING SELECTION WITH MULTIPLE STATISTICS
As the above discussion shows, selection can leave many different signatures in the genome depending
on the type of selection, the initial conditions, and interactions with other evolutionary forces.
Moreover, some statistics are better for detecting old selection and others for recent selection, some for
negative selection and some for positive, some for hard sweeps and some for soft sweeps, and some
statistics are sensitive to some confounding factors and others are less sensitive. Therefore, many of the
statistics used to detect selection should be regarded as complementary. Hence, many statistics need to
be used to understand the full role of selection in shaping the human gene pool. Moreover, the sta-
tistical method of boosting (Chapter 7) and other multivariate procedures can provide classification
rules to maximize the joint performance of several statistical measures (Lin et al., 2011; Pybus et al.,
2015; Lotterhos et al., 2017).

Cagan et al. (2016) used several test statistics to create a map of signatures of many types of natural
selection in humans and the great apes. They found that most signatures of balancing and positive
selection are species-specific, but with many signatures of balancing selection being shared among
species. Many of their detected signatures of positive selection in humans and apes occur in or near
genes related to brain function, anatomy, diet, and immune processes. Hence, there is little doubt that
natural selection has been a major force in shaping the patterns of variation in the human genome.
Interestingly, this causes some problems when genetic surveys are used to make inferences about our
past history and demography. As mentioned above, background selection is exceptionally strong in
mtDNA and Y-DNA, making these DNA molecules biased estimators of past effective sizes and past
population growth rates. Schrider et al. (2016) performed simulations that revealed that selection can
lead to incorrect inferences of population size changes when none have occurred and can lead to
incorrect demographic model selection, when multiple demographic scenarios are compared.
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UNITS AND TARGETS OF
NATURAL SELECTION 11
In Chapter 9, we investigated the evolutionary force of natural selection by assigning fitnesses to
single-locus genotypes and then monitoring the evolutionary response to selection through the fre-
quencies of alleles at that locus (e.g., Eq. 9.3). In Chapter 10, we saw that to detect selection it is often
better not to monitor just an allele defined by a single mutation, but rather a segment of the genome
surrounding the selected mutation whose length is defined by recombination (e.g., Eq. 10.18). It was
also noted in Chapter 9 that selection often involves multiple loci that all contribute to the fitness
responses to a particular environment. In such cases, a more complete description of the response to
selection would entail simultaneously monitoring the allele frequencies at all contributing loci or the
multilocus gamete frequencies if linkage disequilibrium exists among the contributing loci. The ge-
netic unit that adequately describes the response to natural selection is called the unit of selection.

In Chapter 9, we assigned the phenotype of fitness to individuals as a function of their genotype or
trait phenotype. However, in many cases the individual is not the biological unit that manifests the
fitness phenotype. Take for example the fitness component of mating success. Although in Chapter 9
mating success was assigned to an individual genotype (Fig. 9.2), mating success is actually a
phenotype of potential mating pairs of individuals and not a single individual. The same is true for the
fitness component of fertility or fecundity, which only arises from two mated individuals of opposite
sex. Hence, in many common biological situations the phenotype of fitness arises at a level of bio-
logical organization other than that of the individual. The target of selection refers to the level of
biological organization that manifests the phenotype under selection. Sometimes the unit and target of
selection are the same. For example, a transposable element is typically a well-defined genetic unit that
also displays a phenotype (transposition) that influences its abundance in the genome and chances for
being passed on to the next generation through a gamete. Hence, a transposon is both a unit and a target
of selection. However, in general, units and targets are not the same. A single target of selection can
influence the evolution of many different units of selection, and a single unit of selection can have
multiple targets of selection, as will be shown in this chapter.

THE UNIT OF SELECTION
In the previous chapter, we saw that selection at one mutation, either deleterious or beneficial, can
affect the evolutionary dynamics of closely linked neutral sites, and that beneficial selection at one
mutation can be influenced by deleterious mutations arising nearby in the genome. The main focus of
the unit of selection problem, however, is on the evolutionary dynamics of two or more genomic sites
that display fitness epistasis; that is, the variants at different sites interact in a manner that influences
fitness. In theory, one would expect natural selection to favor those combinations of variants at
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different sites that yield high fitness, but for such a multisite combination to be a unit of selection it
must recur across generations. The processes of meiosis and fertilization break up multilocus com-
binations and construct new ones every generation. A high-fitness multilocus combination in one
generation may never occur again or only occur sporadically because of meiosis and fertilization.
Recall that an evolutionary response occurs across generations (Chapter 1), and a genetic unit that does
not recur at a sufficient frequency every generation cannot be used to monitor an evolutionary
response. In general, the unit of selection arises from the balance of fitness epistasis building up certain
multilocus/site combinations versus meiosis and sexual reproduction breaking down such multilocus/
site combinations (Templeton et al., 1976; Frank, 2012). This balance can vary, resulting in a wide
range of genetic units of selection.

Neher et al. (2013) quantified this balance under the assumption of weak selection on many loci
distributed across a single chromosome. Let L be the length of the chromosome in terms of number of
sites, with r the recombination rate per site. The total map length of the chromosome is R ¼ rL. The
balance of recombination breaking down multisite complexes and selection favoring them is shown by
two equations. First, the average number of sites that has not been disrupted by recombination after t
generations, x(t), is:

xðtÞ ¼ L

1þ Lrt
z

1

rt
(11.1)

Eq. (11.1) makes it clear the length of a chromosome segment that has not been disrupted by
recombination decreases with increasing recombination and increasing time. To incorporate the effects
of selection, Neher et al. (2013) defined s2b as the variance in fitness associated with local chromosome
block b. Fitness epistasis in this block means that some multisite combinations have high fitness, while
other combinations have low fitness, which increases s2b. Hence, s

2
b is a measure of the amount of

fitness epistasis in the block. By combining some of the equations found in Neher et al. (2013), which
also include the effects of genetic drift through a coalescent model, the expected length of a recurring
fitness block is:

xb ¼
ffiffiffiffiffi
sb

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log Nec

p (11.2)

where Nec is the coalescent effective size, which is closely related to the inbreeding effective size
(Chapter 5). The xb’s define the units of selection on this chromosome. As can be seen, these units are
broadened with increasing fitness epistasis

�
s2b
�
, decreasing recombination (r), and increasing drift

(decreasing Nec). To understand why increasing drift results in an increasing unit of selection, recall
from Chapter 4 that drift induces linkage disequilibrium, reduces its rate of decay with recombination
distance (Fig. 4.3), and creates longer stable haplotypes on a chromosome (Fig. 4.4)dall factors that
tend to lengthen the unit of selection.

A potential example of a chromosomal segment acting as a unit of selection is the region on
chromosome 11 that contains many globin genes in close linkage (Fig. 3.3). This gene cluster not only
contains the gene coding for the b-hemoglobin chain, but also for the duplicated genes that code for the
fetal hemoglobin chain (the g’s in Fig. 3.3). An adult hemoglobin molecule normally is a tetramer with
two a-chains (coded for by an unlinked locus) and two b-chains. Since the developing fetus obtains its
oxygen from the mother’s blood, it is important for the fetal hemoglobin to have a higher oxygen
affinity than the adult hemoglobin, and this is accomplished by using the higher affinity g-chains in
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fetal hemoglobin (HbF) instead of the lower affinity b-chains that are found in adult hemoglobin
(HbA). After birth, it is better to have a lower oxygen affinity in order to deliver oxygen to the pe-
ripheral tissues more efficiently, so normally the expression of the g genes is turned off at birth and the
b gene is turned on. Sometimes the g genes are not turned off completely, resulting in some degree of
persistence of HbF into the adult stage. HbF molecules in an adult red blood cell cannot participate in
the building of Hb polymers in individuals bearing the S allele at the b gene (Chapter 1). As a result,
persistence of HbF ameliorates, often greatly, the deleterious effects of sickle-cell anemia (Fig. 1.8)
(Kutlar, 2007). As shown in Chapter 9, although natural selection favors the S allele in most pop-
ulations in a malarial environment, the low fitness of SS homozygotes slows down and reduces the
equilibrium frequency of the S allele (Eqs. 9.6 and 9.7). Accordingly, there should be strong fitness
epistasis between the S allele at the b gene and those variants at the g genes that result in persistence of
HbF. Because of low recombination in this genomic region, the five S haplotypes shown in Fig. 3.3
have great stability over time and space, and indeed they differ greatly in the degree of persistence of
HbF (Nagel and Steinberg, 2001). In particular, the “Indian” and “Senegal” haplotypes shown in
Fig. 3.3 are associated with an Xmn I restriction site 50 of the Gg gene that results in some expression of
this gene in adults, resulting in mild clinical symptoms in SS individuals (el-Hazmi et al., 1992;
Ramana et al., 2000; Nagel and Steinberg, 2001). In contrast, the “Bantu” haplotype (Fig. 3.3) is
associated with the most severe clinical symptoms (Nagel and Steinberg, 2001). The Indian haplotype
is found from the Mediterranean region into India and reaches high frequencies in the malaria regions
within that geographical area (Piel et al., 2010), whereas the Bantu haplotype is widespread and
common in sub-Saharan Africa. Because the clinical severity of SS individuals tends to be greater in
sub-Saharan Africa, there is the widespread misconception that sickle-cell is primarily limited to sub-
Saharan Africans, but it is not (Piel et al., 2010). Obviously, the S allele is under strong natural se-
lection (Chapter 9), but it is not a unit of selection. Rather, the gene cluster shown in Fig. (3.3) is a more
meaningful unit of selection than just the S allele, and specifically the beg complex defines a
supergeneda multilocus complex of tightly linked genes with extensive fitness epistasis that
approximates a single locus with respect to its patterns of Mendelian segregation, albeit with some
recombination. Supergenes represent a genetic architecture long associated with adaptive poly-
morphisms (Llaurens et al., 2017).

Recall that the S allele is part of a balanced polymorphism and is a dominant allele for malaria
resistance (Chapter 9). These features may have played an important role in the origin of the beg

supergene (Llaurens et al., 2017). As explained in Chapter 9, the dominance for malarial resistance
played a critical role in rapidly increasing the frequency of the S allele in a malarial environment and
establishing a balanced polymorphism. The balanced polymorphism means that many copies of the S
allele will be present in the population. This increases the chances of mutations occurring in nearby
genes on an S background that either epistatically enhance the favorable pleiotropic effects of S and/or
reduce the unfavorable pleiotropic effects. The chances of such epistatic mutations occurring are also
enhanced by the common feature of tandem duplication of genes in the genome (Chapter 2). Once a
copy of a gene has been made, the copy may retain the original function, as is the case for the gene
coding for a-globin, for which most human chromosomes bear two tandem copies. Alternatively, the
copy may degenerate into a pseudogene, as described in Chapter 10. Finally, the copy may acquire new
or distinct functions. The tandem copies of globin genes shown in Fig. 3.3 include both a pseudogene
and several genes that have functional distinctions from the b-Hb gene, such as the g-Hb gene, which
itself exists as two tandem copies (Fig. 3.3). This feature of the genome to produce tandem copies

THE UNIT OF SELECTION 341



means that functionally related genes are frequently tightly linked, which increases both the proba-
bility of epistatic mutations since the genes are functionally related and the probability that this will
lead to the evolution of a supergene because of tight linkage.

Epistasis is not limited to nearby genes. For example, persistence of HbF is also strongly influenced
by many loci not closely linked to the b-Hb gene, and many other genes scattered across the genome
modify the pleiotropic effects of the S allele through other mechanisms (Galarneau et al., 2010; Lettre
et al., 2008; Penman et al., 2011; Steinberg, 2005; Templeton, 2000; Nagel and Steinberg, 2001).
Hence, strong fitness epistasis with the S allele is not limited to the small genomic region shown in
Fig. 3.3. When dealing with loosely linked or unlinked loci, the fitness impact of one locus upon
another across generations is modulated in part by the degree of linkage disequilibrium between them
(Neher et al., 2013), which generally is expected to be very small for unlinked loci due to independent
assortment. It is therefore difficult to have a multilocus unit of selection involving unlinked or loosely
linked genes even when fitness epistasis is strong (Neher et al., 2013). Nevertheless, there are some
circumstances in which linkage disequilibrium can effectively be maintained, resulting in the potential
for multilocus units of selection. Consider selection on the phenotype of deafness. It is quite likely that
the fitness of deaf individuals was low during much of human history, but the establishment of resi-
dential schools for deaf individual about 400 years ago in Europe probably greatly reduced the
deleterious fitness effects of deafness (Blanton et al., 2010). A study of probands attending such a
school revealed that deaf individuals and their hearing siblings had no significant difference in marital
rate (0.83 vs. 0.85), but given that they were married, deaf individuals had significantly lower fertility
rates than their hearing siblings (2.06 vs. 2.26 children, p ¼ 0.005) (Blanton et al., 2010). Hence, there
is still strong selection against deafness. As detailed in Chapter 3, such residential schools for deaf
individuals also led to extremely strong assortative mating for the phenotype of deafness, and this in
turn leads to strong linkage disequilibrium even between unlinked loci that contribute to the phenotype
of deafness, including even cyto-nuclear disequilibrium and epistasis between the mitochondrial
genome and the nuclear genome (Lu et al., 2009). This strong disequilibrium means that selection on
deafness is indeed effective on unlinked multilocus complexes, including mitochondrialenuclear
genome complexes.

Another evolutionary factor that can induce linkage disequilibrium even between loosely linked
and unlinked loci is spatially restricted mating/population subdivision (Cooper and Kerr, 2016). In
Chapter 6, we demonstrated that mating is spatially restricted in humans and that resistance barriers to
dispersal exist that increase the degree of population subdivision. The linkage disequilibrium induced
by population structure is not present so much within local populations but rather between local
populations or spatial locations. The linkage disequilibrium induced by population subdivision be-
comes important in determining the selective response when the fitness phenotypes themselves are
changing over space. This will be examined in more detail in the next chapter, but for now we will
focus on the phenomenon of coadaptation (Dobzhansky, 1948). Wallace (1968) defined coadaptation
as “Any adjustment of the frequencies of alleles at one locus in response to changes of those at
another” where the adjustment is effected through natural selection acting through fitness epistasis
between loci. Local allele frequency differences alone induce linkage disequilibrium in the total
population regardless of linkage (Chapter 6 and Nei and Li (1973)), and coadaptation accentuates
allele frequency differences across space in a correlated manner across interacting loci. Coadaptation
therefore results in linkage disequilibrium across local populations in a highly allele-specific manner.
Daub et al. (2013) searched for coadaptation in response to pathogens by looking for significant
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within-population linkage disequilibrium and did find some significant examples of long-distance
linkage disequilibrium. However, within-population disequilibrium is not necessary for coadapta-
tion nor even part of its definition. It is between-population linkage disequilibrium that is the relevant
indicator of coadaptation under the classical definition. A better approach was executed by Wang et al.
(2017) who performed a genome scan on African-Americans to identify correlated local genomic
ancestries on different chromosomes in this admixed population. This study should be sensitive to
coadapted complexes arising in the two primary parental populations: Western Europeans and sub-
Saharan West Africans. Because only a few generations of admixture have occurred, there has not
been much time for the original between-parental-population disequilibrium to dissipate (recall Eq.
11.1). Their genomic screen did indeed identify highly significant ancestry correlations between
genomic regions on different chromosomes, indicating fitness epistasis and coadaptation across the
human genome (Wang et al., 2017).

A more general approach is given by Tiosano et al. (2016) who studied coadaptation in candidate
genes involved in skin color and vitamin D metabolism. Skin color shows a strong latitudinal cline in
humans (Fig. 11.1). This latitudinal cline is thought to arise in part from two selective forces related to
ultraviolet B radiation (UVB), which in turn is highly correlated with absolute latitude. First, selection
in high UVB environments (low absolute latitudes) occurs for dark, photoprotective, eumelanin-rich
pigmentation. Second, selection in low UVB environments (high absolute latitudes) occurs for light
pigmentation arising from the requirement for UVB in sunlight to sustain cutaneous photosynthesis of
vitamin D3 (Jablonski and Chaplin, 2010). Several genome-wide association studies have identified
single nucleotide polymorphism (SNP) markers in genes associated with skin color variation
(Cerqueira et al., 2012; Beleza et al., 2013), many of which reveal evidence of positive selection
(Jablonski and Chaplin, 2010; Beleza et al., 2013). In addition, the vitamin D receptor (VDR) gene and
the skin-color genes jointly influence vitamin D metabolism and pigmentation in a manner

FIGURE 11.1

Latitudinal cline of male human skin color in 107 human populations from the Old World. Skin color is measured

by the percentage of light at 685 nm that is reflected off the skin on upper inner arm, which is relatively unexposed

to sunlight in most human societies. Distance from the equator is measured by the absolute value of the latitude for

each population.

From Relethford, J.H. 2012. Human Population Genetics. John Wiley & Sons, Hoboken, New Jersey.
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characterized by epistasis (Po�spiech et al., 2014). Genetic variation at the VDR locus has also been
associated with many important health traits in a manner suggestive of epistasis with other loci
(O’Neill et al., 2013; Mao and Huang, 2013). Accordingly, VDR and the skin color genes are bio-
logically plausible candidates for producing coadapted complexes through epistatic selection on skin
color and other phenotypes (Tiosano et al., 2016).

Tiosano et al. (2016) surveyed 10 human populations for 64 SNPs within and near the VDR gene
and seven skin color genes, all of which were on different chromosomes. They confirmed their results
with independent data from HapMap. They pooled all populations into a global sample to measure the
effects of interpopulation differentiation on linkage disequilibrium as measured by CCC vectors
(Chapter 1), using the specific CCC form:

CCCij½t� ¼ ð9=2Þ$Rij½t� ffit ffjt (11.3)

where t represents an index number for one of the possible allelic combinations at SNP i and SNP j
(e.g., if A and a are the alleles at SNP i, and B and b are the alleles at SNP j, then t has four values for
the combinations AB, Ab, aB, ab), “(9/2)” is an empirically derived scaling factor to make the CCC
values lie between 0 and 1, Rij[t] is the average contribution across the individuals that have no missing
data for either SNP to the frequency of the tth allelic combination, and ffkt ¼ 1efkt/1.5 where fkt is the
frequency of the relevant allele at SNP k from allelic combination t. All pairwise CCC elements
between all alleles at all SNPs were calculated with the program BlocBuster (http://www.blocbuster.
org). BlocBuster also creates allele specific networks by joining pairs of alleles that have a CCC
element value that is greater than a threshold determined by permutation testing to reduce false
positives. In this case, a threshold of 0.65 was chosen to have a false-positive probability of
1.69 � 10�5 per edge, yielding a probability of less than 0.001 of more than a single false-positive
edge in the entire data set. BlocBuster allele networks most frequently represent phased haplotypes
in small genomic regions (indeed, the Gephyrin yin-yang haplotypes discussed in Chapter 10 were
discovered by BlocBuster), but BlocBuster can discover disequilibrium even between unlinked loci.

The BlocBuster analysis of the 10 populations revealed seven allelic networks, five of which
represented single-locus haplotypes and two a mixture of single-locus haplotypes and interlocus edges
between unlinked alleles (Fig. 11.2). These two multilocus networks involved haplotypes in VDR
promoters coupled with three skin-color genes in network 65_2 and with two different skin-color
genes in network 65_1 (Fig. 11.2). Although statistical false positives have been virtually elimi-
nated by setting the CCC threshold to a high value (0.65 in this case), pooling populations will always
induce linkage disequilibrium even in the absence of epistasis as long as the allele frequencies in the
pooled populations are different (Li and Nei, 1974), as is certainly the case here. For example, if two
populations are pooled together, the pooled sample will have a standard linkage disequilibrium be-
tween two biallelic loci of:

D ¼ Mð1�MÞðp1 � p2Þðk1 � k2Þ (11.4)

where M is the proportion of the sample coming from population 1, (1eM) is the proportion coming
from population 2, pi is the allele frequency of the allele at locus i, and ki is the allele frequency of the
alternative allele at locus i. This raises the possibility that a significant edge merely reflects the
background allele frequency differences among the 10 populations and not necessarily coadaptation.
This possibility was controlled for by a genomic outlier analysis similar to those discussed in Chapter
10 for the detection of selection. In this case 1.25 million SNPs scattered over the autosomal genome
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(all candidate SNPs were autosomal) were subject to a BlocBuster analysis, revealing that the
candidate loci were an extreme outlier in having significant interlocus edges. Hence, population
subdivision or isolation by distance alone cannot explain the interlocus networks shown in Fig. 11.2.

If any of these networks were subject to natural selection because of UVB intensity, we would
expect latitudinal effects on their frequencies. Fig. 11.3 shows a plot of the frequency of individuals
bearing all of the alleles found in the multilocus network 65_1 as a function of absolute latitude, and
Fig. 11.4 shows a similar plot for multilocus network 65_2. As can be seen, both multilocus networks
show highly significant clines with latitude that are parallel or antiparallel to the phenotypic cline of
skin color (Fig. 11.1). The cline in network 65_2 is particularly dramatic, going from near 0 at the
equator to near 1 at the upper latitudes.

Another possibility is that these multilocus clines do not indicate coadaptation involving fitness
epistasis, but rather each single gene is its own unit of selection, and they have individually been
selected to respond to UVB leading to large allele frequency differences (which could induce the
outlier linkage disequilibrium as shown by Eq. 11.4) and parallel clines for each single-locus
component that simply add together to yield the network cline. To investigate this possibility, the
CCC threshold was increased until both multilocus networks broke down into single-locus compo-
nents with no interlocus edges. Figs. 11.3 and 11.4 also plot these single-locus components of the
multilocus networks versus latitude. For 65_1, the VDR promoter haplotype displayed no significant
regression with latitude, the skin color TYRP1 haplotype showed a significant decline in frequency
with increasing latitude, whereas the skin color TYR SNP showed a significant increase with increasing

FIGURE 11.2

Allelic networks identified by BlocBuster. Each dot represents an allelic node, identified by its SNP and nucle-

otide state. Out of the total of 128 nodes in the data set, only the nodes that had an edge connecting them to another

node are depicted. The 51 edges connecting nodes represent CCC values � 0.65. These 51 edges defined 7

discrete networks of alleles, labeled 65_1 through 65_7.

From Tiosano D., Audi L., Climer S., Zhang W., Templeton A.R., Fernández-Cancio M., et al., Latitudinal clines of the human

vitamin D receptor and skin color genes, G3: Genes|Genomes|Genetics 6, 2016, 1251e1266.
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latitude (Fig. 11.3). Hence, each single-locus component of network 65_1 displayed a different as-
sociation with latitude, and there are no parallel responses. A similar situation is observed for the
single-locus components of network 65_2 (Fig. 11.4). Three components show an in-versus-out-of-
Africa pattern, with the most extreme being the VDR promoter haplotype 70_4. In all cases, it is the
derived allele that has risen to high frequency outside of Africa, a strong indicator of selection at the
higher absolute latitudes (Chapter 10). A VDR promoter SNP shows a significant nonlinear increase
with increasing latitude, and the final two components (SNPs in MC1R and SLC45A2) do show sig-
nificant parallel increasing clines with increasing latitude. Hence, parallel clines may have influenced
network 65_2 to some extent, but the overall pattern cannot be explained by parallel, single-locus
processes. Moreover, some of the other single-locus networks/haplotypes shown in Fig. 11.2 had
significant clines with latitude but were not incorporated into the multilocus networks that showed a
cline in the same direction. Hence, parallel single-locus patterns with latitude are neither necessary nor
sufficient for membership in the multilocus networks detected by BlocBuster, indicating coadaptation
among epistatic loci as a more likely explanation. It is patent from Figs. 11.3 and 11.4 that the single-
locus components of these networks do not provide an adequate measure of the overall genetic
response to natural selection that is observed at the multilocus level.

Computer simulations also show that single-locus responses are poor descriptors of the evolu-
tionary trajectory of a multilocus, epistatic system. Sailer and Harms (2017) used data on the observed

FIGURE 11.3

A plot of the frequencies of network 65_1 and its single-gene components versus absolute latitude. The single-

gene components are the haplotype 70_1 in TYRP1, the promoter haplotype 70_5 in VDR, and an SNP in TYR. The

line shows only the regression for the multilocus network 65_1.

From Tiosano, D., Audi, L., Climer, S., Zhang, W., Templeton, A.R., Fernández-Cancio, M., et al. 2016. Latitudinal clines of the

human vitamin D receptor and skin color genes. G3: GenesjGenomesjGenetics 6, 1251e1266.

346 CHAPTER 11 UNITS AND TARGETS OF NATURAL SELECTION



patterns of multilocus epistasis and simulated the evolutionary trajectories under selection using the
observed epistatic patterns and then simulated again ignoring epistasis. They found that epistasis
strongly shapes evolutionary trajectories such that one cannot use the effect of a mutation in the
ancestor to predict its effect later in the trajectory.

Many population and quantitative geneticists have given little attention to fitness epistasis and
coadaptation because only the additive variance is important in the response to selection (Chapter 9)
(Hansen, 2013). However, this is a misconception. For example, consider network 65_2 with its cline
spanning from nearly 0 to 1 (Fig. 11.4). As noted above, the VDR promoter haplotype 70_4, which is
known to greatly affect transcriptional activity (Arai et al., 2001; O’Neill et al., 2013), shows a dra-
matic in-versus-out-of-Africa pattern, with the derived allele going to near fixation in many pop-
ulations outside of Africa (Fig. 11.4). One potential scenario is that when humans began to live in the
higher latitudes, there was strong single-locus selection favoring the derived promoter variant. We
know that VDR and the skin-color genes display Mendelian epistasis on the trait of skin pigmentation
(Po�spiech et al., 2014), and that the trait of skin pigmentation appears to be under strong natural
selection (Fig. 11.1). However, as shown in Chapter 8 (see Fig. 8.1), when an allele becomes very
common, the Mendelian epistasis that exists between that allele and other loci is translated into ad-
ditive variance at those other loci. Hence, the epistatic skin color genes could have been selected

FIGURE 11.4

A plot of the frequencies of network 65_2 and its single-gene components versus absolute latitude. The line shows

only the regression for the multilocus network 65_2. The single-gene components are the promoter haplotype

70_4 in VDR, and five SNPs in VDR, MC1R (2 SNPs), SLC24A5, and SLC45A2.

From Tiosano, D., Audi, L., Climer, S., Zhang, W., Templeton, A.R., Fernández-Cancio, M., et al. 2016. Latitudinal clines of the

human vitamin D receptor and skin color genes. G3: GenesjGenomesjGenetics 6, 1251e1266.
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through their additive variance to fine-tune the coadaptation given a genetic background with the
derived VDR promoter variant close to fixation. The phenomenon of converting Mendelian epistasis
into quantitative genetic additive effects can result in the evolution of coadapted complexes and
multilocus units of selection through “additive” effects at single loci. The evolutionary importance of
epistasis in adaptive responses through its conversion into “additive variance” has been shown to be a
general phenomenon (Mäki-Tanila and Hill, 2014; Paixão and Barton, 2016). Hence, the concept
of coadaptation and multilocus units of selection is not necessarily incompatible with Fisher’s
Fundamental Theorem of Natural Selection and the importance of additive variance in selective
response.

However, there are circumstances when selection on multilocus complexes with epistasis does
indeed violate Fisher’s theorem. As noted earlier, in some cases linkage disequilibrium is created and
maintained between interacting loci by selection, sometimes within local populations and sometimes
only between local populations. When this occurs, the continuous time expression for the rate of
change of average fitness is (Xu and Wang, 2017):

dw

dt
¼ s2a þ ER (11.5)

where ER is the change in fitness due to recombination influencing the linkage disequilibrium among
the loci. This recombination term arises from selection building up multilocus complexes followed by
their partial destruction from recombination and independent assortment. In Fisher’s original
continuous time version of the Fundamental theorem, there is no ER term, but with fitness epistasis and
linkage disequilibrium, this term can no longer be ignored (Xu and Wang, 2017). Eq. (11.5) makes it
clear that additive variance is not the only factor governing the response to selection when multilocus
complexes exist that are characterized by epistasis and recombination.

The example of coadapted complexes involving the VDR and the skin-color genes emphasized the
role of synergistic epistasis in which geneegene interactions enhanced fitness. Synergistic epistasis
can also play an important role in selection against deleterious mutations. We discussed selection
against deleterious mutations at length in Chapter 10, but now suppose that deleterious mutations do
not contribute independently to low fitness, but rather synergistically such that the more deleterious
mutations an individual bears, the greater the fitness decline. Note, synergistic epistasis for deleterious
mutations does not mean that the contributing loci are necessarily physiologically or biochemically
linked, simply that an individual bearing two deleterious traits has lower fitness than would be pre-
dicted by multiplying or adding the single-locus fitness effects, just like an independent secondary
infection of a disease agent can make a patient much more ill than either the primary or secondary
infection could by itself. Sohail et al. (2017) showed that such synergistic effects of deleterious mu-
tations would result in negative linkage disequilibrium, making deleterious mutations overdispersed in
the genome (that is, less likely to occur together). They did indeed find such overdispersal for many
classes of mutations generally held to be deleterious (nonsense, splice, and loss-of-function) in human
populations. This overdispersal of deleterious mutations in the human genome cannot be explained by
regarding each deleterious mutation as a unit of selection, but rather requires a multilocus response to
selection based on synergistic epistasis. As this and the previous examples show, epistasis/synergism
and multilocus units of selection play an important role in the response to natural selection in human
populations and the distribution of variation across our genome.
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TARGETS OF SELECTION
The unit of selection is a level of genetic organization that responds to selection. However, selection
directly occurs on the phenotypes or traits that are influenced by the information encoded in the unit of
selection. In the models given in Chapter 9 it was individuals who expressed the phenotypes under
selection, so the individual human was the target of selection. However, some selectable phenotypes
emerge at other levels of biological organization. Selectable phenotypes can occur both below and
above the level of the individual. Moreover, it is commonplace for a single unit of selection to have
multiple targets of selection; that is, the unit of selection affects phenotypes at multiple levels of
biological organization that influence its chances of being passed on to the next generation. We now
examine some of these targets of selection, moving from below the level of the individual to above the
level of the individual.

GENOMES AND GAMETES
There are four types of humans: diploid females, diploid males, haploid eggs, and haploid sperm. In
our species, the diploid stage is multicellular and long-lived, whereas the haploid stage is unicellular
and lasts only a single cell generation. Hence, when we think of humans, we generally think only of
diploid humans, and this is reflected in the bias of much of the evolutionary literature to make the
diploid individuals the only target of selection to be considered. However, in some species the haploid
phase consists of multicellular individuals and the diploid phase is a single, unicellular generation; in
yet other species both the diploid and haploid phases are multicellular individuals (Templeton, 2005).
This diversity in life histories reminds us that selection can and does occur on both the diploid and
haploid phases of life history, and humans are no exception. Much selection can occur at our haploid
stage, both within our genomes (a haploid set of chromosomes, Chapter 2) and among our gametes.
One advantage of studying selection on the haploid stage is that there is no need to construct a sta-
tistical measure to translate diploid phenotypes into a haploid phenotypic measure, such as was done in
Chapter 8 with the average excess and the average effect. We need only look at the haploid phenotypes
directly and their impact on replication.

One genome-level phenotype of particular importance is the ability of a segment of DNA to
replicate copies of itself within the genome. Such DNA segments are simultaneously both units and
targets of selection at the genome level. DNA segments with this ability constitute the repetitive el-
ements found in the genome (Chapter 2), and the evolutionary success of this genome-level phenotype
is indicated by the fact that about two-thirds of the human genome consists of repetitive sequences
(Gorbunova et al., 2014), most of which are retrotransposons or other types of transposable elements
(Chapter 2). By making copies of themselves throughout the genome, such elements minimize the
probability of not being passed on to the next generation due to the vagaries of Mendelian segregation,
recombination, and independent assortment. Hence, selection favoring the spread of transposable
elements within genomes is straightforward. The real question is why most of these elements have lost
the phenotype of transposition and are now inert elements of the genome. For example, although about
17% of the human genome consists of LINE-1 transposons (Chapter 2), only around 100 copies can
transpose (Nee, 2016). Part of this inactivation could be due to neutral evolution. Consider a particular
copy of a repetitive sequence that is located in a part of the genome where it has no effect on the
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individuals who bear it. Just like a pseudogene (another type of repetitive element), it can accumulate
mutations through standard neutral evolution, including loss-of-function mutations (in this case, loss
of the ability to replicate in the genome), thereby converting it into an inert element.

Another mechanism for inactivation of transposable elements is selection at the individual level.
When transposable elements insert copies into a new location, they can act as new mutations, and often
disruptive ones. As a result, transposition is frequently associated with genetic disease (Payer et al.,
2017) that is deleterious at the individual level (Werren, 2011). Selection at the individual level has
induced three major evolutionary responses. One response involves other genes or units of selection to
silence transposons such as genes that control epigenetic modifications like the methylation of CpG
dinucleotides and chromatin remodeling, genes that edit or interfere with the RNA intermediates of
retrotransposons, genes that block the integration of DNA copies of transposons into the genome
(many genes coding for DNA repair enzymes can be selected for this function), the genes coding for
TRIM proteins that are important mediators of innate immunity against retroviruses and also act
against retrotransposons, and the genes coding for the APOBEC proteins that can edit the DNA of
retroviruses to damage their open reading frames (Zamudio and Bourc’his, 2010; Knisbacher and
Levanon, 2016; Knisbacher and Levanon, 2015). Any transposons that are functionally inactivated by
these other genes become more susceptible to innate inactivation due to neutral processes, as described
earlier for pseudogenes. Second, there can also be selection on the transposons themselves to pref-
erentially insert into parts of the genome where they are unlikely to have deleterious consequences at
the individual level. Indeed, transposable elements often show phenotypic diversity in the amount of
transposition and in the places of the genome into which they insert, so genomic selection can occur for
the ability to transpose and individual selection for the genomic locations of transposons because some
transposons are more likely to be neutral at the individual level than others.

The third evolutionary response to transposons affecting individual-level phenotypes arises from
the fact that some transposon-induced mutations can be beneficial. Hence, the target of selection at the
individual level can select both for or against certain transposon lineages and for transposon stability,
and such selection seems to have been important in primates (Oliver and Greene, 2011). For example,
many of the LINE-1 elements have important regulatory functions (Chapter 2), and a large number of
LINE-1 elements in the human genome have signatures of positive selection, such as extended ho-
mozygosity haplotypes around LINE-1 insertions (Kuhn et al., 2014). Indeed, transposable elements
have played critical roles in the evolution of many beneficial traits at the individual level, such as the
ability of lncRNA’s to regulate gene activity by overlapping or incorporating transposable elements
(Aprea and Calegari, 2015), evolving into promoters (Emera and Wagner, 2012), and the evolution of
new gene regulatory networks (Durruthy-Durruthy et al., 2016; Elbarbary et al., 2016; Glinsky, 2015;
Cowley and Oakey, 2013; Kelley et al., 2014; Chuong et al., 2017). Moreover, transposable elements
have played a critical role in the evolution of such fundamental adaptations as the immune system
and placenta (Chuong, 2013; Chuong et al., 2016; Koonin and Krupovic, 2015). Hence, transposable
elements with their dual targets of selection have played an extremely important role in the evolution
of the human genome, which they numerically dominate.

Nonrandom mutagenesis can be thought of as another type of selective force at the genome level
since certain sequences or sequence motifs are destroyed by such mutations while others are favored.
For example, CpG dinucleotides are at risk for methylated cytosine mutagenesis (Chapter 2), and
hence this mechanism of nonrandom mutation selects against CpG dinucleotides and favors TpG
dinucleotides. As pointed out in Chapter 2, methylated cytosines also have a functional role in gene

350 CHAPTER 11 UNITS AND TARGETS OF NATURAL SELECTION



expression, so it is likely that the CpG units of selection in the genome are subject to targets of se-
lection at both the genomic level through nonrandom mutagenesis and at the individual level due to
their impact on gene expression. In addition, C to T transitions in coding regions can lead to amino acid
changes, which could also induce selection at the individual level. Huttley (2004) obtained evidence
for these two targets of selection by examining dinucleotide evolution in the tumor suppressor gene
BRCA1 in primates, including humans, and found that CpG dinucleotides do indeed exhibit the
greatest substitution rate, causing them to be underrepresented in the genome. However, mutation at
some of these dinucleotides also causes nonsynonymous changes at the protein level, and they found
evidence that selection significantly reduces their substitution rate. Hence, a balance of these antag-
onistic targets of selection influences the overall composition of CpG dinucleotides in the genome.

There are many other mechanisms of nonrandom mutagenesis in the genome (Chapter 2), but only
one more will be mentioned heredthe nonrandom mutations induced by the APOBEC family of
proteins. As mentioned above, these proteins can cause DNA editing that is protective against retro-
viruses and retrotransposons, but in addition they can give rise to clusters of mutations. One subfamily,
APOBEC3, has greatly expanded in primates due to gene duplication and is thought to have evolved
and diversified to cope with the rapid diversification of primate-specific retroelements (Sawyer et al.,
2004). The different proteins coded for by this expanded family have distinct preferences for the
nucleotide sequences that they target and also tend to cause clusters of mutations at cytosines in their
targeted sequence. Pinto et al. (2016) screened the genomes of hominid species and found the pre-
dicted mutational clusters, indicating that this family of genes has influenced hominid genome evo-
lution, including both archaic and modern human genomes. Moreover, these mutational clusters tend
to occur in transcribed and regulatory regions, and when they occur in somatic cells they are often
associated with cancer. When these nonrandom genome-level effects are combined with their anti-
retroelement properties, there is little doubt there has also been strong selection on these genes at
the individual level in hominids but with consequences for selection at the genome level.

The nonrandomness of mutation and its uneven distribution throughout the genome is thought to
create “false” positive signals of natural selection (Lawrie et al., 2011). It is important to point out that
these signals are not false for selection at the genomic level, but rather only when they are falsely
attributed to selection at the individual level. For example, the sequence conservation marking
genomic regions that are not prone to mutagenesis at the genomic level is often taken as a signal of
strong purifying selection due to functional constraint at the individual level (Chapter 10). An opposite
“false” positive occurs when a genomic region that codes for information that is indeed functionally
constrained at the individual level and subject to purifying selection nevertheless can evolve faster than
some neutral sequences due to mutational bias at the genomic level. Both patterns weaken the link
between functional constraint at the individual level and sequence conservation at the genomic level
(Lawrie et al., 2011). Hence, explicit considerations of mutational biases at the genomic level should
be integrated with tests for selection at the individual level (Chapter 10) to improve methods for
inferring selection at both levels.

As mentioned in Chapter 2, the molecular mechanism of gene conversion is often related mech-
anistically to recombination and mimics recurrent mutation. Some areas of the genome are more prone
to gene conversion than others, and often the genome-level phenotype of biased or unequal gene
conversion is displayed in which the DNA state of one homologue is preferentially converted to the
other homologue state in heterozygotes, resulting in selection at the genome level. Because gene
conversion creates novel haplotype variation (albeit always with homoplasy, Chapter 2), gene
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conversion can also induce targets of selection at the individual level (Korunes and Noor, 2017).
Biased gene conversion is a particularly strong form of genomic-level selection that can alter allele
frequencies in a population’s gene pool (Walsh, 1983). Consider a one-locus, two allele model (A, a)
such that the A and a have different phenotypes of gene conversion within a heterozygous individual.
In particular, let g be the probability of an unequal gene conversion event and b the conditional
probability that a converts to A given unequal conversion. Now, 1eg is the probability that no unequal
gene conversion event occurred, which means there is a 1:1 ratio with Mendelian segregation in an Aa
heterozygote. With probability gb, a conversion event is biased in favor of A, yielding a segregation
only of A alleles in that meiotic event from an Aa heterozygote. With probability g(1 � b), only a
alleles are produced from a meiotic event from an Aa heterozygote. Hence, the overall segregation
ratio from Aa heterozygotes is 1/2(1 � g) þ gb A alleles to 1/2(1 � g) þ g(1 � b) a alleles rather than
the normal 1:1 segregation. Letting k ¼ 1/2(1 � g) þ gb, the overall segregation ratio in the population
is k:(1 � k). Fig. 11.5 shows the population-level consequences of the genome-level selection due to
biased gene conversion. From that figure, the change in allele frequency over one generation of biased
gene conversion is:

Dp ¼ GAaðk � 1=2Þ (11.6)

since p ¼ GAA þ 1/2 GAa (from Chapter 1). Thus, if biased gene conversion is the sole target of
selection, fixation of A occurs when k > 1/2, and fixation of a when k <

1/2. In either case, biased gene
conversion behaves as a consistent force favoring any allele with a bias greater than one-half. Biased
gene conversion is not limited to single nucleotides, but can also affect short indels, with the bias
favoring insertions (Leushkin and Bazykin, 2013). Such fixation events tend to be concentrated into
recombination hotspots since gene conversion is mechanistically related to recombination (Odenthal-
Hesse et al., 2014), and this in turn can lead to “false” positive signals of selection in such
recombination regions when the signals are attributed to selection targeting the individual level
(Glemin, 2010). Gene-conversion fixation can be prevented by individual-level selection against the
allele favored by gene conversion, although at the cost of increasing mutational load (Lartillot, 2013;
Glemin, 2010).

Mammals, including humans, have GC-biased gene conversion such that G and C alleles are
favored over A and T alleles, a bias that affects the GC content of our genome (Lartillot, 2013). Capra

FIGURE 11.5

Biased gene conversion, measured by the segregation parameter k, at a single locus with two alleles, A and a. The

Gi ’s are the genotype frequencies in the parental generation, and p’ and q’ are the frequencies of the A and a

alleles, respectively, in the gene pool produced by the parental generation.

352 CHAPTER 11 UNITS AND TARGETS OF NATURAL SELECTION



et al. (2013) screened human and chimpanzee genomes for tracts affected by GC-biased gene con-
version, finding that they covered about 0.3% of the human and chimpanzee genomes but accounted
for 1.2% of humanechimpanzee nucleotide differences. This illustrates the strength of gene conver-
sion in causing rapid fixation. They also found such tracts to be enriched in disease-associated
polymorphisms, confirming their role in increasing the human mutational load. Also, they were
enriched in recombination hotspots, but the fixation events they cause often lead to a rapid evolu-
tionary turnover of the hotspots such that humans and chimpanzees share few recombination hotspots
(Capra et al., 2013). Indeed, there has been much turnover in hotspots even between archaic and
modern human genomes (Lesecque et al., 2014).

Biased gene conversion can be considered a special case of a more general phenomenon called
meiotic drive or segregation distortion. Meiotic drive refers to a class of mechanisms that cause
deviations from a 1:1 Mendelian segregation ratio. Meiotic drive has been well studied in many or-
ganisms in which experimental manipulations can exclude many potential confounding factors, but
there are many potential cases in the human literature (Huang et al., 2013). For example, Shoubridge
et al. (2012) found a 1.5:1 segregation ratio in the offspring of females who are heterozygous for a
duplication mutation in the homeobox gene ARX, with the distorted segregation favoring the dupli-
cation. Because the basic phenotype is a distortion of Mendelian segregation to k:(1 � k), Fig. 11.5 and
Eq. (11.6) are applicable to modeling the evolutionary dynamics of this target of selection. By itself,
meiotic drive should favor the fixation of any allele associated with k > 1/2. However, this evolutionary
impact of meiotic drive could be balanced by selection at the level of the individual. For example, the
duplication mutant in ARX is also associated with several deleterious phenotypes at the individual
level, including intellectual disability, infantile spasms, and serious brain malformations (Shoubridge
et al., 2012).

Another arena for selection at the level of genomes or gametes is clonal selection in the germ line
(Arnheim and Calabrese, 2016). For example, missense T to C transition mutations at nucleotide site
c.2943 in the RET gene (the receptor tyrosine kinase proto-oncogene “rearranged during trans-
fection”) appear to frequently recur, with over 95% of these mutations arising in the male germ line
(Choi et al., 2012). To see if this was due to a mutational hotspot at this site, Choi et al. (2012)
determined the spatial distribution of this c.2943T>C mutation in 192 pieces of testes from men of
various ages. They then tested the observed distributions for their fit to various mutational hotspot
models versus a clonal selection model in which the mutation is favored during male meiosis, using
statistics similar to the classic studies on mutation and selection by Luria and Delbruck (1943). Their
analysis did not support the hotspot model, but did support the model of a germ-line-selective
advantage of the newly mutated cells in human testes. RET signaling is critical for the continuing
self-renewal of spermatogonial stem cells in the mouse and thus spermatogenesis, so they hypoth-
esized that this mutant in RET signaling is favored during this process. Because there are several
hundreds of cell divisions between spermatogonial stem cells and sperm cells compared to between
20 and 30 cell divisions during oogenesis in females (Vogel and Rathenberg, 1985), there is a large
potential for such germ-line clonal selection in males to result in the mutant being passed on
preferentially in the resulting sperm far in excess of what would normally occur. As in many previous
examples, the mutants favored by germ-line selection also induce a target of selection at the indi-
vidual level. In this case, this T to C mutation is associated with a highly aggressive thyroid cancer
(Choi et al., 2012), thereby inducing strong selection against this mutation at the level of the
individual.
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Another phenotype associated with gamete production is the nonrandom length alterations found in
trinucleotide diseases in humans. These diseases are characterized by a trinucleotide repeat found
within or near an expressed gene such that if the repeat length exceeds a certain threshold, severe
neurodegenerative and neuromuscular disorders arise at the individual level (Lee and McMurray,
2014). Moreover, once this threshold has been passed, the repeat length becomes unstable during
meiosis (sometimes in just one sex) and often shows a bias toward increased lengths being passed on to
the next generation. One of these diseases is Huntington’s disease (HD), inherited as an autosomal
dominant that is associated with a CAG repeat. Alleles with 35 or fewer repeats are regarded as normal
(h alleles), but alleles with 36 or more repeats (H alleles) are associated with an adult-onset degen-
eration of the central nervous system that ultimately causes death (Chong et al., 1997). Changes in
CAG number occur in only 0.68% of h alleles, but once the threshold of 36 is past, this increases to
70% in male germ lines (Kremer et al., 1995). Moreover, the male mutation rate continues to increase
with increasing repeat number, reaching 98% in males with at least 50 repeats. This male meiotic
instability is biased toward increased repeat number. Age of disease onset at the individual level
decreases with increasing repeat number (Rubinsztein et al., 1997). Similar types of mutational biases
and age of onset effects are found in other trinucleotide diseases (Rubinsztein, 1999), and there may be
some meiotic drive as well for some of these diseases (Dean et al., 2006). Simard et al. (2014) studied
transgenic mice with a human H allele, and found that the biased repeat expansion occurs immediately
following the chromatin remodeling process in haploid spermatids. Obviously, there is strong selection
at the level of sperm formation favoring an increase in repeat length in the H alleles, but making the
disease more severe (earlier age of onset) at the individual level. As we will see later in this chapter, a
full understanding of the role of selection on the H alleles requires taking into account multiple targets
of selection beyond the haploid sperm level and individual health.

SOMATIC CELLS
Mutations occur in all cell lines of the human body, not just the germ line. Somatic cell mutations are
not passed on to the next generation through a gamete, so it may appear that somatic mutations are
irrelevant to evolution. However, as we saw with germ-line mutations in the previous section,
selectable phenotypes can exist at the cellular level, and the evolution induced by cellular selection
under clonal inheritance can have phenotypic effects at the individual level. Moreover, germ-line
mutations can affect the amount and type of somatic mutation, and therefore somatic mutation it-
self is a selectable phenotype. As a consequence, cellular evolution within our bodies has been and
continues to be evolutionarily important for the human species.

There are trillions of cell divisions in going from zygote to human adult, and somatic mutations can
occur at each division (Shendure and Akey, 2015). Because many genes are not active in a differ-
entiated tissue, many of these mutations are likely to be neutral or nearly neutral (Shendure and Akey,
2015). Given that many of these cells are part of an expanding population during development, the
persistence and accumulation of somatic mutations can reach very high levels, resulting in a high
degree of somatic mosaicism. Although the majority of somatic mutations appear neutral, some do
affect phenotypes that are subject to selection at the cellular level (Martincorena and Campbell, 2015).
Because of clonal inheritance, selection favoring a somatic cell mutation leads to a hitch-hiking effect
across the entire genome and not just to closely linked variants. This extreme hitch-hiking effect
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accentuates genetic divergence among these mosaic cell lineages and a treelike genealogy among the
lineages that allows the tracing of their developmental and mutational history (Lodato et al., 2015).

Different tissues display different types and amounts of somatic mutation, and in some cases
certain somatic mutations appear to be selectively favored through clonal selection in specific tissues.
For example, blood-cell clones bearing somatic loss-of-function mutations in any one of four genes
(DNMT3A, TET2, ASXL1, and JAK2) accumulate and expand with age in peripheral-blood cells
(Jaiswal et al., 2017), indicating positive somatic cell clonal selection. Carriers of these clones have
nearly a twofold increase in risk for coronary heart disease (Jaiswal et al., 2017), indicating the po-
tential for multiple targets of selection for these somatic mutations.

Even those tissues of the human body that lose the ability to divide can still acquire somatic
mutations through nonreplicative processes. For example, neurons can live for decades in a postmitotic
state, but their genomes can still accumulate DNA damage, including transcription-associated DNA
damage, and are susceptible to transposition. Individual sequencing of human cortical neurons
revealed that each neuron had a profoundly distinctive genome, having around 1500 distinct SNPs,
many large copy number variants (CNVs), and retroelement insertions (Lodato et al., 2015). Some
13%e41% of neurons have at least one megabase-scale CNV, with deletions being twice as common
as duplications (McConnell et al., 2013). LINE-1 retrotransposition occurs in neurons from the hip-
pocampus during brain development at rates typically above that found in other somatic tissues
(Muotri et al., 2010). As mentioned above, selection at the individual level has occurred to limit
retrotransposition, and one mechanism to inhibit transposition is through methylation catalyzed by the
methyl-CpG-binding protein 2 that is encoded by the MeCP2 locus. Animal models and human tissue
studies revealed that in the absence of this enzyme, LINE-1 transposition increases tremendously in
the brain. Individuals carrying a germ-line mutation at the MeCP2 locus also have increased sus-
ceptibility to LINE-1 transposition in their brains (Muotri et al., 2010), and this can lead to a genetic
syndrome in humans called Rett syndrome in which the brain appears to develop normally until
about 6 months of age, followed by increasing problems in movement, coordination, and communi-
cation, often with seizures and intellectual disability. Environmental factors can also have an
impact. Methylation is reduced by heavy consumption of alcohol, and alcoholics also have an
increased amount of LINE-1 elements in their brains (Ponomarev et al., 2012). Moreover, LINE-1
transcription is activated by heavy alcohol consumption in monkeys and contributes to alcohol
dependence (Karpova et al., 2017). These studies clearly show that somatic mutations can influence
individual-level fitness and can interact with environments in a way that greatly affect individual-level
phenotypes.

The phenotype most studied with respect to somatic mutation is cancer, the uncontrolled growth of
human cells that leads to malignant tumors. Cell growth, cell death, and differentiation must be finely
controlled for a multicellular organism with diverse tissues and organs to function in a viable, inte-
grated manner. The unifying feature of cancer is the proliferation of certain cell lineages that escape
this control, typically as a result of somatic mutations that either make the cells insensitive to external
signals of growth inhibition, induce internal signaling pathways that lead to autonomous cell division,
or immortalize cell lineages by preventing cell senescence and inhibiting apoptosis (Shpak and Lu,
2016). Uncontrolled proliferation is favored at the cellular level since the tumor cells out-reproduce
other cells. However, the fitness consequences of such uncontrolled proliferation (cancer) are often
highly deleterious at the individual level, leading to selection on genes for redundant cellular control
mechanisms and tumor suppression (Martincorena and Campbell, 2015). Since most cancers evolve as
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a result of cell-level selection for proliferation that is normally under redundant control by multiple
mechanisms, carcinogenesis is typically a multistage evolutionary process in which multiple mutations
are accumulated sequentially during the progression to cancer (Gerlinger et al., 2014; Shpak and Lu,
2016). Most cancer tumors depend upon the accumulation of two to six or eight mutations (Kandoth
et al., 2013; Vogelstein et al., 2013). Inherited germ-line mutations in these genes can greatly increase
the risk of cancer by reducing the number of somatic mutations needed to induce cancer. These germ-
line mutations fall into two broad classes: loss-of-function mutations in tumor suppressor genes that
have a negative, inhibitory role in the cell cycle and gain-of-function mutations in oncogenes that
regulate the mitotic cycle (Gerlinger et al., 2014; Shpak and Lu, 2016). DNA repair mechanisms can
reduce the rate of somatic cell mutation, and selective loss of DNA repair pathways occurs in
40%e50% of many cancer types (Higgins and Boulton, 2018). Loss of DNA repair likely provides a
selective growth advantage to tumor cells and enhances mutation rates, speeding up further tumor
evolution.

The beginning of this multistage process usually occurs in the stem cells of specific tissues, as these
are the cells that typically are undergoing the most mitotic events in that tissue. The evolutionary
dynamics at the stem cell stage depend critically upon two parameters: N, the number of stem cells,
and D, the total number of stem cell divisions in that tissue (which measures the number of mitotic
events at risk for somatic mutation). The importance of the number of stem cell divisions is shown by
the high correlation of 0.8 between the incidence of cancer in a tissue and the number of stem cell
divisions in that tissue in human populations across the globe (Tomasetti et al., 2017). The number of
stem cells in a tissue is often quite small, so the randomness induced both by mutation and by genetic
drift at the cellular level is important in the initial stage of tumor formation. For example, suppose that
cancer is initiated by only two mutations, as has been found for retinoblastoma, a type of cancer of the
eye (Knudson, 1971). Then, the probability that cancer is initiated, P, in this two-hit model is:

P ¼ rm2D2

2N
; (11.7)

where N is the number of stem cells in the tissue, D is the number of stem cell divisions, m is the
somatic mutation rate (assumed to be the same for both genes, and which can be influenced by many
environmental agents), and r is the probability that a cancer cell replaces all the normal cells in its
tissue compartment (Nowak andWaclaw, 2017). Eq. (11.7) shows that the chances for cancer initiation
are influenced by cellular genetic drift (measured by 1/N), the opportunity for somatic mutation
(measured by mD, which is squared in this 2-hit model), and somatic cell selection (measured by r).
Vermeulen et al. (2013) have shown in mice that the initial mutations involved in cancer can be
selected even before all the mutations needed for the cancer phenotype have been accumulated. They
were examining intestinal tumor initiation in mice, for which N ¼ 5. Their experiments revealed that
introducing a gain-of-function variant in the oncogene Kras would result in the Kras clones replacing
the normal cells 80% of the time, versus 20% (1/5) expected under pure cellular genetic drift. Loss-of-
function mutations in the tumor suppressor gene Apc also had a somatic cell selective advantage at this
stage, although not as strong as Kras. Indeed, even inactivating one copy of the autosomal Apc gene
had a somatic cell selective advantage.

Another implication of Eq. (11.7) is that long-lived organisms with more cell divisions should have
a higher incidence of cancer. However, this expected relationship between life-span and cancer is
generally not found (Caulin and Maley, 2011), and indeed many long-lived species, such as humans,
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actually have lower rates of cancer than smaller mammals (Shpak and Lu, 2016), an observation
known as Peto’s paradox (Peto, 1977). As will be shown in Chapter 13, long-lived organisms are
subject to stronger selection at the individual level against diseases such as cancer that tend to occur
later in life (Rozhok and DeGregori, 2015), thereby favoring even more redundancy in DNA repair
pathways, proliferation control, and tumor suppression in long-lived species. Moreover, selection can
occur at the individual level on immune-related genes. For example, HLA-1 molecules allow T cells to
detect foreign or somatically mutated peptides. Humans are highly polymorphic for the genes coding
for these HLA-1 molecules. Marty et al. (2017) found that the genotypes at these HLA-1 loci could
predict personal cancer susceptibilities and the recurrent somatic mutations most likely to be estab-
lished in a tumor. Similarly, McGranahan et al. (2017) found that lower levels of heterozygosity in
HLA are associated with nonesmall cell lung cancers. Therefore, selection at the individual level in the
HLA complex could modify the risk and type of cancer. Hence, Peto’s paradox is a result of the
antagonistic targets of selection at the cellular and individual levels that underlie the evolutionary
dynamics of cancer.

The somatic mutations that induce tumor progression that are under positive selection at the
cellular level are called driver mutations in the cancer literature. As cell lineages with driver mu-
tations increase in abundance, all other somatic mutations that happened to be in that cell lineage also
increase by a hard-selective sweep that includes the entire genome under the clonal inheritance that
typifies somatic cells. These hitch-hiking mutations are called passenger mutations in the cancer
literature and add to tumor genetic divergence and heterogeneity. Moreover, once the cell lineage has
become cancerous, there is often a great increase in genomic instability, both at the sequence
leveldincluding aberrant activation of LINE-1 transposition (Lu et al., 2016)dand at the chromo-
somal level, that adds to tumor genetic divergence and heterogeneity (Shpak and Lu, 2016). Clonal
inheritance also provides ideal conditions for coadaptation with respect to cellular evolution; that is,
once a cell lineage has become cancerous, certain other mutations can be positively selected specif-
ically on the cancer genetic background. For example, mutations favoring the phenotype of metastasis
(that is, cancer cells from the primary tumor can move to new locations, forming secondary tumors)
can be selected once a cell lineage has become cancerous. Metastasis can evolve either early or late
after the evolution of the primary tumor, and sometimes evolves only once (the monophyletic or linear
case) or multiple times (the polyphyletic or parallel case) (Turajlic and Swanton, 2016). Metastasis can
increase the intensity of selection at the individual level, as metastasis is the cause of 90% of cancer-
related deaths (Gundem et al., 2015).

As pointed out in Chapter 2, human somatic cells contain three genomes: the paternal and maternal
nuclear genomes and the mitochondrial genome. MtDNA can replicate even within a cell, and many
somatic cells contain thousands of copies of mtDNA. Just like nuclear DNA, mtDNA is subject to
mutation, and therefore genetic variation in mtDNA can exist both within and among the somatic cells
of an individual. The phenomenon of mtDNA variants coexisting within a single individual is called
heteroplasmy. Heteroplasmy can exist even within a single cell, including the human egg (recall from
Chapter 2 that mtDNA is inherited through the mother). Mutations are common in the mitochondrial
genome, many of which are deleterious at the individual level (Lightowlers et al., 2015). Because of
the high rate of mutation in mtDNA, heteroplasmy is common. Heteroplasmy can be passed on from
mothers to offspring since multiple copies of the mother’s mtDNA is typically passed on to a single egg
(Li et al., 2016). The intracellular genetic variation of mtDNA allows the estimation of the inbreeding
effective size of mtDNA genomes transmitted from the mother to her offspring. This effective size is
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estimated to be about 25 (Wilton et al., 2018), indicating a severe bottleneck effect on mtDNA evo-
lution during the transition from mother to offspring. During this transmission from mother to
offspring, Li et al. (2016) also found evidence for negative selection during transmission against novel
heteroplasmies, many of which were associated with mitochondrial genetic disease at the individual
level. In this case, both female germ-line selection and individual selection are operating in the same
direction. However, the large role for genetic drift in the female germ line also explains how mtDNA
mutants that have reduced fitness even at the cellular level can often be transmitted to offspring, where
they contribute to the risk of disorders in the offspring related to mitochondrial dysfunction (Stewart
and Chinnery, 2015). Modern genetic surveys have revealed that heteroplasmy is universal in humans
due to a combination of maternally inherited heteroplasmy and de novomutations (Payne et al., 2013).
As with the somatic mutations in the nuclear genomes, mutations in mtDNA can affect targets of se-
lection at the individual level, including neurodegenerative diseases and mitochondrial dysfunction
disorders (Payne et al., 2013; Greaves et al., 2014). MtDNA heteroplasmy tends to increase in cancer
cells, butMcDonald-Kreitman tests (Chapter 10) indicate that this increase seems to be best explained by
relaxed negative selection, a conclusion consistent with the observation that anaerobic glycolysis rather
than mitochondrial respiration plays the key role in generating energy in cancer cells (Liu et al., 2012).

Because mtDNA is maternally inherited (Chapter 2), a mtDNA mutation that reduces male fitness
but is neutral or advantageous in females might not be eliminated by natural selection at the individual
level and indeed could increase in the population if advantageous in femalesda phenomenon known
asmother’s curse (Milot et al., 2017). Mutations with such properties might be rare, but one candidate
is the mitochondrial mutation associated with Leber’s hereditary optical neuropathy (LHON) that
causes degeneration of the optic nerve and vision loss, with variable age of onset. What is important for
the mother’s curse hypothesis is that expression of LHON is primarily in males, with most female
carriers displaying no symptoms. Milot et al. (2017) studied this mutation over time in a French-
Canadian population of Quebec, which has remarkably deep pedigrees as discussed in Chapter 10.
This population was also subject to a founder effect, and the LHON mutation was traced to a French
immigrant woman who married in 1669 and had 10 children, 6 of whom were daughters. No significant
fitness differences at the individual level were detected between female carriers and noncarriers, but
male carriers had a fitness of 0.653 relative to male noncarriers, indicating strong negative selection at
the level of individual males. Despite this strong negative selection against males, the frequency of this
mutation steadily increased in this population until it stabilized in the 1800s (Fig. 11.6). Other targets
of selection, particularly at the family level as will be shown later in this chapter, could have attenuated
the individual-level advantage of this “mother’s curse.”

MATING SUCCESS
We now turn our attention to targets of selection above the level of the individual. Such targets are not
hard to find. Indeed, of the three major components of fitness (Chapter 9), two of them (mating success
and fertility) are only manifest in humans at the level of interacting individuals. Simply put, a single
individual cannot display the phenotype of mating success or fertility; rather, both of these phenotypes
can only be observed in pairs of interacting individuals.

Darwin (1871) long ago pointed out that mating success depends upon two distinct types of in-
teractions among individuals: intrasexual competition between individuals of the same sex for access
to mates of the opposite sex, and intersexual mate choice between individuals of opposite sex. There is
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considerable evidence that intrasexual competition, particularly between males, has been important in
human evolution (Hill et al., 2017). We will make use of a simple, one-locus, two-allele model of
competition between pairs of individuals (Cockerham et al., 1972) to explore the complexities that can
emerge from intrasexual competition. The basic fitness model is shown in Table 11.1. Note that the
competitive fitnesses are not assigned directly to individuals, but rather to a pair of competing in-
dividuals, reflecting a target of selection above the level of the individual. If we further assume a
random mating population and that individuals encounter other individuals proportional to their fre-
quencies in the population, we can assign an average competitive fitness to a given individual geno-
type, as shown in Table 11.1. As can be seen, the fitness assigned to an individual-level genotype is
frequency-dependent; that is, the fitness assigned to a specific genotype depends upon the frequencies
of all or some of the genotypes in the population. As we will see shortly, frequency dependence arises
naturally when the target of selection is not the individual but rather an interaction between
individuals.

FIGURE 11.6

The frequency of the LHON mutation in married individuals (red for females, blue for males) in a French-

Canadian population from 1670 to 1960.

Modified from Milot, E., Moreau, C., Gagnon, A., Cohen, A.A., Brais, B., Labuda, D. 2017. Mother’s curse neutralizes natural

selection against a human genetic disease over three centuries. Nature Ecology & Evolution 1, 1400e1406.

Table 11.1 The Competition Model of Cockerham et al. (1972) in a Random Mating Population
With One Locus With Two Alleles (A and a) With p[ the Frequency of A

Genotype AA Aa aa

Competing with: AA w22 w12 w02

Competing with: Aa w21 w11 w01

Competing with: aa w20 w10 w00

Average fitness of
genotype i, wi

w2 ¼ p2w22 þ 2pqw21

þ q2w20

w1 ¼ p2w12 þ 2pqw11

þ q2w10

w0 ¼ p2w02 þ 2pqw01

þ q2w00

When individuals of genotype i (i ¼ 0 is aa, i ¼ 1 is Aa, and i ¼ 2 is AA) compete with individuals of genotype j, the fitness
consequence to genotype i is given by wij. The average genotypic fitnesses assume that competitive encounters occur at random.
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The average excesses of fitness are used to investigate the evolutionary dynamics of this
competitive model. Recall from Chapter 8 that the genotypic values for the phenotype of interest, the
mean phenotype of a genotype, are used in calculating the average excess. When fitness is the
phenotype of interest and fitness is a constant assigned to the genotype, as in Chapter 9, the genotypic
value was the assigned fitness. In the case of competition when fitness is assigned to interacting pairs of
individuals, the genotypic value of fitness assigned to a genotype is simply the average over these
pairwise interactions weighted by their frequency, which are given in the last row of Table 11.1. Recall
from Chapter 8 that the genotypic value in general is the average phenotype (fitness in this model) of
all individuals sharing a particular genotype, and hence it represents an average over all the envi-
ronments that individuals bearing that genotype have encountered. In this case, the “environment”
experienced by a particular individual genotype is defined by the interactions they have with other
genotypes, and the frequencies of these “environments” are the probabilities of interacting with a given
genotype (which are simply the genotype frequencies in this random encounter model). Hence, Eq.
(9.3), the fundamental equation of natural selection for a measured genotype, is equally applicable to
frequency-dependent selection as it is to individual-level selection because the genotypic values and
deviations are defined in the same manner as given in Chapter 8.

Despite the simplicity of the model shown in Table 11.1, the dynamics induced by frequency-
dependent selection can be quite complex (Cockerham et al., 1972). For example, consider the
competitive matrix shown in Fig. 11.7 and its resulting evolutionary dynamics due to natural selection.
Note that in this case, Dp ¼ 0 occurs five times: the two boundaries corresponding to loss and fixation
of the A allele, and three intermediate p values that represent potential polymorphic equilibria. The
stability of these five points can be judged by the signs of Dp on either side of the potential equilibrium
point, or the sign of Dp as one moves away from a boundary condition (p ¼ 0 or p ¼ 1). When near
p ¼ 0, Dp > 0, so selection favors moving away from loss of the A allele. Hence, whenever A is
introduced into a population, either due to mutation or gene flow, it will increase in frequency due to
frequency-dependent competitive selection. At the other end, we see that Dp < 0 when the A allele is

FIGURE 11.7

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the competitive matrix shown in the figure.
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near fixation, which means that the a allele will be favored by selection whenever it is rare or intro-
duced by mutation or gene flow. The polymorphism in this case is said to be a protected poly-
morphism; that is, a polymorphism due to natural selection favoring two or more alleles when they are
rare. Although we can predict that natural selection will favor a polymorphic state at this locus, we
cannot predict the equilibrium allele frequency just from the inference of protection. There are three
potential polymorphic equilibria, and as one can see by looking at the sign changes in Dp as one passes
through a potential equilibrium, two of the intermediate equilibria shown in Fig. 11.7 are stable and
one is unstable. Hence, where one ends up in this system depends critically upon the initial conditions
or perturbations due to genetic drift and/or gene flow. Indeed, even simple frequency-dependent
models can result in chaotic dynamics in which allele frequencies appear to move almost at random
but are actually under natural selection (Gavrilets and Hastings, 1995). As a consequence, much of the
work in this area focuses just on whether the polymorphism is protected or not rather than trying to
make a specific prediction about the dynamics at intermediate allele frequencies.

This simple model of competitive selection illustrates another evolutionary surprise about
frequency-dependent selection. Fig. 11.8 shows a plot of the average fitness as a function of p for the
model given in Fig. 11.7. One of the stable equilibria is near p ¼ 0.9 (Fig. 11.7). This frequency almost
corresponds to a local average fitness peak (Fig. 11.8), but not quite. The second stable equilibrium
near p ¼ 0.3 (Fig. 11.7) is not close to any local adaptive peak (Fig. 11.8). For example, if we started at
p ¼ 0.35, Fig. 11.7 indicates that natural selection would reduce p to the stable equilibrium near
p ¼ 0.3, but the average fitness would be declining throughout the course of this selectively driven
evolutionary process (Fig. 11.8)din direct violation of Fisher’s fundamental theorem of natural se-
lection (Eq. 9.20) or Wright’s adaptive topography metaphor. Another violation is illustrated in
Fig. 11.9. Note that Dp > 0 for all intermediate values of p, so clearly natural selection will drive the A
allele to fixation. However, the average fitness has a value of 1 throughout this entire process. Hence,

FIGURE 11.8

A plot of the average fitness of the population versus p for the competitive fitness model shown in Fig. 11.7. The

dashed lines show where stable equilibria exist from Fig. 11.7.
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selection is driving the fixation of A, but there is no fitness peak at all! The predictive powers of
Fisher’s theorem or Wright’s metaphor fail in this case. In general, frequency-dependent selection
models violate, often egregiously, Fisher’s fundamental theorem of natural selection, but they still
obey the fundamental equation of natural selection for a measured genotype based on the concept of
average excess of fitness (Curtsinger, 1984). Accordingly, Eq. (9.3) is a much more fundamental
theorem of natural selection than Eq. (9.20). As a result of these frequency-dependent properties,
intrasexual selection often results in evolutionary trajectories that make little to no sense when natural
selection is erroneously regarded as an optimization process that maximizes individual or population
fitness. It is the gametic perspective as measured by average excess that rules over the course of natural
selection. Optimization models based on individual or average population fitness do not capture this
gametic perspective nor the complex evolutionary dynamics associated with frequency dependence.

Mate choice models of intersexual selection are also inherently frequency-dependent because they
emerge at the level of an interacting pair of individuals of opposite sex. Indeed, we have already seen
this in Chapter 3. Both assortative and disassortative mating are types of mate choice, and as shown in
Eq. (3.19) and Table 3.7, such mate choice models can result in evolutionary change in a manner that
depends upon genotype frequencies. Accordingly, the mate choice models share many of the same
evolutionary properties as the frequency-dependent competition models, and in particular the violation
of Fisher’s fundamental theorem of natural selection and complex dynamics with multiple stable and
unstable equilibria (Ehrman and Parsons, 1981; Newberry et al., 2016; Van Dooren, 2006; Priklopil,
2012). Human mate choice is influenced by many traits, both genetic and nongenetic, as already
indicated in Chapter 3. For example, the MHC complex, with its multilocus units of selection, affects
mate choice in many species, including humans (Winternitz et al., 2017). In many species, MHC is
associated with disassortative mating, and some studies indicate that this may be the case in humans as

FIGURE 11.9

A plot of the change in the frequency of the A allele and of average fitness versus the allele frequency of Aversus p,

the allele frequency, for the competition matrix shown in the figure.
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well (Laurent and Chaix, 2012). Other studies indicate a mix of disassortative and assortative patterns
in MHC (Havlicek and Roberts, 2009). A large metaanalysis did not find significant evidence for MHC
disassortative mating in humans, but did find significant evidence that humans favor MHC-diverse
mates; that is, humans favor mates with high levels of MHC-heterozygosity (Winternitz et al.,
2017). Interestingly, this type of mate choice can be modeled with the competition model of
Cockerham et al. (1972), as illustrated in Fig. 11.10, where the competition matrix is replaced by a
mating matrix. The highest fitness of 1 is assigned to the Aa � Aa pair, as both individuals are
heterozygotes and therefore preferred mates with the highest probability of mating success. A lesser
mate-choice fitness of 0.9 is assigned to pairs with one Aa individual and a homozygotedpairings in
which one individual is less preferred. Finally, a mating between two homozygotes, for which both
individuals are less preferred, is assigned a mate-choice fitness of 0.8. As the plot in Fig. 11.10 shows,
this pattern of mate choice results in a stable polymorphism under this frequency-dependent selection
model. Hence, mate choice selection may contribute to the high level of MHC polymorphism observed
in humans in addition to other frequency-dependent factors (Chapter 10).

FERTILITY
Fertility in humans is a phenotype that only occurs in the context of a male/female mated couple (from
a gametic perspective, even artificial insemination represents a male/female couple). Hence, the target
of selection is a mated pair and not an individual, although it is always possible to assign an average
fertility to an individual-level genotype, as was done with competitive interactions earlier. In humans
and other live-bearing species, it is convenient to measure fertility not in terms of conceptions but
rather by the number of live-births. This convenience ignores much potential for fertility selection in
humans. Only about one in two conceptions reach the stage of a developing fetus (Goldstein, 1994;
Rühli and Hennebert, 2017), and reported miscarriage rates reach about 30% (Rühli and Hennebert,
2017).

FIGURE 11.10

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the mate choice matrix shown in the figure.
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Table 11.2 presents a simple, one-locus, two-allele model of fertility in a random-mating pop-
ulation based on an extension of Weinberg’s derivation of the Hardy-Weinberg law (Chapter 3). As in
Weinberg’s derivation, the frequency of a mating pair is multiplied by the Mendelian probability of
that mating pair producing a specific genotype, but now this product is also multiplied by the fertility
of that mating pair. Note that fertility is assigned to a mating pair, not an individual. These products
are then summed over all possible mating types within each genotype column to produce the ge-
notype frequency in the next generation. As with the competitive interaction model given in Ta-
ble 11.1, each genotype can be assigned a marginal or average fertility. However, a contrast of
Tables 11.1 and 11.2 reveals a major difference in how these genotypic average fitness values are
determined. In Table 11.1, the fitness assigned to an individual genotype was simply the competitive
fitness component that genotype experiences averaged over all possible competing genotypes as
weighted by the probability of encountering that competing genotype (which is the genotype fre-
quency of the competing genotypes in a random-encounter model). Fertility is unique among the
fitness components in that it is explicitly measured in terms of the next generation; that is, the
number of offspring a mating pair contributes to the next generation. As a consequence, Mendelian
inheritance explicitly intervenes between the target of selection, the mating pair, and the genetic
consequence of this fitness component, the number of offspring the genotypes produced. Recall that
the gametic perspective is the relevant one for evolution, and what is important is the genotypes into
which the gamete will go in the next generation. This forward, gametic perspective is revealed by the
type of average fertility that is assigned to a genotype. The first two components of the average
fertility assigned to the AA genotype in Table 11.2 are simply the fertilities that AA individuals
experience when mated with AA and Aa individuals, respectively, as weighted by the
genotype frequencies of AA and Aa individuals in this random mating model. In analogy with Ta-
ble 11.1, it may seem that the third component should be the fertility of AA individuals when mated
to aa individuals; that is, the third component should be Gaab20. Indeed, the quantity
GAAb22 þ GAab21 þ Gaab20 is the average fertility of AA genotypes in the parental generation.
Yet, the component Gaab20 does not appear at all in the equation given in Table 11.2 for the average
fertility of AA even though AA individuals can and do mate with aa individuals in this model.
Instead, this component is replaced by¼(GAa

2 /GAA)b11da component that refers to matings between
two Aa individuals and does not involve AA parents at all. The Mendelian probabilities reveal the
reason behind this mystery. As shown in Table 11.2, when AA individuals mate with aa individuals,
none of the offspring have the AA genotype. In contrast, matings between two Aa heterozygotes
produce AA offspring a quarter of the time. Because fertility is forward looking to the next generation
and the target of selection is a mating pair, the relevant fertilities for defining the success of the AA
genotype are in the fertilities of the mating types that produce AA offspring, and not the average
fertility of AA parents. Similar considerations hold true for the other genotypes shown in Table 11.2.
This illustrates the danger of not identifying the relevant target of selection. The target of selection
here is mating pairs, and ascribing an average fertility to a parental genotype class, which seems very
natural, ends up with a measure of fertility that is not relevant to how natural selection operates upon
fertility.

Another interesting feature of Table 11.2 is that although random mating is assumed, Hardye
Weinberg genotype frequencies are not. The reason is that fertility differences can distort the genotype
frequencies away from HardyeWeinberg. To see this, let us assume that the initial population had
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HardyeWeinberg genotype frequencies with the A allele having frequency p. Substituting the
HardyeWeinberg genotype frequencies into Table 11.2 yields the following average fertilities:

b2 ¼ p2b22 þ 2pqb21 þ q2b11

b1 ¼ p2b21 þ 2pq

�
1

2
b20 þ 1

2
b11

�
þ q2b10

b0 ¼ p2b11 þ 2pqb10 þ q2b00

(11.8)

If the genotypes display variation in these average fertilities, the offspring genotype frequencies
shown in Table 11.2 will deviate from HardyeWeinberg expectations even if we started with
HardyeWeinberg genotype frequencies. Once again, it is important to note that Eq. (11.8) is the
fertilities averaged from a forward perspective over the relevant mating typesdthe target of
selectiondand not the average fertilities of parental individuals, which are not the target of selection.
The average individual parental fertilities are:

b2 ¼ p2b22 þ 2pqb21 þ q2b20
b1 ¼ p2b21 þ 2pqb11 þ q2b10
b0 ¼ p2b20 þ 2pqb10 þ q2b00

(11.9)

The differences between Eqs. (11.8) and (11.9) illustrate once again the importance of identifying the
correct target of selection.

Table 11.2 and Eq. (11.8) make it clear that fertility differences induce frequency-dependent se-
lection. Accordingly, the evolutionary dynamics of a system such as that described in Table 11.2 can
have multiple equilibria and complex dynamics and yield evolved fertility patterns that often appear
maladaptive at the individual or population level, as these are not the targets of selection.

One common source of selection on fertility in humans is maternalefetal incompatibility. When a
fetus or embryo manifests a blood group antigen not borne by the mother, placental leakage of blood
can stimulate the mother to produce antibodies against the fetus. Strong maternalefetal in-
compatibility reactions occur for the autosomal Rh and ABO blood group systems. For example, a
mother who is homozygous for the r allele at the Rh locus displays no Rhþ antigens on her red blood
cells, but if she mates with a man who is RR or Rr (genotypes that have the Rhþ antigen), she can
become pregnant with an Rr fetus that is Rhþ. If she starts producing antibodies against the Rhþ

antigen, her developing fetus can be killed or suffer severe, life-long impairments if it survives after
birth, a disease known as erythroblastosis fetalis. The incidence of this disease is obviously frequency-
dependent, as it depends on the frequency of rr mothers and the frequencies of RR and Rr males.
Similar considerations hold for the ABO system. Using allele frequencies similar to that found in
modern Japanese, Crow and Morton (1960) calculated the frequency of prenatal deaths due to ABO
incompatibility at 0.063 and the total reduction in fitness over all ages (pre- and postnatal) as greater
than 0.066. More recent surveys using direct genetic screening on live-borns and spontaneous abor-
tions have confirmed that ABO incompatibility is a significant risk factor for spontaneous abortion
(Bandyopadhyay et al., 2011). Hence, just this one blood antigen system is inducing strong selection in
many human populations, with the strength dependent upon the genotype frequencies.

To model both the pre- and postnatal effects of selection associated with a mating type, it is
necessary to extend our models to the level of a nuclear family; that is, the mated pair and their
offspring. The human family is therefore our next target of selection.
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FAMILY SELECTION
The nuclear family, consisting of parents and their offspring, is a common group of interacting in-
dividuals in many human societies. These interactions can strongly influence the fitnesses of family
members, and we will be primarily concerned with fitness effects on the offspring due to parental
genotypes and the family environment parents create (Kong et al., 2018). Moreover, the entire family
can be a target of selection within a human community. A simple, one-locus, two allele, random-
mating model that captures these features is shown in Table 11.3 (Templeton, 1979). Note that the
fitnesses of the offspring are not just a function of their individual genotype but are also a function of
their family membership. Hence, the same genotype in different families can have different fitnesses.

From a mathematical point of view, the model in Table 11.3 is the same as the competition model
shown in Table 11.1, with the only difference being that w11 in Table 11.1 is replaced by

1/2(w13 þ w14)
in Table 11.3 (because of the forward perspective mentioned for fertility) and with the second subscript
referring to a mating type rather than another genotype. Hence, the evolutionary dynamics of family
selection shares all the properties of the competition model: selection is frequency dependent, Fisher’s
fundamental theorem of natural selection can be and often is violated, average excesses control the
evolutionary dynamics due to selection, multiple equilibria often exist, and complex dynamics can
occur with seemingly maladaptive evolution at the individual level.

In the section on fertility, we discussed maternalefetal incompatibility. Because fertility is
commonly measured in terms of live-births in humans, prenatal mortality was ascribed to fertility.
However, from a theoretical modeling point of view, we can measure fitness from fertilization. When
measured from conception, both pre- and postnatal morality due to maternalefetal incompatibility can
be ascribed to the viability of the offspring. Consider the Rh system discussed in the fertility section.
Letting A in Table 11.3 be the allele coding for the Rhþ antigen and a the Rh negative allele, the only
incompatible matings are types 3 and 5. In both cases, incompatibility can only occur when it is the
mother who is aa (that is, rr in the standard notation, and thereby Rh�). Given that this is an autosomal
locus, this situation only occurs in half of the type 3 and 5 matings. When incompatibility can occur, it
is only directed against the Aa offspring who would be Rhþ. Hence, the Rh incompatibility system can
be modeled by setting all of the wij’s in Table 11.3 to 1 except for w13 and w15, which can both be set to
1/2(1 þ w) where w < 1 and reflects the reduced viability of an Aa offspring in an incompatible mating,
1/2 reflects that fact that only half of the matings are potentially incompatible because the mother must
be aa, and 1 is the fitness of the Aa offspring when the father is aa. To determine if the polymorphism is
protected, first consider the A allele being rare. Most individuals are aa and most mating types are of
type 6 in Table 11.3, so the average fitness is close to 1. The most likely mating type with an A allele
under these conditions is mating type 5, so the average excess of the A allele when rare is proportional
to the genotypic deviation 1/2(1 þ w) � 1 ¼ 1/2(w � 1) < 0. Hence, selection operates to eliminate the
A allele, which is dominant for the Rhþ phenotype, when it is rare. Now consider the situation when
the recessive allele a is rare. Once again, the average fitness will be close to 1 because all the common
mating types are compatible under this condition. The most likely incompatible mating type involving
an a allele is mating type 3, so the average excess of the a allele when rare is approximately pro-
portional to 1/2(w � 1) < 0. Hence, neither allele is protected and selection tends to eliminate the rare
allele in an incompatibility system if there are no other selective forces operating on the locus. We can
also plot out the entire evolutionary dynamics for this situation. Fig. 11.11 shows a plot (the solid line)
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for the case when w ¼ 0.75. As can be seen, selection pushes the A allele to loss when it is rare
(negative Dp), and toward fixation when it is common (positive Dp); that is, the polymorphism is not
protected. We can now see that there is an intermediate polymorphic equilibrium (Dp ¼ 0) at p ¼ 0.5,
but it is unstable.

There is evidence of heterosis (heterozygote superiority in fitness) in some incompatibility systems
(Bandyopadhyay et al., 2011). We can add this feature to the incompatibility model given in the
previous paragraph by assigning a higher fitness to heterozygote offspring produced by compatible
matings; for example, let w12 ¼ w14 ¼ 1.05 instead of 1. Keeping incompatibility with w ¼ 0.75 as
before, the dotted line in Fig. 11.11 shows the impact of adding heterosis with the dotted line. As
before, the polymorphism is not protected because whenever p < 0.5, selection eliminates the A allele.
Also as before, there is an unstable equilibrium at p ¼ 0.5. However, the addition of heterosis now
creates a stable polymorphic equilibrium at p ¼ 0.83. Thus, although a polymorphism is not protected,
it is now an evolutionary possibility.

In many modern human societies, couples have much control over their amount of reproduction.
When a pregnancy is lost due to a miscarriage or spontaneous abortion, a couple may decide to “try
again” to reach a desired family size. This phenomenon is known as reproductive compensation and
is widespread in many current human populations (Hastings, 2000). We will now add reproductive
compensation to our original incompatibility model with no heterosis. Let c > 1 be a measure of
increased reproduction in incompatible families such that w13 and w15 now equal 1/2(1 þ cw). Note
that reproductive compensation also favors compatible genotypes that arise in an incompatible mating
type, such as the aa offspring arising in mating type 5 in Table 11.3 when the mother is also aa. Hence,
w05 ¼ 1/2(1 þ c). All other fitnesses in Table 11.3 are set to 1. The selective dynamics of this model
with reproductive compensation are shown by the dashed line in Fig. 11.11 with c ¼ 1.2. Now there is

FIGURE 11.11

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the maternalefetal incompatibility model (solid

line) described in the text, and with the modified models with heterosis (dotted line) and reproductive compen-

sation (dashed line) described in the text.
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not only a single stable equilibrium polymorphism, but there is a protected polymorphism as well.
Hence, reproductive compensation can be an effective force for maintaining polymorphisms in in-
compatibility systems (Hastings, 2000).

Reproductive compensation is not always a response to the death of a fetus or child. For example,
in many cultures some couples keep trying to reproduce until they have a son, and this is another form
of reproductive compensation with dramatic evolutionary consequences (Templeton and Yokoyama,
1980; Yokoyama and Templeton, 1982). In particular, mothers who are heterozygous for an X-linked
lethal only have half of their male children survive, which in turn means that this desire for a son causes
such families to have more children on the average. This results in a large increase in the equilibrium
frequency of the X-linked lethal allele. For example, Templeton and Yokoyama (1980) showed that for
a mutation rate of 10�6 for an X-linked lethal allele, the equilibrium frequency of female carriers
would be 4 � 10�6 if no compensation occurred, 6 � 10�6 if ordinary compensation occurred (that is,
couples would compensate for the death of a male offspring, but would be satisfied with any viable
subsequent child regardless of gender), and 1.1 � 10�3 under male preference compensation. The
incidence of affected males is 3 � 10�6 with no compensation, 4 � 10�6 for ordinary compensation,
and 7.1 � 10�4 with male preference compensation. A preference for male offspring can increase the
incidence of X-linked lethals in male offspring by two to three orders of magnitude, whereas repro-
ductive compensation with no gender bias has a relatively minor effect. The impact of male preference
compensation is reduced if only a subset of the population has this bias, but the amount of reduction
depends critically upon the cultural inheritance of the bias, with strong cultural inheritance greatly
amplifying the evolutionary impact of even a small amount of male preference compensation in the
population. For example, if only 1% of the population displayed this male preference, the impact
would be negligible if there were no cultural inheritance, whereas the incidence of affected males
would increase by an order of magnitude under strong cultural inheritance (i.e., a female offspring
coming from a family with a male preference bias would have a probability of 1 of having a male
preference bias, even though the overall incidence of the bias is still just 1%) (Templeton and
Yokoyama, 1980; Yokoyama and Templeton, 1982). This illustrates that there can be very strong
interactions between cultural inheritance and natural selection.

Another interesting example of family selection is shown by the fitness pattern given in Table 11.4.
The pattern reflects a dominance mode of inheritance, with A being dominant over a. Note that when

Table 11.4 Fitness of the Offspring in the Six Family Types Defined by a Single Locus With Two
Alleles, as Shown in Table 11.3

Fitnesses of Offspring With Genotype i from Family j, wij

Parents AA Aa aa

1. AA � AA w21 ¼ 1 e e

2. AA � Aa w22 ¼ 1 w12 ¼ 1 e

3. AA � aa e w13 ¼ 1 e

4. Aa � Aa w24 ¼ 1.1 w14 ¼ 1.1 w04 ¼ 0.9

5. Aa � aa e w15 ¼ 1.2 w05 ¼ 0.95

6. aa � aa e e w06 ¼ 1.2
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aa is present in the family, the fitness of the genotypes with the dominant phenotype is increased over
that which they would have in a sibship consisting only of dominant phenotypes. Moreover, the greater
the proportion of aa in the sibship, the more the fitness of the dominant genotypes. The opposite is true
for the fitnesses of the recessive aa individuals. In mixed sibships, the fitness of aa is always much
lower than that of their sibs with the dominant phenotype, and the greater the proportion of dominants
in the sibship, the lower the fitness of aa. The aa genotypes only have high fitness in a pure sibship of
aa individuals. This is an example of an altruistic phenotype in which an individual sacrifices his/her
own individual fitness (in this case aa) to enhance that of others, in this case the A- siblings. In the
context of a family, the aa individuals could enhance the fitness of their siblings at their own expense
either by directly helping them or by helping their parents in raising their siblings, and these traits are
well documented in humans (Kramer, 2011). A more general treatment of altruism can be found in
Templeton (1979), but here we will illustrate some of the more important properties of altruistic
evolution by a few examples.

The dotted line in Fig. 11.12 shows a plot of Eq. (9.3) for the fitnesses from Table 11.4. Dp is
always positive for all intermediate values of p, thereby ensuring fixation of the A allele and elimi-
nation of the a allele. Hence, in this situation, natural selection eliminates the altruistic phenotype from
the population. In Table 11.4, the fitness of a pure sibship of altruists matches that of the selfish
dominant phenotype in a sibship with 50:50 selfish to altruistic sibs. Suppose instead that a sibship
consisting only of these helpful individuals has a higher fitness than any other fitness in other types of
sibships. The dashed line in Fig. 11.12 shows what happens when the fitness of aa in a pure altruistic
sibship (mating type 6) is raised to 1.3, with all other fitnesses retaining the values given in Table 11.4.
Now there is an unstable equilibrium at p ¼ 0.5. Above 0.5, the average excess of fitness is positive, so
natural selection will drive the fixation of the A allele, thereby eliminating the altruists from the
population. However, below an A frequency of 0.5, natural selection drives the altruistic allele a to
fixation, and the magnitude favoring such a fixation of a is much larger than the magnitude of selection
favoring the A allele. With such an unstable equilibrium, other evolutionary forces, such as drift,

FIGURE 11.12

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the altruistic fitness model (dotted line) shown in

Table 11.4, and for the modified models with w06 ¼ 1.3 (dashed line) and with w05 ¼ 1 and w06 ¼ 1.3 (solid line).
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population subdivision, and gene flow, are expected to play an important role in determining the fate in
any local deme. The evolution of altruism is now possible, but not assured, although the asymmetrical
dynamics create a bias in favor of altruism. Finally, consider the situation in which the fitness of an
altruist in a 50:50 mixed sibship (mating type 5 in Table 11.4) is increased from 0.95 to 1, still well
below the fitness of 1.2 of the selfish Aa siblings. Keeping the fitness of 1.3 in a pure altruistic sibship,
the plot of Dp, now given by the solid line in Fig. 11.12, is now never positive, indicating that selection
will always drive the altruistic a allele to fixation.

Another interesting case of family selection is shown in Fig. 11.13 that also represents a slight
modification of the fitnesses shown in Table 11.4. In this case, w05 ¼ 1; otherwise all other fitnesses are
those given in Table 11.4. The resulting evolutionary dynamic due to selection is chaos (Fig. 11.13).
Like any model of chaos, the exact graph one would obtain depends upon the number of decimal points
retained in the calculations by the computer program being used. In real populations, genetic drift
would be the major force determining the effective number of decimal points being retained.
Accordingly, when frequency-dependent selection leads to chaotic outcomes, genetic drift plays the
major role in determining the evolutionary outcome even when large fitness differences exist among
individuals and sibships, and regardless of the local deme size.

A major conclusion from these examples is that natural selection can favor the evolution of
altruistic behavior within families, although that evolution is often influenced by other evolutionary
forces, particularly genetic drift, due to multiple equilibria, unstable equilibria, and chaotic behavior.
The evolution of altruism among sibs is an example of what is often called kin selection, in which
natural selection is regarded as maximizing inclusive fitnessdthe fitness of an individual plus the
fitnesses of his/her relatives as weighted by their genetic degree of relatedness (Hamilton, 1964).
Optimization models based on inclusive fitness are not used in this book because such models fail to
capture the complexity of frequency-dependent evolutionary dynamics, do not reveal the importance
of other evolutionary forces in addition to selection in shaping family-level selection, and ignore the
frequent failure of optimization criteria under frequency-dependence. Moreover, kin selection theory
is not needed. The same phenomena can be analyzed using targets of selection at multiple biological
levels (Marshall, 2011; Templeton, 1979).

FIGURE 11.13

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the altruistic fitness model shown in Table 11.4,

except with w05 ¼ 1.
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We now look at a final example of family selection because it leads into the next section. As
mentioned earlier in this chapter, HD is an inherited neurodegenerative disease in humans associated
with an autosomal dominant allele, H. The disease is fatal, but the age of onset is quite variable, such
that many Hh individuals do not express the disease until they have survived to adulthood and have had
children. As shown in Chapter 9, studies that used unaffected siblings (half of the children of an HD
parent are typically Hh and half are hh that are unaffected) or other near relatives as a control showed
that Hh individuals had more children than their unaffected siblings, at least in preeWorld War II
demographic environments with marriage at younger ages. As also mentioned in Chapter 9 and earlier
in this chapter, the age of onset decreases with increasing trinucleotide repeat number. As will be
discussed in more detail in Chapter 13, this decrease in age of onset is associated with an individual
fitness decline that eventually destroys any fitness advantage of Hh individuals over their unaffected
siblings (Frontali et al., 1996). As pointed out earlier in this chapter, HD is associated with trinucleotide
repeat expansion, andmeiotic biases favor the further expansion of the trinucleotide repeats during male
meiosis once the disease threshold has been passed. Hence, there is a strong interaction between meiotic
selection and individual selection that ensures that any H allele lineage will eventually be eliminated as
its individual-level deleterious effects become greater and greater over time due to meiotic selection.
Nevertheless,Hh individuals seem to possess a high overall average fitness of 1.12 relative to unaffected
sibs (Reed and Neel, 1959) during this allelic trajectory toward higher repeat numbers.

Wallace (1976) pointed out that using unaffected siblings as controls for estimating the fitness of
Hh individuals is misleading when the entire family is the target of selection. Because HD is an
autosomal dominant, once the threshold for expression has been passed, there is an affected parent in
every generation. Hence, the families that have an H allele are readily identifiable both to members of
those families and to nonfamily members in the community. Moreover, because the age of onset is
generally late in life and, until the development of a molecular-genetic test, it was impossible to
ascertain which siblings were Hh versus hh, all the siblings in a family with a diseased parent would
often know they are at high risk for this neurodegenerative disease at the time they would be making
their own reproductive decisions. Wallace (1976) showed that reproductive decisions for all in-
dividuals in families segregating for the H allele are indeed influenced by fear of transmission of the
disease to offspring and by social ostracism, thereby reducing the fitness of all members of the family
relative to the society at large. Neel (personal communication) speculated that one of the early
neurological changes of this disease might be less sensitivity to these social pressures in Hh in-
dividuals, thereby leading to their higher fitness relative to their unaffected siblings. This situation can
be modeled with a family-selection model by giving families withoutH segregating within the family a
higher overall reproductive output (Yokoyama and Templeton, 1980; Templeton, 1979). A simplified
approximation to these models is given in Table 11.5, which is a special case of Table 11.3. Because
the H allele is rare, the evolutionary dynamics is dominated by just two family types (family types 5
and 6 in Table 11.4). The average, frequency-dependent fitnesses assigned to an individual genotype
are given in parentheses in the last row of Table 11.4. Letting p / 0 (q / 1), the average fitness
assigned to Hh individuals converges to 1.12/1.2 ¼ 0.93, whereas the average fitness assigned to hh
individuals converges to 1.2/1.2 ¼ 1. Hence, selection favors the hh genotype when the H allele is rare
and operates to eliminate the H allele from the population. In this case, social selection targeting the
entire family segregating for an H allele overwhelms individual selection within families favoring the
H allele. This shows that natural selection in humans is responsive to the social environment induced
by interactions among individuals, both within families and within communities.
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SOCIAL SELECTION
HD illustrates an example of both family selection (e.g., the family environment creates a fear of
transmitting this disease because a parent is affected) and social selection due to interactions with other
members of the community (e.g., social ostracism). Social selection can operate in many other ways,
including direct social interactions between nonrelated individuals. Competition, discussed earlier in
terms of intrasexual selection, is a type of social interaction, and the frequency-dependent model of
Cockerham et al. (1972) can be applied to many other types of social interactions. For example,
consider the model illustrated in Fig. 11.14 that assumes social interactions in a random-mating
population. Consider first the case in which social encounters are also random. The matrix in that

Table 11.5 A Model of Family- and Individual-Level Selection Associated With Huntington’s
Disease

Mating Pair and
Number

Frequency of
Mating Pair

Mendelian Probabilities of Offspring Times the Fitness in
Family j for Each Offspring Genotype

Hh hh

5. Hh � hh 4pq3 1/2 � (1.12) 1/2 � (1)

6. hh � hh q4 0 1 � (1.2)

Offspring frequency in next generation:
2pq3ð1:12Þ

w z2pq

�
q2

1:12

1:2

�
2pq3 ð1Þþ q4ð1:2Þ

w z q2
�
2pqþ q21:2

1:2

�

The dominant allele that causes the disease is indicated by H with frequency p, and the normal allele by h with frequency q ¼ 1� p.
Because the H allele is rare, the selective dynamics when p is close to 0 are dominated by family types 5 and 6 in Table 11.3, so
only that subset of Table 11.3 is shown in this special case. WhenH is rare, the average fitness is approximated by 1.2, the fitness
of hh offspring from mating type 6, the most common mating type under these conditions.

FIGURE 11.14

Plot of Eq. (9.3) (Dp) versus p, the frequency of the A allele, for the social interaction matrix shown in the figure.

The solid line shows the dynamics of a single-interaction model, and the dashed line shows the dynamics of a

model with two rounds of interaction with A- individuals who interacted with aa individuals on the first round now

avoiding them and only interacting with other A- individuals.
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figure shows the fitness consequences of interactions between all possible pairs of genotypes. As can
be seen from that matrix, the A allele behaves as a dominant allele for the social interaction phenotype,
and A- individuals interact with one another in a fair and equitable fashion, such that both individuals
receive the same relative fitness benefit of 1. However, the recessive phenotype associated with the aa
genotype is an exploiter. When aa individuals interact with A- individuals, they receive a large fitness
advantage of 1.1 but at the expense of a severe fitness disadvantage to the A- individual of 0.9. The aa
individuals also do not cooperate with one another, so an aa by aa interaction results in the reduced
fitness of 0.9 for both individuals. A population fixed for the A allele in many ways seems optimal: all
individuals share equitably in a relatively high fitness of 1 and the average fitness of the population is
also 1. In contrast, a population fixed for the a allele (p ¼ 0) would have an average fitness of 0.9 and
all individuals in the population would have a reduced fitness of 0.9. Moreover, if we started at any
intermediate allele frequency, if pwere to increase, the average fitness of A- individuals would increase
because there would be fewer exploiters, but also the fitness of the exploiters would increase because
there would be more exploitable individuals. Moreover, the average fitness of the population would
increase as well. Hence, if one equates adaptive evolution to a process that optimizes either individual
or average population fitness, natural selection should drive the A allele to fixation. However, the
average excess of fitness yields the opposite evolutionary dynamic. As shown by the solid line in
Fig. 11.14, the average excess and Dp are negative for all intermediate p values. Hence, natural
selection strongly drives the fixation of the exploiter phenotype, thereby consistently reducing both
individual and population fitness. Once again, selection among interacting individuals cannot be
modeled as a simple optimization process. The gametic perspective of expected fitness as measured by
the average excess is the only reliable guide to the evolutionary outcome.

We now consider a simple modification of this social interaction model. In most human demes,
social interactions are not limited to just one other individual or just a single occasion. Moreover,
individuals can learn from their experiences and thereby modify their choice of whom to interact with
in the future. A simple model that captures these features is to have an additional round of social
interaction, potentially with other individuals. The first round of social interaction is exactly like that
described in the preceding paragraph. The A- individuals who happened to interact with aa individuals
during this first round experienced the fitness decline of being exploited by the aa individual and
remember this exploitation such that they refuse to interact with any aa individuals during the second
round; rather, they choose to interact only with other A- individuals. Otherwise, pairs are formed at
random. Given these assumptions, the A- class is now divided into two phenotypic classes after the first
round of social interaction: the naı̈ve class that does not know that aa individuals will exploit them,
with probability (1 � q2) (the probability of an A- individual interacting with another A- on the first
round), and the knowledgeable A- individuals who have been exploited by the aa’s with probability q2

(the probability of an A- individual having had interacted with aa under a random encounter model),
and therefore will avoid them in the second round of social interactions. Similarly, aa individuals who
were able to exploit A- individuals in the first round with a probability of (1 � q2) had a first-round
fitness of 1.1, but the aa individuals who interacted with another aa individual in the first round
with a probability of q2 had a first round fitness of 0.9. The fitness of an individual after two rounds is
assumed to be the product of the fitnesses associated with each social interaction.

Table 11.6 shows the probabilities of encounters on the second round, as well as the average fitness
assigned to the A- and aa genotypic classes after the two rounds that are used to calculate the average
excesses and evaluate Eq. (9.3). The dashed line in Fig. 11.14 shows the resulting evolutionary
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dynamics of this model that includes two rounds of social interaction with memory and learning. As
can be seen, the results are qualitatively different from the single-round model given by the solid line in
Fig. 11.14. The cooperative A- individuals are no longer eliminated by fixation of the a allele, but
rather a protected, balanced, stable polymorphism evolves. Consequently, the evolution of cooperative
phenotypes does not require kin or family selection, but rather can occur with interactions with
nonrelatives as long as there is memory and learning: two attributes that are highly developed in
humans. The advantages of cooperative behavior can be augmented by having multiple rounds of
social interactions and learning opportunities (Dridi and Akçay, 2018). When most of humanity lived
in small demes, there would be many opportunities for social interactions between most or all in-
dividuals, so the impact of learning and memory would be strong. Moreover, humans have the ability
to learn by observing the consequences of the interactions between other individuals, which could
allow some of the “naı̈ve” individuals in the model in Table 11.4 to avoid exploitive individuals even if
they had no direct interaction with them. Finally, humans can communicate with one another, so in-
dividuals who had had interactions with exploitive individuals could warn others not to interact with
themdfurther strengthening the advantage of cooperative behavior. Because humans have memory,
can learn from direct experience and by observing the experiences of others, and can communicate
with one another, social selection has been and is a strong and frequent target of selection in human
evolution. Indeed, one major feature of our uniqueness as a species is that humans share resources with
one another to a much greater degree than do other great apes, and much human sharing is governed by
concepts of fairness and equity, which are enhanced by past experiences of collaboration (Hamann
et al., 2011; Dridi and Akçay, 2018).

The simple model shown by the dashed line in Fig. 11.14 and in Table 11.6 supports the social
brain hypothesis that selection for our large brains arose from the complications of group living:
distinguishing cooperators from exploiters and relative from nonrelative, remembering past in-
teractions and using that memory to guide future interactions, building coalitions and cooperating on
mutually advantageous tasks, and communicating information (including the consequences of social
interactions) with others (Strassmann and Queller, 2016). It is therefore likely that the target of se-
lection of socially interacting groups of humans has been a major evolutionary determinant of the very
attributes that we think of as defining the uniqueness of our species.

This simple social selection model and the one in the previous section with social selection on HD
also illustrate a frequent misconception of kin and social selection (selection on groups of individuals),
namely, the misconception that group selection is opposed by individual-level selection or lower-level
selection in general (Alcock, 2017). The Huntington example shows that multiple targets of selection
can simultaneously operate on the same genetic system. Sometimes selection is in opposite directions
at different targets, but sometimes they enhance one another. The social selection on Huntington
families that helps reduce the frequency of the H allele is augmented by the meiotic selection within
individuals that decreases the age of onset and hence ultimately decreases individual fitness (as will be
shown in Chapter 13). However, the social selection on entire families is in opposition to the within-
family selection that favors the H allele. Similarly, the model shown in Table 11.6 is one in which
individual fitness (for both cooperators and exploiters) is higher in the social selection model shown by
the dashed line, but the social selection model shown by the solid line does indeed have an antagonism
between individual fitness and social selection. Hence, there is no simple relationship between se-
lection at different targets: they can be synergistic or antagonistic, but the idea that they must always be
in opposition is wrong.
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MULTILOCUS EPISTASIS AND TARGETS OF SELECTION ABOVE THE LEVEL
OF THE INDIVIDUAL
Single-locus, two-allele models dominated our discussions in the previous sections dealing with
targets of selection above the level of the individual. The reason for this was mathematical conve-
nience due to the complexities that frequency-dependent selection can create even at the single-locus
level. However, epistasis among genes can exist for higher-level targets of selection. For example,
consider maternalefetal incompatibility, which was discussed in both the sections dealing with
fertility and family selection. Besides fetal mortality, many other deleterious phenotypes are asso-
ciated with maternalefetal incompatibility, such as low birth-weight and nonsyndromic conotruncal
heart defects (CTDs) that develop during embryogenesis. Li et al. (2014) identified seven loci
associated with CTD in a standard GWAS (Chapter 8) and found significant interactions between
three of these genes.

Clark et al. (2016) examined the phenotype of birth-weight that is under strong stabilizing selection
as the extremes are associated with obstetric complications and perinatal mortality. One mechanism
that affects birth-weight is fetal trophoblast invasion of the placenta that affects maternal blood supply
to the placenta and therefore fetal growth. Uterine natural killer (uNK) cells are a type of maternal
lymphocyte found only in a woman’s mucosal lining during placentation that accumulate around
invasive trophoblast cells. The maternal uNK receptors are coded for by the killer cell
immunoglobulin-like receptor (KIR) gene family on chromosome 19. These receptors can bind to
human leukocyte antigens (coded for the HLA orMHC complex on chromosome 6 discussed earlier in
this chapter) expressed by the fetal trophoblast cells, thereby forming a direct immune interaction
between maternal and fetal cells that can affect the amount of trophoblast invasion. Of the HLA an-
tigens expressed by trophoblast cells, only HLA-C is polymorphic, having more than 2900 alleles that
fall into two major immunological groups: C1 and C2. The maternal KIR interacts with the fetal HLA-
C molecules, some of which come from the mother and others that come from the father. These studies
on families from the United Kingdom and Norway revealed that offspring with more C2 antigens than
their mother (the additional C2 alleles came from the father) and whose mother had no copies of an
allele at the KIR locus known as KIR2DS1 had significantly low birth-weights; offspring with less than
or equal C2 antigens than their mother and whose mother had at least one KIR2DS1 allele had
significantly high birth-weights; and offspring who had more C2 antigens than their mother and whose
mother had at least one KIR2DS1 allele had even higher birth-weights. Note that offspring with more
HLA-C2 antigens than their mother can have either significantly high or low birth-weights depending
upon the mother’s KIR genotype, resulting in a very strong interaction effect in these UK and Nor-
wegian populations. Clark et al. (2016) also showed that the ability to detect these loci as being
associated with birth-weight would have been greatly diminished if they had analyzed only the off-
spring’s genotype in a traditional GWAS. Moreover, the frequency of the KIR2DS1 allele was about
0.2 in their study populations, but it is much less common in African populations. This observation
indicates that if the epistasis with KIR had not been taken into account, their results on HLA-C2 would
not be replicated in a population in which the KIR2DS1 allele was infrequent even when the C2 allele
frequency is the same. In much of human genetics, replication in more than one population is required
by many journals to avoid false positives. By not taking into account allele frequencies and epistasis,
an inference of a false positive would itself be false in this case. Replication across populations that
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differ in allele frequencies is not a justifiable criterion for GWAS inferences and creates false
false-positives. Given the strong interactions between the KIR receptors and the HLA-C antigens, it is
not surprising that these two unlinked loci appear to evolve in a coadapted manner (Norman et al.,
2013) and should be treated as a unit of selection.
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HUMAN ADAPTATIONS TO
TEMPORALLY AND SPATIALLY
VARIABLE ENVIRONMENTS

12
Over the last two million years, humans have spread out from Africa to inhabit most of the world
(Chapter 7). As a consequence of our global distribution, local populations of humans live in a diverse
array of environments that differ in climate, topography, ecosystem, and interactions with other
organisms. In addition to this spatial heterogeneity, the last two million years were and continue to be a
time of dramatic climatic and sea level fluctuations, creating great temporal heterogeneity in the
environments inhabited by humans. Moreover, humans can and do modify their own environments,
perhaps more so than any other species. This ability to modify our environments has greatly added to
the spatial and temporal heterogeneity that our species has and continues to experience. Because
phenotypes including fitness (Chapters 8 and 9) arise from an interaction between environment and
genotype, this spatial and temporal environmental heterogeneity results in fitness heterogeneity that
has influenced adaptation through natural selection in human populations. Our models of natural
selection have so far mainly focused on adaptation in a constant environment, allowing us to ignore
environmental heterogeneity. In this chapter, we address how humans can and have adapted to het-
erogeneous environments.

Environmental heterogeneity is often subdivided into spatial and temporal heterogeneity, as was
done in the preceding paragraph. However, there is another dimension of environmental heterogeneity
that is of great evolutionary importance: environmental grain. The grain of the environment refers to
how individuals experience environmental heterogeneity. Coarse-grained environments are one
extreme of the grain continuum in which individuals experience only a single environment in their own
lifetimes, but environmental heterogeneity exists between populations in different geographic areas
(coarse-grained spatial heterogeneity) or across different generations (coarse-grained temporal
heterogeneity). At the other extreme are fine-grained environments in which individuals experience
the environmental heterogeneity within their own lifetimes. The individual always experiences fine-
grained heterogeneity as a temporal sequence even when the physical source of the heterogeneity is
spatial. Because an individual can only be at one place at one time, an individual dispersing through a
series of spatially variable environments will experience that spatial heterogeneity as a temporal
sequence. Hence, the evolutionary models of fine-grained temporal heterogeneity can also be applied
to fine-grained spatial heterogeneity, although the amount and pattern of dispersal is critically
important for fine-grained spatial heterogeneity. Consequently, we will consider three major types of
environmental heterogeneity in this chapter: coarse-grained spatial, coarse-grained temporal, and
fine-grained heterogeneity.
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COARSE-GRAINED SPATIAL HETEROGENEITY
Humans currently have a spatial distribution that spans many extremely different environments as
defined by both abiotic and biotic factors. By definition, the coarse-grained environment is relatively
constant for any particular individual, so this type of spatial heterogeneity exists primarily as differ-
ences in the environments experienced between local populations. There is a widespread notion that
extensive gene flow will prevent local adaptation from being a significant evolutionary factor, but this
is not the case. Indeed, one of the first models of selection under coarse-grained spatial heterogeneity
assumed that all individuals were randomly dispersed over the entire species range every generation,
resulting in a single panmictic population for the entire species (Levene, 1953). Once this dispersal
occurred, individuals remained in a single local environment for the rest of their lives, and each local
environment interacted with genetic variation to determine local fitnesses. Despite this assumed
panmixia, Levene (1953) showed that coarse-grained spatial variation in fitness greatly broadened the
conditions for a protected polymorphism; hence, coarse-grained spatial heterogeneity has important
evolutionary consequences even in a species with extensive dispersal across space.

Levene’s dispersal model is not realistic for humans. As shown in Chapters 6 and 7, humans are not
panmictic across their entire range, but generally show limited dispersal across space due to isolation-
by-distance and/or isolation-by-resistance. These patterns of limited dispersal exist among current
human populations and have existed since at least the mid-Pleistocene (Chapter 7). A Levene-type
model with restricted gene flow is given by Christiansen (1975) who assumed a species inhabiting
a range containing several discrete habitats such that the relative fitnesses within habitat i for the
genotypes defined by a single autosomal locus with two alleles, A and a, were as follows:

Genotype AA Aa aa

Fitness in Habitat i vi 1 wi

Christiansen (1975) further assumed random mating within each habitat. He defined ci as the
proportion of the total population that comes from habitat i, and m the amount of gene flow among
habitats in an island-model population structure (Chapter 6) such that 1 � m of each local population
remains in the local area every generation and a proportion m disperses at random over the entire
species range. Then, the conditions for protecting the A allele from loss when it is rare (and similar
conditions hold for the a allele when it is rare) is:

There exists at least one habitat such that wi < 1� m

OR

1P
i
ci=½1� ð1� wiÞ=m� < 1

(12.1)

Note that when m ¼ 1 (the original Levene model), the first condition in inequalities (12.1) cannot be
satisfied because relative fitnesses cannot be less than zero, and the second condition reduces to the
harmonic mean of the fitnesses of the homozygotes across habitats weighted by the c’s being less than
the fitness of the heterozygotes (which always have a relative fitness of 1). This harmonic mean fitness
was the condition discovered by Levene, and as Levene pointed out, it is a broader than requiring that
the arithmetic mean fitness be less than one. The arithmetic mean fitness is the one that normally goes
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into the genotypic value of fitness and determines if the system will be polymorphic or not (Eq. 9.6), so
coarse-grained heterogeneity broadens the conditions for polymorphism. However, the conditions
shown in inequalities (12.1) become increasingly broad as m decreases, so restricted gene flow makes
coarse-grained spatial heterogeneity an even more important evolutionary factor than in the original
Levene model. Moreover, whenm < 1 protection of the A allele can be achieved by having just a single
habitat in which aa does poorly (the top inequality in Eq. 12.1), and this condition becomes more and
more likely to be satisfied as m decreases. Hence, local adaptation to just one habitat is all that is
needed to protect an allele from loss in the entire species when gene flow is sufficiently restricted.
These results clearly demonstrate that the adaptive response to coarse-grained spatial variation is
modulated by the interaction of natural selection with the pattern and amount of dispersal and gene
flow. Natural selection alone is insufficient to understand the evolution of local adaptation.

The Levene and Christiansen models assume a finite set of discrete habitats. Some of the spatial
variation experienced by humans falls into this category. For example, the Tibetan plateau is a discrete
geographical area of high altitude (greater than 3200 m above sea level). Humans have lived in the
plateau for at least 7.4 thousand years, perhaps permanently but definitely with permanent settlements
going back to about 3.6 thousand years (Meyer et al., 2017). High-altitude environments are associated
with at least two potential selective agents: hypoxia due to low oxygen tension and high ultraviolet
radiation (UV). Genomic screens can be used to test for local selection and adaptation using many of
the same tests described in Chapter 10, but now restricted to the local population of interest. Of
particular importance is evidence for selective sweeps limited to the habitat or area of interest and not
species-wide. Soft selective sweeps are most commonly encountered because local adaptation often
makes use of polymorphisms present in the population before moving into the novel environment
either due to old mutational events or gene flow/admixture with other populations (Field et al., 2016;
Hermisson and Pennings, 2017; Schrider and Kern, 2017). Soft sweeps are also important because the
nonrandom nature of mutation (Chapter 2) often means that the same selected alleles in the envi-
ronment of interest may have occurred multiple times (Hermisson and Pennings, 2017; Tennessen and
Akey, 2011), as we saw previously for the multiple origins of the sickle-cell allele that are now found
in several different malarial regions of the world (Chapter 11). When selectively similar mutations
recur, the spread of one such allele from its area of geographical origin can interfere with the spread of
an alternative favorable allele, resulting in a soft sweep pattern with different geographical regions
being dominated by different alleles (Ralph and Coop, 2010, 2015)da pattern that can be accentuated
by negative pleiotropic effects as we have already seen for the S and C alleles in local adaptation
against malaria (Chapter 9). Negative epistasis between loci can also create geographic mosaicism
within a particular selective environment. For example, the S allele at the b-Hb locus and the aþ
thalassemia allele at the unlinked a-Hb locus have both been implicated in resistance to malaria, but
people who bear both alleles have lowered resistance to malaria (Penman et al., 2011). This pattern of
negative epistasis between these two alleles explains why the S allele has penetrated into some south
Asian populations in malarial regions but not those malarial regions with a high frequency of aþ
thalassemia.

Another method for screening for local selection is based on a test suggested by Lewontin and
Krakauer (1973). The fst statistic measures the amount of variance in allele frequency across pop-
ulations in a standardized manner (Chapter 6). For neutral loci, the value of fst should represent the
balance between local drift and gene flow (Chapter 6), although demographic history can also affect it.
Regardless, fst should be roughly constant for all neutral regions of the genome, although correcting for
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gene flow patterns and past range expansion can reduce the incidence of false outliers (Whitlock and
Lotterhos, 2015). Local adaptation at a particular genomic region should cause that region to have a
higher-than-normal fst value (or some other measure of genetic differentiation among populations).
Hence, one can screen the genome and identify the outliers with high values of fst or some other
measure of genetic differentiation (Bonhomme et al., 2010; Duforet-Frebourg et al., 2016; Fariello
et al., 2013; Hoban et al., 2016). The power to detect local adaptation can also be enhanced by
combining the genomic screen with correlations of allele/haplotype frequencies to the environmental
variable(s) of interest in a manner that corrects for the background effects of population structure and
history (Bradburd et al., 2013; De Villemereuil and Gaggiotti, 2015; Forester et al., 2016; Hoban et al.,
2016).

Many genomic screens have been performed that strongly indicate at least nine loci were involved
in local adaptation to high altitude in Tibetans (Bigham, 2016; Hu et al., 2017; Yang et al., 2017). Two
of these genes, EPAS1 and EGLN1, have a pattern of a hard selective sweep throughout the Tibetan
plateau (Peng et al., 2011), with the derived ELGN1 allele first undergoing a hard local sweep followed
by a more recent local sweep of the derived EPAS1 allele (Marciniak and Perry, 2017). Interestingly,
the EPAS1 region appears to have entered this modern human population through admixture with an
ancient population related to the Denisovan individual (Huerta-Sanchez et al., 2014). These two genes,
and several of the others identified as candidates for local adaptation, are involved in oxygen
homeostasis and hypoxia inducible factors (Beall, 2014; Lorenzo et al., 2014), thereby tying the
function of these genes to one of the environmental selective agentsdhypoxia from high altitude.
Some of the other genes identified as candidates for local adaptation include VDR (discussed in
Chapter 11 in relation to vitamin D and skin color) (Hu et al., 2017) and an allele at theMTHFR locus
that is associated with increased folate (Yang et al., 2017), both of which are functionally related to the
other high-altitude selective agent of high UV. To check for gene-environment correlations or asso-
ciations, other high altitude human populations have been studied in the Ethiopian highlands and the
altiplano of the Andes Mountains. Evidence of positive selection was found for the EGLN1 gene in
both Tibetans and Andeans (Bigham et al., 2010), although on different haplotype backgrounds
indicating convergent evolution (Fan et al., 2016). Otherwise, different genes seem to be involved in
high-altitude adaptation, but the genes tend to be from the same pathways, such as the hypoxia
inducible factor pathway (Bigham, 2016; Huerta-Sanchez et al., 2013). Such convergent evolution at
the functional level further strengthens the conclusion of local adaptation. The hypoxia adaptations of
the Tibetans allow them to live at high altitudes without increasing their hemoglobin concentration, the
usual manner in which individuals who live at low altitudes acclimate to high altitudes. Further
supporting the conclusion of local adaptation is the strong association between elevated hemoglobin
concentration and lower reproductive success at high altitudes, so Tibetans can now live at high
altitudes without this reproductive risk (Cho et al., 2017).

The island model of gene flow used by Christiansen (1975) is not realistic for human populations,
for which gene flow is primarily restricted through isolation by distance and isolation by resistance
(Chapter 6). Moreover, the Levene/Christiansen models assume discrete habitats with sharp
geographic boundaries, but even the meaning of a sharp boundary depends on both geography and the
demographic attributes of the individuals and populations that experience the boundary. To see this,
consider a simple model with two different habitats separated by a transition zone of length D
(Endler, 1977). Intuitively, if D is small, the boundary is abrupt, but we are looking at the adaptive
response to this boundary, which depends on natural selection and gene flow in addition to geographic
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distance. Endler (1977) modeled this interaction at a single locus with two codominant alleles, A and a,
which define genotypes that have a fitness response to the two environments and the transition area
between them as follows:

wAAðxÞ ¼ 1� bD=2

wAaðxÞ ¼ 1

waaðxÞ ¼ 1þ bD=2

for x < �1=2D

wAAðxÞ ¼ 1þ bx

wAaðxÞ ¼ 1

waaðxÞ ¼ 1� bx

for� 1=2D < x < 1=2D

wAAðxÞ ¼ 1þ bD=2

wAaðxÞ ¼ 1

waaðxÞ ¼ 1� bD=2

for x > 1=2D

(12.2)

where x refers to the geographic position of a genotype in a transect that goes across both environ-
ments, with one environment ending at position e1=2D, the second environment beginning at 1=2D,
an environmental transition zone between positions e1=2D and 1=2D, and b > 0 measuring the slope
of the fitness effect in the transition space between the two environments. Note that the top envi-
ronment shown in Eq. (12.2) results in directional selection favoring fixation of the a allele, and the
bottom environment results in directional selection favoring fixation of the A allele, with the fitness
effects gradually shifting from one pattern to the other in the transition zone. Gene flow is restricted
through the transition zone either by isolation-by-distance or isolation-by-resistance such that d is the
average distance between where an individual is born and where it reproduces given dispersal into or
through the transition zone, which occurs with probability m. Because of the possibility of isolation-
by-resistance, the measurement of d may vary in the two environments and in the transition zone and
does not necessarily correspond to a strict geographic distance. For example, Bradburd et al. (2013)
created a Bayesian simulation/estimation program (Bayesian Estimation of Differentiation in Alleles
by Spatial Structure and Local Ecology, or BEDASSLE) that indicated that the Himalayan Mountains
dramatically decrease gene flow in an isolation by distance model by approximately the equivalent of
11,000e16,000 km of extra geographic distance with respect to genetic differentiation between human
populations. This great increase in resistance distance is expected to facilitate the local adaptation
shown by the human populations living in the Tibetan Plateau that is surrounded by the Himalayas.

Given m and d, Endler (1977) showed that gene flow can be measured by

‘ ¼ d
ffiffiffiffi
m

p
(12.3)

Gene flow tends to diminish local adaptation, and the strength of selection that counteracts the gene
flow is measured by s ¼ bD, which is the absolute value of the maximum fitness change that a
homozygote experiences in response to this spatial heterogeneity. The balance between gene flow and
selection is then given by
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‘c ¼ ‘ffiffi
s

p ¼ ‘ffiffiffiffiffiffi
bD

p ¼ d

ffiffiffiffiffiffi
m

bD

r
(12.4)

The parameter ‘c is called the characteristic length and measures the ratio of the strength of gene flow
to the strength of selection. If ‘c > D, the organism experiences the environmental transition as an
abrupt boundary because the transition distance is less than the characteristic length. Such an abrupt
transition is called an ecotone. The abrupt boundary of an ecotone is a function of geography (D), gene
flow (m and d), and selection (s). The original Levene/Christiansen models were all ecotone models. In
contrast if ‘c < D, the organism experiences the environmental transition as a gradual change in which
adaptation to intermediate environments in the transition zone is possible. This situation is called a
gradient. A genetic cline is a gradual change in allele or gamete frequencies over geographic space.
Clines emerge with both ecotones and gradients. For ecotones, the cline emerges due to gene flow
overcoming selection in the populations inhabiting the two major environments but close to the
transition zone; that is, the cline extends into the major environments outside of the transition zone
because of gene flow. The expected length of the cline in going from fixation of the a allele to fixation
of the A allele is ‘c. For example, Fig. 12.1 shows the frequencies of the A allele at SNP rs1868092 in
the EPAS1 locus in various Tibetan populations and a lowland Han Chinese population. This is one of
the SNPs that displays a hard selective sweep in the Tibetan Plateau as a local adaptation to hypoxia
and is nearly fixed in the interior of the plateau (Peng et al., 2011). The populations are ordered in
increasing distance from the lowland Han Chinese, with whom there is limited gene flow. As can be
seen, there is a cline going from 0 (the Han sample) to nearly 0.9, the most distant Tibetan population,
and most of this cline occurs in the Tibetan populations closest to the lowlands.

FIGURE 12.1

A plot of the frequency of the A allele at SNP rs1868092 in the EPAS1 locus in various Tibetan populations and a

distant Han Chinese lowland population, as ordered by geographic distance from the Han population.

The data are from Peng, Y., Yang, Z., Zhang, H., Cui, C., Qi, X., Luo, X., et al., 2011. Genetic variations in Tibetan populations and

high-altitude adaptation at the Himalayas. Molecular Biology and Evolution 28, 1075e1081.
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When the spatial variation in the environment defines a gradient, local adaptation to the transitional
environment occurs resulting in a cline of width D, the distance over which the selective agent in the
environment varies. We have already seen an example of this type of genetic cline in Chapter 11.
Ultraviolet radiation B is a powerful selective agent in humans and it varies with absolute latitude. In
this case, the transitional zone is the entire globe from the equator to the poles. As shown in Chapter
11, this environmental gradient has resulted in human local adaptation in a clinal manner both
phenotypically with respect to skin color (Fig. 11.1) and genetically with respect to the underlying
coadapted complexes contributing to skin color and vitamin D metabolism (Figs. 11.3 and 11.4).
Direct evidence for natural selection using ancient DNA to directly monitor changes in allele fre-
quency indicated strong selection favoring the increase of the alleles associated with light skin
pigmentation in Europe with an estimated selection coefficient of 1.5% (Allentoft et al., 2015;
Mathieson et al., 2015). These ancient DNA studies included many of the loci involved in the
coadapted networks discussed in Chapter 11 (Fig. 11.2) and reveal that the favored alleles at different
loci in these networks went to high frequency at different times. For example, the SLC24A5 allele (part
of the 65-2 coadapted complex, Fig. 11.2) was widespread in Europe before 7000 BP, whereas the
SLC45A2 allele (also part of the 65-2 coadapted complex) only became common in Europe
5300e4800 BP (Marciniak and Perry, 2017). This sequential adding on of alleles affecting skin color
in Europeans supports the stepwise model for the origin of coadapted complexes in which alleles are
added into the complex in the context of the genetic background created by previous selection at other
loci (Chapter 11).

A variety of methods have been developed to detect and measure genetic clines on gradients
(De Mita et al., 2013; Frichot et al., 2015; Günther and Coop, 2013). Methods using genotype-
environment correlations are particularly powerful, as was the case in the clines shown in
Figs. 11.3 and 11.4. Genetic clines on ecological gradients have been a common feature of local
adaptation in humans, involving such traits as the keratinization of human skin (which modulates
transepidermal water loss) and the regulation of water and sodium balance (which modulates the
amount of water needed for survival) with climatic variables (Gautam et al., 2015; Li et al., 2011),
genetic resistance to malaria as a function of the long-term prevalence of malaria in a local area
(Mackinnon et al., 2016), and temperature adaptation (Sazzini et al., 2014), to name but a few.

Another limitation of the coarse-grained spatial Levene/Christiansen models is that they ignore
demographic history. As shown in Chapters 6 and 7, human demographic history often has had
population movements followed by admixture between two or more populations that were previously
distant from one another. Admixture is one type of gene flow that has been common in both historic
(Chapter 6) and prehistoric human populations (Chapter 7) as human populations have moved across
the globe. Even small amounts of admixture can be evolutionarily important in coarse-grained spatial
environments because they can introduce new, and some potentially already locally adaptive, genetic
variants across the whole genome at rates far in excess of that of mutation. Adams and Ward (1973)
performed one of the classic studies on the interaction of selection and admixture in African-American
populations. Recall from Chapter 6 that African Americans represent an admixture of mostly Western
Africans with Western Europeans, and the total amount of admixture (assuming neutrality) can be
estimated by the parameterM, Eq. (6.20). Table 12.1 shows the estimates ofM for several alleles in one
of their study populations from Claxton, Georgia, USA. They found highly significant heterogeneity
across loci in these allele-specific M estimates. As can be seen, most M values were statistically
consistent with an overall M value of 0.11, indicating that about 11% of the genes in this population
were of European origin and 89% of African origin. But several statistical outliers emerged, both with
very low values ofM (e.g., the A allele at the ABO locus) and very high values ofM at several loci. Low
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values of M indicate that the European alleles are not entering the African-American gene pool at the
overall admixture rate, which Adams and Ward (1973) interpreted as selection against those alleles in
the admixed population. Interestingly, the A allele at the ABO locus shows virtually no entry into this
admixed gene pool, and this allele is known to be subject to strong selection due to maternalefetal
incompatibility (Chapter 11). Significantly high M values identify European alleles that are entering
this admixed gene pool at rates much higher than the overall admixture rate, which indicates positive
selection for these alleles. Interestingly, a majority of these alleles had their African alternatives
associated with malaria resistance but are deleterious in a nonmalarial environment (such as the sickle-
cell allele), which would explain the high European allele frequencies. This study shows that natural
selection interacts with admixture as a selective sieve that retards the flow of some genes into the
admixed population but accentuates the flow of others, but with most of the genome left unaffected.

Admixture can now be studied across the whole genome with high genetic resolution (Chapters 6
and 8), which greatly increases the power of detecting local selection in one or more of the parental
populations or their admixed descendants. Simulations have revealed that identifying selected
genomic regions in admixed populations has very high power when the background fst < 0.2 for the
parental populations (Crawford and Nielsen, 2013), which is almost always true for human populations
(Chapter 6). These modern studies have found many more genomic regions under selection in African
Americans (Jin et al., 2012; Lohmueller et al., 2011). Admixture among indigenous African
populations has also revealed candidates for selection (Chimusa et al., 2015; Perry et al., 2014). Perry
et al. (2014) surveyed admixed populations between pygmy hunter-gatherers and nearby nonpygmy
agriculturists in different regions of Africa. Their focal admixed populations revealed several outlier
regions that indicated selection, and they followed this by showing that these regions also showed
evidence of strong selection in the parental populations by both the haplotype-based integrated

Table 12.1 Admixture Estimates (M) for Several Loci in African Americans From Claxton,
Georgia, USA

Allele M Possible Explanation

Ro 0.107

Alleles at several blood group loci that may be neutral and that may reflect the overall
impact of asymmetric gene flow resulting in about 11% admixture in this
African-American Population

R1 0.110

R 0.117

Fya 0.108

P 0.092

Jka 0.164

A �0.037 Maternoefetal incompatibility at the ABO blood group locus may select against
European alleles

R2 0.446 Unknown

T 0.466

Hp1 0.619 Alleles at loci implicated with malarial adaptation.
Selection may occur against African alleles in a nonmalarial environmentG6PD A- 0.395

b-Hb S 0.614

The estimates were significantly heterogeneous across loci. The last column gives possible explanations for that heterogeneity.
Data from Adams, J., Ward, R.H., 1973. Admixture studies and the detection of selection. Science 180, 1137e1143.
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haplotype score statistic (Chapter 10) and the level of population differentiation (fst). Interestingly, these
genomic regions did not replicate as outliers in other pygmy/agriculturist admixtures, indicating at least
partially convergent phenotypic evolution and the recent origins of the pygmy phenotype within Africa.

The role of selection in ancient admixture events can now be estimated through studies on ancient
DNA. For example, Günther et al. (2018) used genomic surveys on ancient and modern populations to
reconstruct the evolutionary history of humans on the Scandinavian Peninsula. Humans have lived in
Scandinavia continuously since about 11,700 years before present, as the ice sheet from the last
Glacial Maximum retreated. The ancient DNA data indicated that two human populations dispersed
into this area, one initially from the south and a later one from the northeast following an ice-free
corridor from what is now Norway. These two groups met and mixed in Scandinavia, forming a
genetically diverse admixed population. They studied the derived allele frequencies in three
pigmentation genes in the ancient and contemporary populations: SLC24A5, SLC45A2 (the derived
alleles of these two loci are part of coadapted network 65_2 in Fig. 11.2), and OCA2/HERC2. Fig. 12.2
shows the allele frequencies of the derived alleles (all associated with lighter pigmentation) in the
ancient Scandinavians and in two modern-day European samples, and their expected value in the
ancient Scandinavians under admixture and neutrality. As can be seen, all the derived alleles were at
higher-than-expected frequencies in the admixed ancient Scandinavians. Although no single allele

FIGURE 12.2

Derived allele frequencies for three pigmentation-associated SNPs (SLC24A5, SLC45A2, and OCA2/HERC2).

The red and green dots show the allele frequencies in the two ancient populations that admixed, with WHG being

the western hunter-gatherers who came from the west, and EHG the eastern hunter-gathers who came from the

south. The dashed line connecting EHG and WHG represents potential allele frequencies if the ancient

Scandinavian hunter-gatherers (SHG) were a linear combination of admixture between EHG andWHG. The solid

horizontal line represents the derived allele frequency in SHG at its intersection with the y-axis. The blue dots

represent the amount of admixture in SHGs on the x-axis as estimated from the average genome-wide WHG and

EHG mixture proportion across all SHGs, and the thick black line represents the minimum and maximum

admixture proportions across all SHGs. The solid blue lines show the projection onto the x-axis of the expected

allele frequency due to admixture under neutrality. Dashed horizontal lines represent modern-day western

European populations (CEU) and modern-day Finns (FIN). The p-values were estimated from simulations of SHG

allele frequencies based on their genome-wide ancestry proportions.

Modified from Günther, T., Malmström, H., Svensson, E.M., Omrak, A., Sánchez-Quinto, F., Kılınç, G.M., et al., 2018. Population

genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS

Biology 16, e2003703.
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frequency difference was significant, the combined p-value for all three pigment SNPs is 0.028,
indicating significant selection for lighter pigmentation in this high latitude population, just as
expected from the results discussed in Chapter 11.

Admixture between “modern” and “archaic” humans during the most recent out-of-Africa expan-
sion event was also a source of adaptively important variation. As mentioned earlier, one of the major
alleles associated with high altitude adaptation in Tibetans was derived from an ancient admixture event
involving a population related to the Denisovan individual (Huerta-Sanchez et al., 2014). Admixture
also introduced several archaic HLA haplotypes into modern humans that carry functionally distinctive
alleles (Abi-Rached et al., 2011). These alleles now represent more than half of the HLA alleles found
in modern Eurasians and have also introgressed back into Africa, revealing that these ancient
admixture events have significantly shaped modern human immune systems. Other studies have
revealed several archaic genomic regions that have been positively selected in modern humans (Ding
et al., 2014; Jagoda et al., 2018; Marciniak and Perry, 2017; Racimo et al., 2015, 2017; Sazzini et al.,
2014; Vernot and Akey, 2014) and others that were selected against (Juric et al., 2016; Sankararaman
et al., 2014), thus following the same pattern found in recent admixture events as shown by Table 12.1.
Many of these positively selected archaic regions are regulatory regions that contribute to variation in
modern human phenotypes (McCoy et al., 2017; Quach et al., 2016; Racimo et al., 2017). Hence, there
is little doubt that admixture with archaic Eurasian groups contributed to the adaptation of the
expanding modern human population (Chapter 7) to non-African environments. This is one of the
major reasons why it is important to distinguish between the nearly-out-of-Africa model with at least
two major Eurasian/African admixture events (Templeton, 2002) versus the out-of-Africa replacement
model with no admixture (Cann et al., 1987). Even small amounts of admixture can have important
adaptive consequences (Dobzhansky, 1944), so these two models of human evolution are qualitatively
different from an adaptive perspective.

COARSE-GRAINED TEMPORAL HETEROGENEITY
With coarse-grained temporal heterogeneity, the environment can change between generations but
tends to be relatively constant for any given generation. Haldane and Jayakar (1963) provided some of
the first population genetic models of this situation. They considered a one-locus, two-allele model in a
random mating population. Their first model was one of dominance in which the relative fitness of the
dominant phenotype for AA and Aa is set to 1 every generation, and the relative fitness of the recessive
phenotype for aa isWi for generation i. An exact solution is difficult to obtain, but they showed that the
approximate conditions for a protected polymorphism in this case are:

1

n

Xn
i¼1

Wi > 1 and
Yn
i¼1

Wi < 1 (12.5)

The first condition is that the arithmetic mean fitness of the recessive phenotype must be greater
than the fitness of the dominant phenotype, and the second condition is that geometric mean fitness of
the recessive phenotype must be less than that of the dominant phenotype. Their other model without
dominance set the relative fitness of the Aa genotype to 1 for every generation, and let Vi be the fitness
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for AA at generation i, andWi the fitness for aa at generation i. In this case, the approximate conditions
for a protected polymorphism are:

Yn
i¼1

Vi < 1 and
Yn
i¼1

Wi < 1 (12.6)

Both of the above conditions are broader than those needed to maintain a polymorphism under a
constant fitness model. Indeed, it is impossible for natural selection to maintain a polymorphism under
complete dominance in a constant fitness model, but condition (12.5) shows that polymorphism can be
maintained under complete dominance with coarse-grained temporal heterogeneity. In general, a
polymorphism in a constant fitness model requires that the arithmetic mean fitness of the homozygotes
be less than the arithmetic mean fitness of the heterozygote (e.g., the balanced polymorphism of the A
and S alleles discussed in Chapter 9). Inequalities (12.6) state that the geometric mean fitnesses over
time of the homozygotes must be less than one (the relative fitness of the heterozygote in every
generation) for a polymorphism to be protected, which is broader than the arithmetic mean condition.
This geometric mean condition has been found to be generally valid for coarse-grained temporal
heterogeneity (Carja et al., 2013). Condition (12.6) can be satisfied even if there is not a single gen-
eration that displays heterozygote superiority over both homozygotes. Hence, coarse-grained temporal
heterogeneity broadens the conditions for polymorphism.

Haldane and Jayakar (1963) also pointed out that conditions (12.5) and (12.6) can maintain a
polymorphism for a trait that is weakly selected against almost every generation but on rare occasions
is highly favorable. Shortly before their paper, Neel (1962) proposed a potential example of this
phenomenon, known as the “thrifty-genotype hypothesis.” Neel focused on type 2 diabetesdan
adult-onset alteration in insulin secretion and/or insulin resistance that has life-threatening compli-
cations. Despite the seriousness of this disease to the individuals that have it, type 2 diabetes is nor-
mally under weak negative selection because of its late age of onset (see the next chapter) and because
it is often not expressed under many dietary environments, particularly those of the past. However, it
has become extremely common in the modern world, with a global prevalence among adults over
18 years of age of 8.5% in 2014 (http://www.who.int/news-room/fact-sheets/detail/diabetes), and 1.5
billion people are considered at risk for type 2 diabetes (Wahl et al., 2017). Even if this trait is only
mildly deleterious in a reproductive fitness sense, why is it so common? Neel suggested that the same
genetic states that predispose an individual to diabetes also result in a quick insulin trigger in predi-
abetic individuals (people who are predisposed to diabetes but who do not yet display the disease).
Such a quick trigger is advantageous under famine conditions because it would minimize renal loss of
glucose and result in more efficient food utilizationdthe thrifty genotype. Hence, occasional famines
could explain the high frequency of the genes that predispose people to diabetes even though the trait
may be deleterious in most generations. The original evidence favoring this hypothesis was that the
current populations displaying high incidences of diabetes are those populations that also have a recent
history of a famine or high mortality from starvation, even if that history is several generations ago
(Chen et al., 2012; Diamond, 2003; Minster et al., 2016; Neel, 1962; Neel et al., 1998).

The thrifty-genotype hypothesis has been criticized. Speakman (2018) argues that if famines were
such strong selective agents, then the alleles and haplotypes associated with type 2 diabetes should
have gone to fixation in humans. This argument ignores the long-established population genetic theory
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that coarse-grained temporal heterogeneity makes polymorphisms more likely and fixation less likely,
as illustrated by inequalities (12.5) and (12.6). A second criticism is that the thrifty-genotype
hypothesis depends on famines of hunter-gatherers, coupled with the observation that the frequency
of food shortages appears to be the same in hunter-gatherers and agriculturalists (Qasim et al., 2018).
This is a strange argument because all the initial examples given to support the thrifty-genotype
hypothesis by Neel and others dealt with historic famines long after the transition to agriculture had
occurred. Moreover, the hypothesis simply depends on famines occurring sporadically, and it is
irrelevant if the famine-stricken population consists of hunter-gatherers or agriculturalists. Ancient
DNA studies have provided evidence for episodes of extreme hunger being a recurrent selective agent
in ancient hunter-gatherers. Famine or extreme hunger leads to specific epigenetic changes in the
human genome that are marked by persistent DNA methylation patterns, and these epigenetic signals
have been found in the DNA from ancient hunter-gatherers (Gokhman et al., 2017). Moreover,
Neandertals also had diabetes-risk haplotypes, and at least one has introgressed into modern humans
and is in high frequency in some populations subject to historic famines (Williams et al., 2014). These
observations indicate that famines were a selective force in ancient hunter-gatherers, but they do not
imply in any way that famines were not a selective force in agriculturists. Because of GWAS studies
(Chapter 8), we now know that there are many loci that contribute to both risk of and protection from
type 2 diabetes, and many of these loci display the signatures associated with positive selection
(Ayub et al., 2014; Chang et al., 2011; Fraser, 2013; Klimentidis et al., 2011; Minster et al., 2016; Segurel
et al., 2013; Vatsiou et al., 2016). Interestingly, there is no global signal of enrichment for positive se-
lection when the risk loci are considered collectively. Instead, the signatures of selection at particular loci
tend to be local, indicating that much of the positive selection for risk loci occurred only in recent human
evolutionary history (Ayub et al., 2014; Sandor et al., 2017). This pattern is consistent with famine and
mass starvation becoming an increasingly important selective agent after the adoption of agriculture in
the last 12,000 years, with its resulting increase in human population size and local densities coupled
with great sensitivity to any factor that would cause crop failures (Cochran and Harpending, 2009).
Moreover, positive selection is found both for risk and protection loci (Ayub et al., 2014; Minster et al.,
2016; Segurel et al., 2013), which is consistent with the idea that the prediabetic phenotype can be both
selected for and against because of coarse-grained heterogeneity across the generations.

Another argument against the thrifty-genotype hypothesis is that mortality from famines primarily
affects children and the elderly rather than individuals of reproductive age (Qasim et al., 2018). As will
be shown in Chapter 13, mortality in elderly individuals does indeed invoke only weak selection in
most cases, but mortality in children invokes strong selection, so this argument is without merit.
Moreover, it assumes that all the selection arising from a famine is due to mortality. However, even the
survivors of a famine suffer from reduced female fertility, increased risk for infectious diseases, and
epigenetic changes that result in health risks long after the famine is over (Qasim et al., 2018). Hence,
famines can invoke strong selection through many pleiotropic effects of thrifty genotypes.

The incidence of type 2 diabetes has risen from 108 million in 1980 to 422 million in 2014 (http://
www.who.int/news-room/fact-sheets/detail/diabetes). Such a rate of increase cannot be attributed to
selection favoring an increase in the frequency of risk alleles as there has simply not been enough time
for such a strong evolutionary response. Moreover, with longer life spans, later reproduction, and
earlier onsets and greater prevalence, selection should be more negative than ever against the genes
that predispose one to diabetes (as will be explained in Chapter 13), so the temporal change in fitness is
in the wrong direction to explain this increased frequency. The answer to this paradox lies in the fact
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that phenotypes arise from the interaction of genotypes with environment (Chapters 1 and 8, and the
third fundamental premises of population genetics). There have been substantial cultural shifts in this
time period, particularly related to exercise and diets, which have created a new environment that
favors the expression of the diabetic phenotype and associated epigenetic alterations in gene
expression patterns in risk metabolic pathways (Franks and McCarthy, 2016; Friedman, 2003; Wahl
et al., 2017). When environments change over time, such gene-by-environment interactions can lead to
direct phenotypic alterations without any evolution in the gene pool.

In the case of diabetes, the recent changes in our environment appear to have induced a deleterious
gene-by-environment interaction, but this is not always the case. For example, when humans coming
from a lowland population move into a high altitude environment, they respond to the resulting
hypoxia by elevating their hemoglobin concentration. Although better adaptive solutions exist to
hypoxia and indeed have evolved in populations that have lived at high altitudes for many generations
(Cho et al., 2017), this phenotypic plasticity to a high altitude environment allows people to live and
function in such an environment without the need for genetic adaptation. Because of this phenotypic
plasticity, the population could persist in this new environment prior to genetic adaptation, and this
would allow the time for the population eventually to adapt to hypoxia genetically. Hence, an envi-
ronmentally induced acclimatization to hypoxia by individuals allows the evolution of a genetically
based adaptation to hypoxia in a reproducing population over several generations. The process by
which an initial individual-level plastic response to a novel environment leads to or allows the
population-level genetically based adaptation to that environment is known as genetic assimilation
(Schneider and Meyer, 2017).

The thrifty-genotype hypothesis warns us that many genetic polymorphisms in current human
populations may be due to positive selection in the past but are not necessarily adaptive in the present.
Indeed, we have already seen other examples of this phenomenon. As shown in Chapter 9, the sickle-
cell polymorphism is often selected for in a malarial environment, but it is selected against in a
nonmalarial environment (Table 12.1). The high incidence of sickle-cell anemia in current populations
living in nonmalarial environments is due to past adaptation by their ancestors to a malarial envi-
ronment and is maladaptive in their current situation. This maladaptive consequence arises because the
response to selection, particularly for a recessive phenotype, can take many generations, or thousands
of years for humans (Chapter 9), leading to substantial time-lag effects such that the current gene pool
is not necessarily well adapted to current environmental conditions. Indeed, it is these time-lag effects
that lead to the broadening of the conditions for protected polymorphism (inequalities 12.5 and 12.6)
under coarse-grained temporal heterogeneity. The price of these broadened conditions is that current
populations are often not completely adapted to their current environments.

Sometimes a population experiences a temporal transition in the environment, going from one long-
lasting state to another long-lasting state. We have seen an example of this in Chapter 9 with the
transition of the Bantu peoples from a nonagricultural environment to the adoption of the Malaysian
agricultural complex, which in turn led to malaria becoming a major selective factor. Time-lag effects are
important in making this adaptive transition, and these effects are very sensitive to the details of the
genetic architecture, as we saw in the contrast of hemoglobin S versus C as adaptations to the new
malarial environment (Chapter 9). Note that the proximate cause of change in the environment for the
Bantu peoples was the Bantus themselves modifying their environment for agriculture. Niche
construction is the process by which organisms actively modify their environment, thereby influencing
how natural selection operates on them (Laland et al., 2010). Many species engage in niche construction,
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but humans perhaps engage in this process more than any other species on this planet and do so in a
manner that can be culturally transmitted so that innovations can be passed on to future generations
(Legare, 2017)da temporal stability that augments the adaptive importance of human niche
construction. Because humans have an unprecedented capacity to modify their environment, and these
modifications are often deliberate and purposeful, some have proposed that human evolution as driven
by natural selection may be “purposeful,” a concept called telenomic selection (Corning, 2014).

Telenomy (purposefulness) has typically been downplayed in evolutionary biology, but some as-
pects of human evolution do seem to be adaptive to deliberate purposeful behavioral choices to modify
the environment. A possible example of this is the recent evolution of lactase persistence in some
human populations. In most mammals, only infants are able to properly digest milk due to the enzyme
lactase, which breaks down lactose, the main sugar in milk. After weaning, the gene coding for lactase
is normally repressed so that milk can no longer be properly digested. Some human populations
domesticated cattle about 10,000 years ago, and much later some human populations began to use
cattle as a source of milk for adult consumption. Currently, those human populations that have a
history of adult milk use now have high frequencies for the phenotype of lactase persistence (Segurel
and Bon, 2017); that is, the gene coding for lactase is no longer repressed after weaning but continues
to produce lactase throughout life. In Europe and Asia, this persistence of lactase is caused by a
mutation in the promoter of the lactase gene (Segurel and Bon, 2017). This region displays signals of
very strong positive selection, with selection coefficients of about 4%e5% (Fan et al., 2016; Field
et al., 2016; Vitalis et al., 2014). These estimated selection coefficients are so large that many have
hypothesized other factors that may strengthen selection on these variants, such as obtaining calcium
from milk in high latitude populations and/or milk as a source of uncontaminated water, particularly in
arid environments and during droughts. Studies on environmental associations with pastoralism, UV
radiation, and drought/aridity indicate that only pastoralism is important in Africa but more compli-
cated associations exist in Eurasia (Holden and Mace, 1997; Segurel and Bon, 2017). Studies on
ancient DNA from Europeans ranging from greater than 10,000 BP to less than 1000 BP confirm strong
selection on the Eurasian promotor variant and its rapid increase in frequency after the Bronze Age
(around 3000e1000 BCE, or 5000 BPe3000 BP), as shown in Fig. 12.3 (Marciniak and Perry, 2017).
Hence, lactase persistence is a very recent human adaptation (Allentoft et al., 2015; Mathieson et al.,
2015; Plantinga et al., 2012).

Adult milk use is not confined to Europe, but it is also common in some East African populations
that also display lactase persistence. The Eurasian promoter mutation is generally not found in these
African populations, but rather four different mutations in the lactase gene have been associated with
lactose persistence in various East African populations (Schlebusch et al., 2013; Segurel and Bon,
2017). The signal for positive selection is even stronger in Africa than in Europe and has resulted in
convergent evolution for the phenotype of lactase persistence. In all of these populations, the human
choice to incorporate dairy products into the adult diet, which can produce five times more calories per
hectare than fleshing (Cochran and Harpending, 2009), led to adaptive evolution that allowed such a
diet to be used more efficiently.

Although lactase persistence may represent a case of telenomic selection that reinforces purposeful
behavioral choices, most of the selection associated with human niche construction is related to
unintended consequences of niche construction. For example, when Bantu-speaking populations of
Africa adopted the Malaysian Agricultural Complex, the resulting niche construction also lead to
malaria becoming a major selective force, which in turn led to adaptive evolution in these Bantu
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populations for malarial resistance (Chapter 9). Malaria was not the intended purpose of the niche
construction, so this example illustrates how niche construction can lead to natural selection on traits
unrelated to the purpose of niche construction.

The malarial adaptations in humans (Chapter 9) also illustrate that interactions with other living
organisms are an important selective agent in the human environment. Indeed, in scans of the human
genome for selection, the most common candidate loci for positive selection are typically genes related
to resistance or protection from pathogens (Fumagalli et al., 2011; Lachance and Tishkoff, 2013). As
humans were spread across the globe, they were exposed to many new pathogens and pathogen vectors
(Karlsson et al., 2014)dan exposure that was often augmented by local human niche construction
(Thomas et al., 2012). These exposures also created a new environment for the pathogensehuman
hosts. The increasing abundance and local densities of humans made them an ideal host for many

FIGURE 12.3

The frequency of promoter allele that confers the lactase persistence phenotype in Europe as estimated from

ancient DNA studies. The size of the circle indicates the ancient DNA sample size, and shading indicates

geographic region. The center of the circle is the midpoint of the date range estimated for each population sample.

Allele frequencies estimated with PCR-based methods rather than from ancient genomic data sets are indicated

with dashed circles. The PCR-based studies have potentially higher error rates. The X’s indicate the frequencies of

the lactase persistence allele for present-day European populations, using the same shading to indicate

geographical region.

From Marciniak, S., Perry, G.H., 2017. Harnessing ancient genomes to study the history of human adaptation. Nature

Reviews Genetics 18, 659e674.
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infectious agents. As a result, natural selection often favored pathogens to evolve in such a manner as
to allow humans to become a host and often the primary host. The human falciparum malarial parasite,
Plasmodium falciparum, is closely related to Plasmodium praefalciparum, a malarial parasite that is
prevalent in gorillas. The human parasite has low genetic diversity compared to the gorilla parasite
(Molina-Cruz et al., 2016), indicating a severe genetic bottleneck at the origin of P. falciparum.
Moreover, all extant human lineages of P. falciparum appear to be derived from a single transfer of
P. praefalciparum from gorillas to humans that occurred relatively recently because one gorilla lineage
is nearly identical to human P. falciparum (Liu et al., 2010). The malarial parasite is able to enter
human erythrocytes (red blood cells) by binding to glycophorin A and B on the erythrocyte surface,
and positive selection as inferred from McDonald-Kreitman tests have shaped the diversity in the
P. falciparum gene that influences the binding affinity (Chowdhury et al., 2018). As previously
discussed in Chapter 9, this malarial parasite, once able to infect humans efficiently, induced strong
selection in humans resulting in a multitude of antimalarial adaptations in the human hosts. However,
P. falciparum was also subject to strong selection induced by the evolution of human resistance
mechanisms. Polley and Conway (2001) found strong balancing selection on the malarial gene apical
membrane antigen 1 that codes for a surface-accessible protein in P. falciparum that can serve as a
target for the human immune response to malarial infection. Such high levels of polymorphism are
selected for in the parasite because of the memory component of acquired immune responses in the
human host. Indeed, genome scans of the malarial genome reveal the strongest selection on genes with
peak expression at the stage of the initial invasion of the human erythrocyte, and these P. falciparum
genes have high levels of polymorphism (Amambua-Ngwa et al., 2012) despite P. falciparum in
general having low levels of polymorphism. Another genome scan confirms strong balancing selection
on malarial genes involved in host immunity reactions as well as strong positive selection on genes
related to resistance to antimalarial drugs (Mobegi et al., 2014).

The back-and-forth evolution of humans and the malarial parasite is an example of coevolution in
which an interspecific interaction allows one species to define an adaptive “environment” for the other,
and vice versa. Coevolution is simply natural selection operating within each of the interacting species
in response to that interaction, but it produces a special type of temporal heterogeneity in which
evolution itself is the cause of the temporal changes in the environment. Not all interspecific
interactions are deleterious to humans, and indeed many can be quite beneficial, as studies on the
human microbiome (the microbes living in our bodies, and especially the gut) reveal (Knight et al.,
2017). However, the hostepathogen interaction is a stronger driver of evolutionary change than
mutualistic interactions in which both species benefit (Veller et al., 2017). The strong evolutionary
dynamics induced by antagonistic interactions between species sometimes results in the Red Queen
process, named after the literary character that had to keep running just to stay in place in Alice in
Wonderland (Van Valen, 1973). As noted in previous chapters, theMHC complex is one of the primary
regions in the genome that modulates the human response to pathogens, and this region has
extraordinary levels of genetic diversity. Both theoretical (Ejsmond and Radwan, 2015) and experi-
mental work in model organisms (Kubinak et al., 2012) indicate that the Red Queen process is the
primary driver of this human diversity. By maintaining high levels of diversity, humans can also
rapidly adapt to environmental changes, in this case to new or evolving pathogens. Much of the
adaptation to Eurasian pathogens appears to be due to positive selection on alleles that were poly-
morphic in the ancestral African population (De Filippo et al., 2016).
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Recent human niche construction through the burning of fossil fuels and clearing and burning of
forests has had the unintended consequence of global climate change. Climate change and changes in
human land use and occupation have resulted in alterations in the distributions of many species and the
rates of human contact with many species, including potential pathogens and disease vectors (Boivin
et al., 2016; Muehlenbein, 2016; Walter et al., 2017). Among the unintended consequences of these
changes are “emerging diseases” (Muehlenbein, 2016; Thomas et al., 2012; Walter et al., 2017). One
evolutionary scenario for an emerging disease is when a human pathogen has evolved a more dele-
terious impact on the human host, as perhaps occurred in the Zika virus (Yuan et al., 2017). This
scenario is becoming more likely as human population growth allows greater population size in our
pathogens as well, thereby making it more probable for any given mutation to occur in the pathogen
population, just as human population growth has done the same for our species (Chapter 1).

A second evolutionary scenario for an emerging disease is when a pathogen that typically had used a
nonhuman host has recently made an ecological (and often evolutionary) transition to human hosts (as
discussed above for humans and malaria). The human immunodeficiency virus (HIV-1) is an example of
this type of emerging disease. HIV-1 originated from three independent transfers to humans of the simian
immunodeficiency virus (SIVcpzPT) found in chimpanzees. A single site was identified, the Gag-30 site
in the P17 gene for a gag-encoded matrix protein, which codes for a leucine or methionine (a chemically
conservative change) in the chimpanzee strains but makes a chemically radical change to arginine in all
three independent HIV-1 lineages (Wain et al., 2007). Transfer experiments back to chimpanzees and
site-directed mutagenesis experiments reveal that this site does indeed cause a strong species-specific
growth advantage for the virus, so this single change likely represents a human hostespecific adapta-
tion that contributed to the emergence of HIV-1. Once HIV-1 evolved the ability to use humans as hosts,
HIV-1 induced natural selection on many human genes involved in resistance to HIV-1 infection or
disease progression after infection (Bamshad et al., 2002; Herrero et al., 2016; Modi et al., 2006; Wang
et al., 2016). In turn, HIV-1 is subject to strong selection once it infects a human host (Templeton et al.,
2004). In this way, a new coevolutionary process has been initiated.

FINE-GRAINED HETEROGENEITY
Many aspects of the human environment can change within an individual’s lifetime, sometimes
multiple times. Traditionally, population geneticists gave little attention to such fine-grained hetero-
geneity. Recall that the fitness assigned to a genotype is a genotypic value (Chapter 9), and a single
individual’s specific fitness can be expressed as the sum of its genotypic value plus a random envi-
ronmental deviation factor (Eq. 8.4). This basic quantitative genetic model assumed that the random
fitness deviations that arise from fine-grained environmental variation are simply averaged out across
all individuals sharing the same genotype in an infinite-sized population such that only the mean fitness
(the genotypic value) plays any role in adaptive evolution. However, there are at least three circum-
stances in which fine-grained heterogeneity cannot be ignored in adaptive evolution.

The first case is for the survival of a new mutation. As we saw in Chapter 2, when a mutation first
occurs, it is present in only one individual and even if the population size is large, during the first several
generations after mutation, the mutant is generally found in only a handful of individuals. As a result,
genetic drift cannot be ignored in influencing the probability that a mutation survives in a population,
even if it has a strong selective advantage (Eq. 4.9). Similarly, if the fitnesses of the individuals bearing a
newly arisen mutant vary among individuals due to the fine-grained heterogeneity that each individual

FINE-GRAINED HETEROGENEITY 403



experiences, the assumption that the variation due to fine-grained heterogeneity is “averaged out” is no
longer valid simply because of the small number of individuals who carry the mutant. For example,
consider an effectively infinite-sized, random-mating population in which a new allele, A, mutates from
the ancestral allele a such that the mean number of offspring of aa individuals is 2 (the assumption that
the ancestral population is stable in this diploid model) with the variance in offspring number being v.
The A allele is likely found only in Aa genotypes in the first several generations that often determine the
fate of a mutant. Assume that the mean number of offspring of Aa individuals is k > 2 with variance
v þ vf, where vf, is the additional variance in offspring number induced by the fine-grained environ-
mental heterogeneity experienced by Aa individuals above that of aa individuals. In other words, Aa has
greater average fitness than aa, but Aa is less buffered (greater variance) than aa in its fitness responses to
fine-grained heterogeneity. Then the ultimate probability of survival (ups) of the A allele was shown by
Templeton (1977) to be (after adjusting for diploidy in the current model):

upsz
k � 2

vþ vf
(12.7)

Comparing Eq. (12.7) to Eq. (4.9) that has no fine-grained heterogeneity, we can see that vf >
0 always reduces the probability of survival of the mutant. The interaction of selection and drift favors
not only those mutants that have a high genotypic value of fitness (k in this model) but also those that
are more buffered against fine-grained environmental heterogeneity (low vf). This can be seen by
considering two favorable mutant alleles, A and A0, such that Aa individuals have k ¼ 3 and A0a
individuals have k0 ¼ 2.8, but with A0a individuals displaying a lower fitness variance in response to
fine-grained heterogeneity of v’f ¼ 1 compared to vf ¼ 2 for Aa individuals and with both having a
neutral offspring variance of v ¼ 2. Then, from Eq. (12.7), the A0 mutant will have a probability of
survival of 0.27 and the Amutant will have a survival probability of 0.25. Note that it is the mutant with
the lower average fitness that is more likely to survive in this case. This represents yet another violation
of Fisher’s Fundamental Theorem and illustrates that fitness variance also plays a role in adaptive
evolution because all mutations are subject to these survival probabilities regardless of overall pop-
ulation size.

The second case is when the total population size is small, such as occurs in local populations that
are small and relatively isolated. Consider a fitness model in which the mean fitnesses are 1 for aa,
1 þ ½S for Aa, and 1 þ S for AA, where S > 0. In Chapter 10, we assumed that S was a constant and
gave the probability that the favorable A allele would be fixed in a finite population (Eq. 10.10). Now
assume an ideal population size of N, and that S is a random variable with mean S and variance V,
where V measures fitness variation induced by fine-grained heterogeneity. Then, the probability of
fixation of A in the diploid version of the haploid model shown in Templeton (1977) is:

u ¼ 1� e
�2

�
S�V=2N

�

1� e
�4N

�
S�V=2N

� (12.8)

Comparing Eq. (12.8) to (10.10), the only difference is that S� V=2N replaces S in the equation
for the fixation probability u. Note that fitness sensitivity to fine-grained heterogeneity (measured as
an increasing value of V) decreases the chances of fixation of the otherwise favorable A allele.
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Once again, the common theme is that natural selection and genetic drift interact in a manner that
favors those genotypes that are buffered against fine-grained heterogeneity and that the average fitness
(measured here by S) is not the sole determinant of adaptive evolution. Indeed, from Eq. (12.8), we can
see that if V is large enough and N small enough, an otherwise favorable allele can actually become
deleterious because its resulting genotypes are so poorly buffered against fine-grained heterogeneity.

The third case is when the responses to fine-grained heterogeneity directly affect the mean value
(genotypic value) of fitness. Consider a simple model (Templeton and Rothman, 1978) in which
individuals encounter two environmental states throughout their lifetime, say “0” and “1” (these could
be wet or dry, hot or cold, food or no food, etc.). The probability of an individual encountering one of
these states during a given time interval within its lifetime is governed by a transition matrix:

(12.9)

where 1 � a is the probability of being in state 0 given that the environment was in state 0 during the
previous time period, a is the probability of being in state 1 given 0 previously, b is the probability of
being in state 0 given 1 previously, and 1 � b is the probability of being in state 1 given 1 previously.
The average frequencies of state 0 and 1 are:

f0 ¼ b

aþ b
f1 ¼ a

aþ b
(12.10)

The average frequencies of environmental states are rarely the important feature of how individuals
respond to fine-grained environmental heterogeneity. Consider, for example, exposure to high-altitude
hypoxia. When an individual first encounters such hypoxia, the initial response is generally an increase
in the heart rate. This is a short-term solution that if kept up could lead to heart damage. If the exposure
lasts a few days, the next common physiological response is to increase hemoglobin concentration.
However, this physiological response leads to increased viscosity of the blood and increased risk of
thrombosis, stroke, and poorer pregnancy outcomes (Alkorta-Aranburu et al., 2012). Perhaps a longer-
term acclimatization to high-altitude hypoxia is to alter epigenetically the expression of genes involved
in hypoxia response. For example, we previously discussed the genetic adaptation of human pop-
ulations exposed to high altitudes for many generations. Alkorta-Aranburu et al. (2012) studied such
populations, but also the Oromo ethnic group in Ethiopia, some of whom moved to high altitudes in
historic times and do not yet display the types of genetic adaptations discussed earlier when high
altitude hypoxia was experienced as a coarse-grained environment for thousands of years. They found
a significant difference in the amount of methylation of CpG sites in the MT1G and PITX2 genes
between Oromo living at high and low altitudesda difference not seen in other Ethiopian populations
that have adapted to hypoxia in the coarse-grained sense. TheMT1G gene plays a role in the response
to hypoxia through the vascular endothelial growth factor, which in turn influences the development of
new blood vessels. PITX2 is required for the production of red blood cells and platelets in the bone
marrow. As this example shows, the potential fitness impact and the individual-level strategies for
dealing with that impact are not so much a function of the average frequency of an environment in the
individual’s lifetime, but rather is a function of how long the exposure to that environment persists,
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with different physiological and fitness responses occurring in response to different persistence
durations.

Templeton and Rothman (1978) modeled the fitness impact of the two environmental states by the
lengths of exposure and not just the average state frequencies such that the fitness of genotype ij is
given by:

wij ¼ cij
Y
u

xijxu

Y
v

uijyv (12.11)

where cij is a component of fitness that is solely a function of the genotype and is not affected by the
sequences of environmental states encountered, u indexes all runs of 0s that occurred in the
individual’s lifetime (with L time units being the overall lifetime), xijxu is the fitness response of ge-
notype ij to a run of 0s lasting xu time units, v indexes all runs of 1s that occurred in L, and uijyv is the
fitness response of genotype ij to a run of 1s that lasted yv time units. The average length of a run of 0s
is 1/a, and the average length of a run of 1s is 1/b. To ensure that this is a fine-grained model, L is
assumed to be much larger than (1/a þ 1/b), the average cycle length (that is, the length of time it takes
to have one run of 0s followed by one run of 1s). Note that in Eq. (12.11), the fitness impact of these
environmental runs is considered to be multiplicative. This means that the overall fitness of individual
is related to the geometric mean of the fitness impacts of the environmental runs experienced within
the individual’s lifetime. The geometric mean is much more sensitive to runs associated with very low
fitness than the more standard arithmetic mean, indicating an increased importance of runs of envi-
ronmental states that are potentially highly deleterious. This dependency on geometric means is a
common property of models of fine-grained evolution (e.g., Carja et al., 2013).

Consider now a one-locus, two-allele (A and a) model in a random-mating population. Then, the
polymorphism is protected in this fine-grained environment when the expected values of the natural
logarithms of the homozygotes’ fitnesses are both less than the expected value of the natural logarithm
of the heterozygote’s fitness (the logarithmic transformation relates to the importance of the geometric
mean as opposed to the arithmetic mean). These expected values of the logarithms of fitness have the
form (Templeton and Rothman, 1978):

EðlnwijÞz lncij þ L

1=aþ 1=b

�
lnxij þ lnuij

�
(12.12)

where ln xij is the average log fitness effect of a run of 0s, and lnuij is the average log fitness effect of a

run of 1s. Hence,
�
lnxij þ lnuij

�
is the average log fitness effect of one cycle of a run of 0s followed by

a run of 1s, and L
.�

1
=aþ 1

=b

�
is the average number of cycles an individual experiences in her/his

lifetime. When the cij’s are of equal value, natural selection favors those genotypes that deal best with
the environmental cycles that they encounter within their lifetime as measured by a logarithmic
average.

As discussed above, humans generally have a variety of mechanisms to deal with both short-term
environmental runs (e.g., increased heart rate and hemoglobin concentrations as a response to high
altitude) and long-term environmental runs (e.g., altered gene expression patterns that may influence
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the formation of new blood vessels). A simple model that makes the distinction between short-term
and long-term buffering mechanisms is:

xijx ¼ 1 x � dij0

xijx ¼ e�lij0ðx�dij0Þ x > dij0

uijy ¼ 1 y � dij1

uijy ¼ e�lij1ðy�dij1Þ y > dij1

(12.13)

In this model, the d’s measure the short-term buffering mechanisms that usually have no or low
physiological costs in the short term such that the larger the value of d, the better is the short-term
buffering capacity. When the run lasts longer than d, these short-term mechanisms are no longer
effective, and fitness begins to decline at an exponential rate measured by the long-term buffering rates
given by the l’s. With this parameterization, Eq. (12.12) becomes:

EðlnwijÞz lncij � L
�
foð1� aÞdij0lij0 þ f1ð1� bÞdij1lij1

�
(12.14)

Eq. (12.14) shows that fitness impacts of the environmental states 0 and 1 depend on their
frequencies, f0 and f1. Hence, the more an organism encounters a particular environmental state, the
more important it is to have a high fitness response to that state. Second, the fitness impact depends on
how long an environmental state will last. For example, for state 0, 1 e a is the probability of
remaining in state 0 given the environment is in that state already. If 1 � a is small, even modest values
of the short-term fitness mechanism dij0 ensure that environmental state 0 has little overall fitness
effect. However, if 1 e a is large, the long-term buffering parameter lij0 becomes selectively
important. For example, when modern humans expanded out of Africa, they encountered environ-
ments in which long runs of cold weather would be common. The short-term physiological response to
becoming cold is shivering thermogenesis, but this is not an effective long-term method of buffering
the body against the cold. A longer-term mechanism is to make use of heat dissipation by mito-
chondria, particularly in the brown adipose tissues (Sazzini et al., 2014). A survey of 28 genes involved
in nonshivering thermogenesis revealed an allele at the LEPR gene related to mitochondrial heat
dissipation that has the signature of positive selection in modern East Asians, and this same allele was
also found in the Neandertal and Denisovan genomes, indicating an important role for admixture and
selection on evolution at this longer-term cold adaptation gene (Sazzini et al., 2014).

The common theme of all three of these cases of fine-grained heterogeneity influencing the
adaptive process is the evolution of various mechanisms to buffer against fine-grained heterogeneity.
This buffering of fitness, or fitness homeostasis, is often accomplished by plasticity in other traits,
such as hemoglobin concentration, blood vessel formation, etc. (Schneider and Meyer, 2017). The
evolution of human intelligence and its attendant impact on our ability for niche construction and
cooperative social action (Chapter 11) can also be regarded as an important buffering mechanism
against the vagaries of fine-grained heterogeneity induced by social interactions themselves that in-
creases the adaptive value of social cooperation (Kennedy et al., 2018). Human individuals interact
with multiple individuals, often multiple times, throughout their lifetime, and these social interactions
can influence fitness. These multiple interactions with multiple individuals represent fine-grained
heterogeneity that is experienced by a single individual. The human ability to remember the

FINE-GRAINED HETEROGENEITY 407



consequences of interactions, learn through communication with others, and use this knowledge to
modulate future interactions represents yet another type of buffering against deleterious fitness con-
sequences arising from social interactions (Chapter 11, Kennedy et al., 2018; Shpak et al., 2013;
Suzuki and Arita, 2013). Moreover, these same traits are important for human niche construction
through cultural evolution, and as human group size increases, cultural knowledge is less deteriorated,
improvements to existing cultural traits are more frequent, and cultural trait diversity is maintained
more often (Derex et al., 2013), further augmenting both fine-grained and coarse-grained heteroge-
neity in the human environment. Hence, adaptation to fine-grained heterogeneity has played and
continues to play a critical role in the evolution of modern humans.
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SELECTION IN AGE-STRUCTURED
POPULATIONS 13
An egg is fertilized, and it may develop into a live-born baby or it may fail to implant, or abort, or be
stillborn. A newborn can continue to grow and develop through infancy, a helpless and defenseless
period in which the infant cannot survive without help from parents or other individuals. Surviving
infancy leads into childhood, a period defined by the stabilization of the growth rate, immature
dentition, weaning, and immature motor control. The child can survive to become a juvenile, a stage
characterized by less dependence upon parents and more interaction with other adults and peers, as
well as the development of a new zone of the adrenal cortex that secretes increased levels of androgens,
resulting in an early stage of sexual maturation (adrenarche). Individuals who survive the juvenile
period become adolescents, a period of maturation of adult behaviors and of puberty and the
completion of sexual maturation. Surviving adolescents become adults. A reproductively mature
individual of a given age may find a mate or not. If the individual has a mate at a given age, that
individual may reproduce, or not. Mating and reproduction can occur multiple times during an in-
dividual’s lifetime. Adults survive various lengths of time. If a woman survives long enough, she enters
a postreproductive period known as menopause. Both men and women experience senescence if they
survive long enough, characterized by a decline of mental and physical attributes and greater incidence
of many diseases. Ultimately, everyone dies. The above sequence of events is known as the human life
history (Hochberg, 2012). Human life history differs from that of other living apes, by having
extended infant and childhood periods during which much brain growth occurs, by a high potential
reproductive output, by a long female postreproductive period, by a high potential longevity, and by
greater basal metabolic rates to accommodate the energetic costs of greater brain size and reproductive
output (Pontzer et al., 2016; Austad and Finch, 2017; Alberts et al., 2013).

Up to now, the population genetic models presented in this book have generally ignored human life
history. Instead, we have typically modeled human populations as having all fertilization events
occurring at the same time, followed by a single transition from zygote to adult (with death allowed
during that transition), all of whom mate and reproduce in synchrony to produce the next generation
and then die, resulting in discrete, nonoverlapping generations (e.g., Fig. 9.2). Such models yield much
insight into human evolution and are therefore quite useful, but they are obviously an over-
simplification. Humans can mate and reproduce at many different ages throughout their lifetime,
humans do not have discrete generations but rather overlapping generations, in which parents, chil-
dren, grandparents, etc. can all be alive at the same time and interact. This chapter focuses on evolution
and selection in human populations with overlapping generations. The first step in constructing such
models is to develop quantitative measures of life history and, in particular, reproductive fitness in
populations with overlapping generations.
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BASIC LIFE HISTORY THEORY AND FITNESS MEASURES
Fitness consists of three major components: viability, mating success, and fertility/fecundity
(Chapter 9). To accommodate aging effects, all three of these components must be reformulated to be
functions of age. The model developed here assumes discrete age classes, although continuous time
analogues exist. For humans, a convenient age interval consists of a year or a range of years. A
variety of different age ranges can be used within a single model. Age should ideally be measured
from the time of fertilization, but it is often not practical to measure survivorship in the time interval
between conception and birth, so frequently age is measured from birth rather than from conception.
However, some studies do focus on survivorship during the time period before birth (Larsen et al.,
2013), but for now our model will ignore that time period. By doing so, we are ignoring much
potential selection, as it has been estimated that only about 30% of all conceptions reach the stage of
a live birth (Fig. 13.1).

Because age ranges are typically used, a single age, x, is often assigned to each age range in order to
make some calculations possible. Frequently, x is the midpoint age of the range. The fitness component
of viability is measured by the probability that an individual survives to age x given it was alive at any
time during the initial age range. This probability is called the age-specific survivorship, l x. By
definition all individuals are alive in the initial age category (i.e., only live births are considered), so the
initial age range always has l x ¼ 1 with this convention. Table 13.1 gives an example of age-specific
survivorship for US females from the 2010 census (Arias, 2014). Fig. 13.2 shows a plot of the female
and male l x values from the 2010 US census versus the assigned age x. Such a plot is called a sur-
vivorship curve. Note from Fig. 13.2 that survivorship always is a declining function of age because
once an individual dies, that individual is dead in all subsequent age categories. Although the l x’s are
probabilities, they do not define a probability distribution because they are not defined on mutually

FIGURE 13.1

An overview of prenatal mortality in humans. The preclinical deaths are generally not noted by the mothers, and

therefore difficult to study in most populations.

From Larsen, E.C., Christiansen, O.B., Kolte, A.M., Macklon, N., 2013. New insights into mechanisms behind miscarriage.

BMC Medicine 11.
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Table 13.1 The Life History Table for US Females Based on the 2010 Census Data

Age Range (Years) Assigned Age, x l x bxmx l xbxmx l xbxmx=2 xl xbxmx=2

<1 0.5 1.00000 0.0000 0 0 0

1e4 2.5 0.99382 0.0000 0 0 0

5e9 7 0.99319 0.0000 0 0 0

10e14 12 0.99272 0.0020 0.00199 0.00099 0.01191

15e19 17 0.99168 0.1710 0.16958 0.08479 1.44141

20e24 22 0.98976 0.4500 0.44539 0.22270 4.89933

25e29 27 0.98722 0.5415 0.53458 0.26729 7.21680

30e34 32 0.98403 0.4825 0.47480 0.23740 7.59673

35e39 37 0.97967 0.2295 0.22484 0.11242 4.15945

40e44 42 0.97340 0.0510 0.04964 0.02482 1.04252

45e49 47 0.96340 0.0035 0.00337 0.00169 0.07924

50e54 52 0.94800 0.0000 0 0 0

55e59 57 0.92656 0.0000 0 0 0

60e64 62 0.89615 0.0000 0 0 0

65e69 67 0.85123 0.0000 0 0 0

70e74 72 0.78486 0.0000 0 0 0

75e79 77 0.68799 0.0000 0 0 0

80e84 82 0.55082 0.0000 0 0 0

85e89 87 0.37019 0.0000 0 0 0

90e94 92 0.18150 0.0000 0 0 0

95e99 97 0.05399 0.0000 0 0 0

�100 102 0.02758 0.0000 0 0 0

Total 1.90418 0.95209 26.44739

FIGURE 13.2

The survivorship curves for US females (black) and males (red) based on the 2010 census data, and for US females

(purple) based on the 1920 census.
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exclusive events as the death of an individual affects the l x’s for all subsequent age ranges and an
individual alive at age x was also alive during all previous age ranges.

Mating success and fertility can also be measured in an age-specific fashion. Let mx be the
probability that an individual who is alive at age x successfully mates at age x, and let bx be the number
of offspring born to mated individuals of age x. Because humans typically cannot have children unless
that have mated, just recording the number of births to individuals of age x automatically measures the
product bxmx, and it is this product that is generally given in human life history tables. These repro-
ductive products are shown in Table 13.1 for US females from the 2010 census (Martin et al., 2012). As
can be seen, there are clear pre- and postreproductive periods of a female’s life history. Much the same
is true for males, although there are small probabilities of male reproduction for men older than
50 years. Because of sexual reproduction, two individuals are needed to produce a baby, so often only
half of the baby is assigned to the mother and half to the father. Hence, Table 13.1 also shows these
age-specific reproductive measures divided by two.

Overall fitness measures can be calculated from these age-specific fitness components. One of the
simplest is the net reproductive rate that represents the average number of offspring (or half-
offspring in a sexually reproducing population) born to members of a cohort (a cohort is a group of
individuals that share some attribute, such as gender, genotype, etc.). To have an offspring at age x, an
individual needs to be alive (l x), mated (mx), and fertile given mated (bx), so the net reproductive rate,
R0, is the triple product of all three fitness components for a specific age summed over all ages:

R0 ¼
Xmaxage

x¼0

l xmxbx (13.1)

These sums are given in Table 13.1 for US females. As can be seen, the average female born in the
United States had 1.90 children over her entire life span. More relevant to fitness, she had an average of
0.95 half-children, so the net reproductive rate of US females is 0.95.

A major limitation of the net reproductive rate as a measure of fitness is that it fails to take into
account how rapidly offspring are produced. Consider a simplistic situation in which a population is
subdivided into two distinct groups, each with clonal reproduction. Suppose further that there is no
death until the end of the reproductive period, something that is approximately the case for US
females as shown in Fig. 13.2 for the 2010 census. Suppose further that group A individuals have
exactly two offspring at age 20 and then no further reproduction, whereas group B individuals have
exactly two children at age 40 and then no further reproduction. Since there is no death until after the
reproductive period, the net reproductive rate of both cohorts is 2 (with clonal reproduction, there is
no need to divide by two). This would imply that both A and B have the same reproductive fitness.
However, because the generations are overlapping, we need to consider not only the number of
offspring but also the timing of reproduction. For example, let us examine cohorts of the two groups
that were all born in the same year, designated as year 0. Members of group A produce 2 offspring at
year 20, who in turn produce 2 offspring each (a total of 4 offspring) at year 40. In contrast, members
of group B produce 2 offspring at year 40. Hence, at year 40, twice as many newborns of type A have
been produced than B newborns. Clearly, group A individuals have a greater reproductive fitness
than group B individuals.

As the above hypothetical example demonstrates, we need a measure of fitness that takes into
account both the number of offspring an individual produces and also when those offspring are
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produced. One such measure has been derived under the special case of a stable age distribution. A
population has a stable age distribution when the proportions (not numbers) of people in the various
age categories remain constant over time. It does not mean that the population size is constant, as
stable age distributions can exist in growing, stable, or declining populations. However, for a fitness
measure, the actual number of individuals in a particular age category is important, so we need to apply
the assumption of a stable age distribution to the numbers in the various age categories. To do so, let
nx(t) be the number of individuals of age x at time t. The number of individuals born at time t is n0(t),
and can be calculated from a life history table such as Table 13.1 as:

n0ðtÞ ¼
Xmaxage

x¼0

nxðtÞmxbx (13.2)

The number of individuals of age x at time t can be expressed as the number of individuals that were
born at time t-x multiplied by the probability that they survived to age x, which is l x:

nxðtÞ ¼ n0ðt � xÞl x (13.3)

Substituting Eq. (13.3) into (13.2) yields:

n0ðtÞ ¼
Xmaxage

x¼0

n0ðt � xÞl xmxbx (13.4)

The assumption of a stable age distribution means that the proportion of individuals in a particular
age class is constant even if the absolute numbers are changing, which can be expressed as:

nyðtÞ
nyðt � 1Þ ¼ l for every age class y (13.5)

where l is a constant. By multiplying ratios like that in Eq. (13.5) across adjacent time intervals, we
have:

nyðtÞ
nyðt � xÞ ¼ lx0nyðt � xÞ ¼ l�xnyðtÞ (13.6)

Letting y ¼ 0 and substituting Eq. (13.6) into (13.3) yields:

n0ðtÞ ¼
Xmaxage

x¼0

l�xn0ðtÞl xmxbx

1 ¼
Xmaxage

x¼0

l�xl xmxbx

(13.7)

The bottom version of Eq. (13.7) is known as Euler’s equation. Note that the three age-specific
fitness components completely determine the value of l, albeit implicitly. Setting y ¼ 0 in Eq. (13.5),
we can see that l is a measure of reproductive success per absolute time unit; that is, l measures the
number of offspring produced by the cohort in a unit of time and not over an entire generation. Fisher
(1930) therefore concluded that l could serve as a fitness measure in populations with overlapping
generations. However, Fisher preferred to measure reproductive success not in terms of an absolute

BASIC LIFE HISTORY THEORY AND FITNESS MEASURES 419



ratio (Eq. 13.5) but rather as an exponential rate r, such that er ¼ l. This puts Euler’s equation
into the form:

1 ¼
Xmaxage

x¼0

e�rxl xmxbx (13.8)

Fisher called this exponential rate r the Malthusian parameter. Note that r ¼ 0 means that the
cohort is exactly replacing itself (the death rate and birth rate are equal), whereas r > 0 means the
cohort is producing an excess of offspring (the birth rate exceeds the death rate) and r < 0 means that
the cohort is producing a deficiency of offspring (the death rate exceeds the birth rate).

Given a life history table, the Malthusian parameter can be numerically calculated implicitly from
Eq. (13.8). For example, the Malthusian parameter for US females from Table 13.1 (using half births)
is �0.00176, indicating that US females are not replacing themselves (these calculations ignore
immigration). Sometimes it is useful to have an approximate explicit solution to Eq. (13.8). When r is
small in magnitude, e�rxzð1 � rxÞ, and under this approximation, Euler’s equation becomes:

1 ¼
Xmaxage

x¼0

ð1� rxÞl xmxbx ¼
Xmaxage

x¼0

l xmxbx � r
Xmaxage

x¼0

xl xmxbx (13.9)

Eq. (13.9) can be solved explicitly for r as:

r ¼

Pmaxage

x¼0
l xmxbx � 1

Pmaxage

x¼0
xl xmxbx

¼ R0 � 1Pmaxage

x¼0
xl xmxbx

¼
1� 1

R0

T

where T ¼

Pmaxage

x¼0
xl xmxbx

Pmaxage

x¼0
l xmxbx

(13.10)

The term T is the average age of reproduction, also called the average generation time. Returning to
Table 13.1, the average generation time for US females from the lower equation in 13.10 is 26.44739/
0.95209 ¼ 27.78 years, and the approximate Malthusian parameter from the upper Eq. (13.10)
is �0.00181 (the exact, implicit solution is �0.00176). Eq. (13.10) also gives biological insight into
the meaning of Euler’s equation. Note that r is an increasing function of the average number of
offspring produced by a member of the cohort (the net reproductive rate, R0), so the more offspring, the

higher the fitness in general. However, r is also an inverse function of T , the average generation time.
Hence, the lower the average age at birth, the higher the fitness in general. The Malthusian parameter is
a fitness measure that is sensitive to both the number of offspring produced and how fast they are
produced. Note also from Eq. (13.10) that if all cohorts have approximately the same average
generation time, then the net reproductive rate is a good measure of relative fitness.

The fitness measure r depends upon the assumption of a stable age distribution, but human pop-
ulations often deviate from this assumption (e.g., the “baby boom” experienced in the United States
after World War II caused and still causes a deviation from the stable age distribution of the population
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in the United States). Fitness measures can be derived from the basic age-specific fitness components
that take into account deviations from the stable age distribution (Demetrius, 1975, 1985; Templeton,
1980). These measures can be quite complex, so in the remainder of this chapter we will only use the
net reproductive rate or the Malthusian parameter as the measure of fitness.

A limitation of both the net reproductive rate and the Malthusian parameter as fitness measures in
human populations is that both ignore the complex interactions between different age classes that
can influence the age-specific fitness components. Such interactions are common in our highly so-
cially interactive species. For example, human females are unusual in having a long postreproductive
period (menopause), as shown in Table 13.1. Note that since mxbx is zero in the postreproductive
period, the postreproductive period makes no direct contribution to fitness through either Eq. (13.1)
or (13.8). However, human parents in many societies maintain strong social bonds with their children
and grandchildren. It has been hypothesized that these bonds can allow parents to affect their off-
spring’s survivorship and fertility and even their grandchildrens’ survivorship (Hawkes et al., 1998).
Theoretical models support these predictions (Pavard and Branger, 2012). Lahdenpera et al. (2004)
used multigenerational data on Finns and Canadians to show that postreproductive mothers enhanced
the reproductive success of their offspring by allowing them to breed earlier, more frequently, and
with higher survivorship, but no such reproductive benefits could be found for postreproductive
males (Lahdenpera et al., 2004). In contrast, a multigenerational study of a Utah population from the
late 1800s found no reproductive benefits attributable to postreproductive females, but did find
benefits for post-50 males (Moorad and Walling, 2017). These two studies are not necessarily
contradictory because the Finnish and Canadian populations were primarily monogamous, whereas
the Utah territory population had a high degree of polygamy. In particular, polygamy tends to
lengthen the reproductive period of men but not women (Vinicius and Migliano, 2016), and the Finn/
Canadian study looked only at truly postreproductive men, whereas the Utah study looked at men
over 50 years of age but not necessarily postreproductive. Regardless, these studies clearly
demonstrate that postreproductive individuals or individuals over 50 years of age can and do in-
fluence the reproductive output of their descendants in a manner that is not directly measured by
either Eq. (13.1) or (13.8).

Another transgenerational interaction that can influence age-specific life history components is
parental care of their infants and children. For example, the newborn infant has for most of human
evolutionary history been dependent upon breast-feeding as an exclusive source of nutrition. Mother’s
milk not only provides nutrition and essential elements needed for infant growth and survival but also
can pass on antigens and affect the infant’s microbiome in a beneficial manner (Gura, 2014). All of
these effects enhance infant survivorship. However, breast-feeding also puts a high nutritional demand
on the mother, and sometimes this demand can have deleterious consequences for the mother. For
example, the infant requires high levels of calcium in the milk for skeletal growth, and if the mother’s
diet cannot supply this level during lactation, the maternal skeleton is resorbed to provide calcium for
the milk. This in turn can have deleterious consequences for the skeletal health of the mother and her
own survivorship during the reproductive period (Kovacs, 2016).

A more subtle transgenerational interaction deals with the impact of parental age on the survi-
vorship and health of their offspring. CpG methylation patterns (Chapter 2) in newborns are signifi-
cantly influenced by both maternal and paternal ages, with the maternal effects being stronger. The
genes subject to these parental-age methylation effects are disproportionally related to cancers,
suggesting that disease risk throughout the lives of newborns could be influenced by parental age
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(Adkins et al., 2011). Another parental age effect is an increase in the mutation rate with age,
particularly in males, that would imply that children born to older parents, particularly fathers, have a
greater risk of bearing deleterious mutations (Lynch, 2016; Kong et al., 2012). Transgenerational
effects can be modeled by using multiple targets of selection that include parents and offspring
(e.g., age-specific extensions of Tables 11.2 and 11.3), but much work on multitarget selection in
humans remains to be done even though it has great potential in discovering effective and individu-
alized approaches in medicine and in global health programs (Govindaraju, 2014).

GENETIC VARIATION IN LIFE HISTORY TRAITS
Eqs. (13.1) and (13.8) provide fitness measures that are functions of age-specific life history traits.
Genetic variation in these traits is necessary for life history to evolve in response to natural selection or
other evolutionary forces. Such genetic variation does indeed exist for a plethora of human life history
components. Age at menarche is a marker of puberty in females and the transition from the juvenile to
adolescent life history stages. There is much individual variation in the age of menarche, and genome-
wide association (Chapter 8) studies (GWAS) on women of European descent found strong evidence of
variation at 106 loci that is associated with the age of menarche (Perry et al., 2014). Many of these loci
were associated with pubertal traits in both sexes. Gestation length is another important life history
trait for which humans differ from the expectations based on other mammals. Plunkett et al. (2011)
regarded the genes showing accelerated evolutionary rates in the human lineage (Chapter 10) as
potential candidates for gestation length and found polymorphisms in one such accelerated gene that
has current variants that are associated with gestation length and preterm birth. The end of the human
female reproductive period is marked by menopause, which also shows considerable age variation.
GWAS studies have revealed 27 loci associated with the age of menopause and much sharing of
variation between women of European and African ancestry (Chen et al., 2014). Moreover, variation at
17 of these loci is associated with early menopause, the leading cause of infertility in the western world
(Perry et al., 2013).

Survivorship and longevity are sensitive to many cultural, social, medical, and economic factors,
although maximum longevity in humans is insensitive to these environmental variables (Dong et al.,
2016). Despite the variation induced by these environmental factors, many genes affecting age-specific
survivorship and longevity have been identified. The most frequent cause of postperinatal death in in-
fants in the western world is sudden infant death syndrome (SIDS). One hypothesis is that risk for SIDS
is increased by cardiac pathologies. Therefore, Hertz et al. (2016) used a candidate locus approach by
surveying 100 cardiac-associated genes in a SIDS case/control study. They discovered that 34% of the
cases had variants in these cardiac-associated genes with likely functional effects that could contribute to
the cause of death, mostly channelopathies that could induce arrhythmia. Other common causes of
neonatal death are preterm births and low birth weight. Voskarides (2018) surveyed pregnant women
from Northeastern Brazil for two SNPs in the Vitamin D Receptor (VDR) gene, one of which is in the
coadapted network 65_2 (Fig. 11.2) that is under strong clinal selection associated with latitude and UV
intensity (Fig. 11.4). They found that genetic variation at this VDR SNP in network 65_2 was signifi-
cantly associated with premature birth, neonate weight, and presence of infection during pregnancy.
These demographic effects could contribute to selection on the 65_2 coadapted complex.

A common strategy to identify genetic variation that influences later age-specific survivorship and
longevity is to divide the population into two or more age bins (ranges of ages) and test for allele
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frequency differences between the bins. For example, Napolioni et al. (2014) used a candidate locus
approach with this strategy. They focused on genetic polymorphisms in the immunoglobulin heavy
chain enhancer of the gene HS1.2 and in the TNFA promoter. Both of these loci are believed to
modulate inflammatory responses and are associated with several autoimmune diseases that are
believed to contribute to human mortality. They divided a group of unrelated, healthy individuals from
Central Italy into two age bins: 18e84 years and 85e100 years. They discovered that individuals who
were homozygous for the �2 allele at the HS1.2 enhancer were significantly less likely to be in the
older age bin. They also found a significant interaction with a TNFA -308A allele that protects �2
homozygotes from reduced longevity. A similar candidate locus study in a Central Italian population
focused on the acid phosphatase gene ACP(1) and the adenosine deaminase locus 1 ADA(1) (Lucarini
et al., 2012). These two loci are involved in energy metabolism, which as mentioned at the beginning
of this chapter has been greatly altered in the evolution of human life history. Lucarini et al. (2012) found
significant declines in allele frequencies with increasing age and interactions between the genes.
Mitochondria are also involved in energy metabolism. Because of their unique mode of maternal in-
heritance (Chapter 2), the mitochondrial haplotypes of maternal ancestors of a present-day subject can be
reconstructed from pedigree data. This feature allowed Castri et al. (2014) to investigate the longevities
of the female ancestors of 152 living subjects from Costa Rica going back from 7 to 17 generations. The
mtDNA of the living subjects was sequenced in the control region and scored for seven restriction-
fragment length polymorphisms that defined several standard haplogroups. As shown in Fig. 13.3,
these haplogroups displayed significant differences in the longevity of their female ancestral bearers.

GWAS has also been used to identify several genes that are associated with human longevity.
Fig. 13.4A shows the results of a genome scan for longevity in a UK population that identified a strong
signal on chromosome 19 in the region of the ApoE locus (Mostafavi et al., 2017). Indeed, the SNP
with the strongest signal was the one that defined the ε4 allele at this locus (Chapter 8). Part B of
Fig. 13.4 shows the changes of the frequency of the ε4 allele (the T nucleotide state at the defining
SNP) with increasing age. As can be seen, there is a strong decline in the ε4 allele frequency above age
70 relative to the neutral model, indicating a large decrease in age-specific survivorship. As mentioned
in Chapter 8, the ε4 allele is associated with increased LDL cholesterol levels, and it is also associated
with increased risk for death from coronary artery disease (Stengard et al., 1998) and increased risk for
and earlier onset of (Fig. 13.4B) Alzheimer’s disease (Chartier-Harlin et al., 1994). Coronary artery
disease and Alzheimer’s disease are two of the major causes of death in populations from developed
countries. Hence, these age-specific declines in survivorship associated with the ε4 allele are not
surprising. Overall, in the United States, carriers of the ε4 allele have a life span 4.2 years shorter than
noncarriers (Kulminski et al., 2014).

One frequent feature of the genetic architecture of life history traits is antagonistic pleiotropy in
which a gene that tends to increase one age-related fitness trait also tends to decrease another
age-related fitness trait. For example, the GWAS studies of Mostafavi et al. (2017) revealed variants
associated with delayed puberty, which by itself would decrease fitness as measured by either
Eq. (13.1) or (13.8). However, these same variants were also associated with longer parental life span,
which by itself would increase fitness. Similarly, they also found variants associated with later age at
first birth in females (decreases fitness by itself) but with longer maternal life span (increases fitness by
itself). Another GWAS (Day et al., 2017) detected 389 significant signals associated with the age of
menarche in females from Iceland, and variants associated with earlier age of menarche (increases
fitness by itself) also tended to be associated with increased risk of sex-steroid-sensitive cancers later
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in life (decreases fitness by itself). Candidate gene studies also reveal antagonistic pleiotropy for life
history traits. For example, female carriers of the BRCA1/2 mutations born before 1930 in a Utah
database have significantly more children than controls along with shorter birth intervals and older end
of childbearing, but these women also have greatly increased risk of breast cancer and higher post-
reproductive mortality (Smith et al., 2011). Because of such life history trade-offs, it is essential to
examine the overall impact of all the pleiotropic effects on fitness (Eq. 13.1 or 13.8) since single life
history traits regarded in isolation are often misleading with respect to evolution (Jones and
Tuljapurkar, 2015; Templeton, 1980, 1983).

THE EVOLUTION OF SENESCENCE
Why do we grow old? Why would natural selection not favor a population of ageless individualsd
individuals who, once achieving reproductive maturity, show no diminishment in viability or repro-
ductive capacity with increasing age? Such ageless individuals should be the most fit by either

FIGURE 13.3

The longevity in years from individuals living in the time range 1500 CE to 1940 CE by mtDNA haplogroups

(HG) of the female ancestors of a population from Costa Rica. The mean longevity is shown by the diamonds, the

median by the straight line in the box indicating the quartiles above the median and below the median (i.e., the box

includes 50% of the observations), and the range of longevities shown by the thin lines. An F test was used to test

the null hypothesis of no differences in longevity among the haplogroups, and the significant results are indicated

in a box in the upper right-hand corner of the figure.

From Castri, L., Luiselli, D., Pettener, D., Melendez-Obando, M., Villegas-Palma, R., Barrantes, R., et al., 2014. A mitochondrial

haplogroup is associated with decreased longevity in a historic New World population. Human Biology 86, 251e259.
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Eq. (13.1) or (13.8), so why do humans show senescence? Medawar (1952) suggested an evolutionary
answer to this question. His answer can be illustrated through the use of either fitness Eq. (13.1) or
(13.8), but we will use (13.1) as the mathematics is simpler.

Suppose a population exists of ageless individuals who show no senescence once reaching
reproductive maturity. Although they do not age as adults, they can still die through accidents, dis-
eases, etc. Being ageless only means that their probability of dying in any given interval of time does
not depend upon their age, and also that their expected number of offspring in any given interval of
time is a constant for all adult ages. Let d be the constant probability of an adult dying in an interval of
time, and mb the constant expected number of offspring in an interval of time. For convenience, we
will let age 0 be the age at which individuals reach reproductive maturity, which we assume is the same
for all individuals. As we have seen, Eqs. (13.1) and (13.8) only start having nonzero terms when
reproductive maturity begins, so this convention will have no impact on relative fitness. Given a live
individual who has reached reproductive maturity, the probability of that ageless adult living to age x is

l x ¼
Yx
i¼0

ð1� dÞ ¼ ð1� dÞx (13.11)

and the net reproductive rate is, using the well-known solution to the summation of a geometric series:

R0 ¼
XN
x¼0

l xmb ¼ mb
XN
x¼0

ð1� dÞx ¼ mb

d
(13.12)

FIGURE 13.4

The impact of the ApoE ε4 allele on longevity in a population from the United Kingdom. Part A shows a plot of the

GWAS P-values for the change in allele frequency with age (using bins of 5 years, but with only a single bin for

ages below 38 years). The red line shows the genome-wide threshold for significance. Part B shows the trajectory

of the ε4 allele frequency with age (solid blue line) versus the dashed line showing the expected trajectory under

the null hypothesis no difference in age-specific survivorship across alleles after adjusting for slight changes in

ancestry (inferred from other markers) across the age bins. The orange lines indicate the mean ages of onset of

Alzheimer’s disease for carriers of 2, 1, or 0 ε4 alleles.

FromMostafavi, H., Berisa, T., Day, F.R., Perry, J.R.B., Przeworski, M., Pickrell, J.K., 2017. Identifying genetic variants that affect

viability in large cohorts. PLoS Biology 15, e2002458.
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Suppose a mutation occurs in this ageless population such that bearers of this mutation die at age
n-1dan extreme pattern of senescence. Then, using the well-known formula for the summation of a
finite geometric series, the net reproductive rate of the mutant individuals is:

R0
0 ¼ mb

Xn�1

x¼0

ð1� dÞx ¼ mb

d
½1� ð1� dÞn� (13.13)

Note that the term (1 � d)n in Eq. (13.13) goes to 0 as n gets large for any d < 1 (that is, there is
some death). This means that there always exists an n that ensures that the senescent mutant is
effectively neutral with respect to the ageless phenotype. As we saw in Chapter 4, neutral alleles can go
to fixation due to genetic drift, and moreover, this rate of neutral fixation is not dependent on popu-
lation size (Eq. 4.31). Hence, all finite populations with some degree of death will eventually evolve
senescence at older ages through neutral mutation fixation. The state of being forever young is not an
evolutionary option. Medawar’s model shows the importance of taking into account all evolutionary
forces such as mutation and genetic drift, rather than just focusing on natural selection alone.

We saw in Chapter 9 that Huntington’s disease is a dominant neurodegenerative disease due to
expansion of trinucleotide repeats of CAG such that the age of onset tends to decrease as the number of
repeats increases. The empirical relationship between age of onset and CAG repeat number is
described by the equation (Langbehn et al., 2004):

SðAge;CAGÞ ¼
 
1þ exp

(
pffiffiffi
3

p ½ � 21:54� expð9:56� 0:146CAGÞ þ Age�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35:55þ expð17:72� 0:327CAGÞp

)!�1

(13.14)

where Age is the age of the individual, CAG is the number of CAG repeats, and S(Age,CAG) is the
probability of having no neurological symptoms up to the given age with the given repeat number.
Assuming that all reproduction stops with the onset of the disease and that there are no other fitness
effects (which as pointed out in Chapter 11 is not true, but we assume so for the moment), then the net
reproductive rate for an Hh individual is given by:

R’
0ðCAGÞ ¼

Xmax age

x¼0

[xmxbxSðx;CAGÞ (13.15)

Using the life history data for US females in Table 13.1, the net reproductive rate for a newly
formed H allele that has 36 repeats would be 0.949 versus 0.952 for hh females, a 0.3% decrease in
fitness. Hence, there is only a slight reduction in fitness, and in small demes the H allele would be
effectively neutral. Moreover, there are many other loci that can modify and delay the age of onset of
the disease (Che et al., 2011; Holmans et al., 2017; Lee et al., 2015, 2017; Metzger et al., 2010; Vittori
et al., 2014). If a stable, low repeat number H allele did drift to high frequency, the high frequency ofH
would define a genetic background that would result in selection for these modifiers to delay the age of
onset even further (Haldane, 1941). Selection at these modifier loci would make such stable H alleles
increasingly neutral through a stepwise process of coadaptation (Chapter 11). However, as also pointed
out in Chapter 11, there is very strong meiotic selection to increase the CAG repeat number in H
alleles. This in turn leads to an earlier age of onset (Eq. 13.14) and decreased fitness. For example,
suppose the number of CAG repeats has increased to 56 due to meiotic selection. The net reproductive
rate ofHh females is now 0.383da 59.8% decrease in fitness. Hence, as meiotic selection drives up the
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repeat number, individual selection becomes very effective in eliminating the H alleles, thereby
shortening the survival time of an H allele lineage and forestalling the evolution of a coadapted
complex of age-of-onset modifiers.

Huntington’s disease is subject to other targets of selection, as discussed in Chapter 11. Within
families, the H allele is favored by higher fecundity, but individuals from Huntington families are
selected against among families in a community. Hence, to understand the evolutionary dynamics of
this one allele, selection at four different targets or biological levels must be taken into account, with
antagonistic trade-offs existing between every pair of adjacent biological levels (selection for at the
meiotic leveldselection against at the individual leveldselection for at the within family leveld
selection against at the community level). Antagonistic pleiotropy is rampant in this system.

Williams (1957) incorporated antagonistic pleiotropy into models of the evolution of senescence.
Once again, we will just use the net reproductive rate to illustrate the impact of pleiotropy, but the
results readily extend to more complicated fitness measures and situations. As before, let us start with
an ageless population with fitness described by Eq. (13.12). As before, suppose a mutation occurs that
kills its bearers at age n � 1. However, now assume that this same mutation increases reproductive
output from mb to mb0 such that mb0 > mb. This type of trade-off between reproductive output in
younger individuals versus mortality in older individuals is a commonly observed pattern in humans
(e.g., Day et al., 2017; Smith et al., 2011; Byars et al., 2017). Using the formula for a finite sum of a
geometric series, the net reproductive rate of this mutant is:

R00
0 ¼ mb0

Xn�1

x¼0

ð1� dÞx ¼ mb0

d
½1� ð1� dÞn� (13.16)

The term in the brackets goes to one as n increases for all d > 0, so if the age of onset of the
deleterious effects is old enough, the net reproductive rate is approximately mb0/d, which is greater
than the fitness of the nonmutants (mb/d) sincemb0 > mb. Hence, natural selection favors the evolution
of senescence, and senescence is positively adaptive. When genetic drift exists, late-onset senescence
is effectively neutral and will evolve under neutral evolution as well. Since antagonistic pleiotropy is
common and genetic drift is universal, agelessness is not an evolutionary stable state. More compli-
cated models of the evolution of senescence that use the Malthusian parameter as the measure of
fitness (which takes into account when as well as how many offspring are produced) reveal that even in
an initial ageless and immortal population (zero mortality), both neutral and antagonistic pleiotropy
will still lead to the evolution of senescence as long as the population size is increasing (Wensink et al.,
2017), as has been happening in our species for hundreds of thousands of years. The reason is that in a
growing population, offspring produced early in life are worth more in a fitness sense (with r as the
fitness measure) than offspring produced later in life. This produces the same type of selective gradient
in which selection weakens with increasing age of onset. Hence, immortality and agelessness are not
part of our evolutionary legacy, but senescence is.

As the example of Huntington’s disease illustrates, antagonistic pleiotropy can arise from a unit of
selection having multiple targets of selection. Of particular importance is selection at the level of
somatic cells versus selection at the level of the individual. Underlying the senescence of individuals is
cellular senescence; that is, many of our cells lose the ability to replicate and even survive after going
through a certain number of mitotic cell generations. Part of this cellular aging is due to the accu-
mulation of somatic mutations that degrade cell function. For example, many epithelial tissues are
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continually replenished by populations of stem cells that are subject to somatic mutation, many of
which can lead to tissue attrition and which contribute to organismal aging (Cannataro et al., 2017).
The rate of somatic mutation accumulation in these epithelial tissues depends strongly on the stem cell
population size (recall Eq. 11.6). This is a small number for epithelial tissues, leading to somatic
fixation primarily through genetic drift at the cellular level (Cannataro et al., 2017). Somatic mutations
can also accumulate in the mitochondrial genomewithin stem cells in a manner that results in a cellular
energy deficit. Many mitochondrial mutations have already accumulated by age 17 years in some
tissues, and such mutations increase within a cell population with increasing age (Greaves et al., 2014).
Hence, genetic drift at the intracellular and cellular levels, and at the population level on effectively
neutral somatic mutations with late age of onset effects (Eq. 13.13) can play an important role in the
evolution of senescence.

Mutations also accumulate in germ lines, particularly in human males, with paternal mutations
doubling every 16.5 years (Kong et al., 2012). As a consequence, almost all of the variation in the rate
of de novomutations in humans is explained by the age of the father. Since mutations are more likely to
be deleterious than beneficial (Chapter 1), this means that the offspring of older fathers are more likely
to bear deleterious mutations (Kong et al., 2012), thereby reducing the quality of offspring produced
late in the father’s life, which in turn facilitates the evolution of senescence (Wensink et al., 2017).
However, the overall human germline base-substitutional mutation rate is 0.06 � 10�9 per site per cell
division, the lowest germline rate found in any organism with reliable data (Lynch, 2010).

Mutations are part of a broader class of DNA damage that can contribute to aging, such as the
activation of transposition of Alu elements (Mustafina, 2013). There are many mechanisms for
repairing such damage, and there is genetic variation in humans for these repair mechanisms and their
efficiency (Cho and Suh, 2014). Because it is only the individual that actually contributes genetically
to the next generation, the amount of energy and cellular machinery to devote to DNA damage repair
and reducing somatic cell mutation rates is subject to the same evolutionary considerations discussed
above with respect to the evolution of senescence. Interestingly, human somatic cell mutation rates are
4e25 times larger than the human germline rate, indicating that natural selection has favored putting
more energy and effort into correcting germline DNA damage than somatic cell DNA damage (Lynch,
2010). Much of this difference stems from the fact that somatic mutational accumulation takes many
cell divisions before it typically has deleterious consequences at the individual level, and therefore
individual-level selection on the somatic mutation rate is typically weak, as described for large n under
Eq. (13.13) or (13.16).

As noted in Chapter 11, selection can also occur among somatic cells. Sometimes such somatic cell
selection can delay aging by purging nonfunctioning cells (Nelson and Masel, 2017). However,
sometimes somatic cell selection favors cells that have very deleterious effects at the individual level.
For example, loss-of-function somatic mutations in several genes can lead to blood-cell clones
associated with a syndrome known as clonal hematopoiesis of indeterminate potential (CHIP) (Jaiswal
et al., 2017). These mutations accumulate with age and have a selective advantage at the cellular level
over the hematopoietic stem cells that do not bear these mutations. As a consequence, more than 10%
of people over 70 years of age have substantial clones of these mutated cells. Having these clones
increases the risk of heart disease (Fig. 13.5). Overall, the presence of CHIP somatic blood-cell clones
was associated with a doubling in the risk of coronary heart disease, as well as a tenfold risk in
hematologic cancer. Hence, these CHIP somatic mutations make a substantial contribution to human
senescence and decreased longevity.
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As pointed out in Chapter 11, the fitness of a multicellular organism depends not just on how
functional its individual cells are but also on how well cells work together to produce a viable,
multicellular individual. Somatic cell selection often favors cells that do not cooperate, as we have just
seen with the CHIP mutations, but this is but one example out of many with somatic mutations being
associated with the evolution of cancerous cells (Chapter 11). Cancers that occur early in life typically
result in very low to no fitness at the individual level, so the trade-off between these two targets of
selection produces strong individual selection to reduce the probability of and/or delay the age of
onset of cancers. Because cancer often depends upon somatic mutation, the mechanisms that repair

FIGURE 13.5

Association between early-onset myocardial infarction among CHIP carriers, as influenced by somatic mutants in

specific genes (the subgroups). Hazard ratios relative to individuals with no CHIP mutations are plotted for the risk

of coronary heart disease in three cohorts [BioImage, MDC, and a pooling of the Jackson Heart Study (JHS),

FinlandeUnited States Investigation of NoneInsulin-Dependent Diabetes Mellitus Genetics (FUSION), and the

Framingham Heart Study (FHS)], subdivided into mutated gene subgroups. Hazard ratios were adjusted for age,

sex, type 2 diabetes status, total cholesterol, HDL cholesterol, triglycerides, smoking status, and hypertension.

The boxes indicate the quartiles above and below the median, and the range is shown by the thin lines. If the 95%

confidence intervals exceeded the range, the boxes are replaced by a diamond that spans the confidence interval.

From Jaiswal, S., Natarajan, P., Silver, A.J., Gibson, C.J., Bick, A.G., Shvartz, E., et al., 2017. Clonal hematopoiesis and risk of

atherosclerotic cardiovascular disease. New England Journal of Medicine 377, 111e121.
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mutations and DNA damage also function to reduce the probability of a cancerous cell from evolving
or delay its age of onset (Tollis et al., 2017). Moreover, mutations that cause a loss of function in
the proteins involved in DNA repair are often associated with a very high incidence of various cancers
(O’Driscoll, 2012). Because cancerous somatic mutations tend to accumulate throughout an
individual’s life, cancer becomes more common as we age (Risques and Kennedy, 2018), and indeed
can be thought of as contributing to the aging process itself (Martincorena and Campbell, 2015). Recall
from Chapter 11 Peto’s paradox that there is little to no correlation between body size and cancer risk.
If somatic mutation rates could not be adjusted through evolutionary change, large, long-lived
organisms should have an increased risk of developing cancer compared with small, short-lived
organisms. Instead, animals with 1000 times more cells than humans do not exhibit an increased
cancer risk, suggesting that natural mechanisms can suppress cancer much more effectively than is
done in human cells (Caulin and Maley, 2011). At the least, the contrast between human germline and
somatic cell mutation rates noted above implies that humans have the molecular machinery to reduce
somatic cell mutation rates by 4e25-fold below their current values, which would substantially reduce
rates of cancer. Selection has obviously not favored this reduction in cancer incidence and it appears to
be maladaptive for humans to evolve a higher degree of suppression of cancers. We now turn to a
possible adaptive explanation for this serious medical phenomenon.

Cancer makes cellular senescence adaptive even if this leads to individual-level senescence. Cancer
is characterized by uncontrolled reproduction by somatic cells. One mechanism of suppressing the
evolution of a cancerous cell is to have a molecular limit on the number of mitotic divisions that a
somatic cell can undergo or programmed cell death (apoptosis) after a certain number of divisions.
Such limits ensure somatic cell senescence and also contribute to individual-level senescence as
critical cell lineages for the viability of the individual reach their mitotic limits. As we saw in the
previous section, senescence itself can be adaptive under antagonistic pleiotropy, so natural selection
can favor the evolution of mechanisms that limit the number of mitotic divisions that a somatic cell
lineage can experience as long as the resulting cellular senescence does not result in significant
individual senescence until a sufficiently advanced age. Another reason why limits on cellular gen-
erations is adaptive is that cell proliferation can be energetically expensive, so selection for a thrifty
phenotype may offset the selective disadvantage of cancer at older ages (Eisenberg, 2011). One
molecular mechanism for limiting the number of mitotic divisions of a cell lineage is telomere
shortening. Recall from Chapter 2 that telomeres cap the ends of eukaryotic chromosomes and contain
tandem repeats that span 2e20 kb in somatic cells and greater than 20 kb in germline cells. The
number of repeats tends to be reduced with each mitotic division, although environmental factors can
also influence their length, and short telomeres are associated with a loss of mitotic replication
capacity and cellular aging (Shlush et al., 2011). Moreover, telomere length is associated with many
indicators of human aging at the physiological and individual levels (Zalli et al., 2014). Telomere
length is also reduced in newborns if the mothers experienced high levels of stress during pregnancy
(Marchetto et al., 2016). Many genes are known that can increase or decrease telomere length and
influence telomere maintenance, and variants in these same genes either raise or lower risks and
progression of cancers, in a highly cancer typeespecific fashion (Blackburn et al., 2015). For example,
melanoma is the deadliest form of skin cancer in humans (Shay, 2017). Chiba et al. (2017) have
proposed and provided empirical support for a two-step model for the evolution of melanoma. The first
step involves somatic mutation in a promoter that upregulates telomerase (an enzyme that can lengthen
telomeres), thereby extending the number of mitotic divisions that a melanocyte lineage can undertake.
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This in turn increases the probability of acquiring additional gain-of-function and loss-of-function
somatic mutations (Chapter 11) that result in an invasive telomerase-expressing melanoma. Thus,
circumventing the telomere molecular mechanism of cellular senescence leads to a highly deleterious
cancerous state at the individual level.

DEMOGRAPHIC TRANSITIONS
Many features of human life history are highly plastic and respond rapidly to changes in the envi-
ronment. Because of our unprecedented ability for niche construction (Chapter 12), human
populations have frequently undergone major changes in their life history called demographic
transitions due to technological, agricultural, medical, and cultural innovations or changes. Because
the fitness measures given in Eqs. (13.1) and (13.8) are sensitive to many life history parameters, such
demographic transitions also mark major fitness transitions for many traits. We have already seen some
examples of this. In Chapter 9, we saw that when the Bantus of Africa adopted the Malaysian
agricultural complex, their life history was altered by high rates of infant and childhood mortality due
to infectious diseases such as malaria. Both the net reproductive rate and the Malthusian parameter are
strongly affected by changes in prereproductive mortality, so this agriculturally induced demographic
transition was also marked by altered fitnesses and strong selection for malarial resistance (Chapter 9).
Another example from Chapter 9 was the within-family fecundity advantage associated with carriers
of the Huntington’s disease allele. As noted in Chapter 9, major changes in demography, particularly
the age of first reproduction, occurred in Italy between 1870 to after World War II, and these cultural
alterations in life history eroded away the within-family fecundity advantage of these carriers
(Fig. 9.1).

For another example, Fig. 13.2 also shows the survivorship curve for US females from the 1920
census (Faber and Wade, 1983). This was a time when infectious diseases caused much more mortality
than in 2010, particularly for infants. This results in a steep drop in survivorship over the first age
interval (Fig. 13.2). Moreover, there was higher mortality throughout life because medical care was not
as effective. Women tended to have more children, as shown in Table 13.2 (data from Faber and Wade,
1983, Dewhurst et al., 1949). Part of this increased fecundity may have been due to the absence in 1920
of some of the highly effective birth control options available today. Moreover, childbirth was asso-
ciated with much higher mortality in 1920 than in 2010. A contrast between Tables 13.1 and 13.2
reveals a dramatic demographic transition in US females over a century due to medical advances and
cultural changes.

This demographic transition over the last century in the United States can greatly alter fitnesses.
Earlier, we considered the fitness of individuals who carried the allele for Huntington’s disease.
Keeping exactly the same relationship between the number of CAG repeats and age of onset, and
assuming again that all reproduction ceases at disease onset (Eq. 13.14), the net reproductive rate for
36 repeats is 1.368 using the 1920 census data. This represents a 0.3% decline in fitness with respect to
the overall net reproductive rateda decline virtually identical to that obtained using the 2010 census
data. However, at 56 repeats the 1920 net reproductive rate is 1.16931, which represents a 14.7%
fitness reductionda value much less than the 59.8% decrease obtained with the 2010 census data.
Hence, there was much less selection at the individual level against H alleles in 1920 versus 2010.
Moreover, the within-family fecundity advantage still existed in 1920 but had vanished by the time of
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World War II (Fig. 9.1). As this and the previous examples illustrate, demographic transitions are often
fitness transitions in age-structured populations. Indeed, major changes in fitness values are almost
inevitable during a demographic transition for genotypes that have any age-related effects.

Perhaps one of the most important demographic transitions in human evolutionary history was due
to the transition from foraging to farming that occurred at different times at different places in the
world, mainly ranging from 11,500 years ago to 3500 years ago (Bocquet-Appel, 2011), but some-
times more recently (Chapter 9). Archeological sequences indicate that this transition, known as the
Neolithic Demographic Transition, was characterized by an abrupt increase in prereproductive
mortality and a large increase in total fertility through a decreased birth interval. This large increase in
fertility lead to explosive population growth in humans, which has had many implications for both
neutral and adaptive human evolution, as indicated in previous chapters.

Another major demographic transition occurred with industrialization (Pettay et al., 2005; Courtiol
et al., 2012), and yet another in the 20th century with a dramatic lowering of early mortality and
fertility, with increased life expectancy and increased ages of first reproduction in many human

Table 13.2 The Life History Table for US Females Based on the 1920
Census Data

Age Range (years) Assigned Age, x l x bxmx l xbxmx=2

<1 0.5 1 0 0

1e4 2.5 0.9018 0 0

5e9 7 0.88654 0 0

10e14 12 0.87765 0.0015 0.00075

15e19 17 0.86267 0.2425 0.12125

20e24 22 0.83821 0.759 0.37950

25e29 27 0.8108 0.7525 0.37625

30e34 32 0.7811 0.5775 0.28875

35e39 37 0.75141 0.392 0.19600

40e44 42 0.72158 0.01555 0.00778

45e49 47 0.68723 0.0015 0.00075

50e54 52 0.64477 0.0005 0.00025

55e59 57 0.58996 0 0

60e64 62 0.52085 0 0

65e69 67 0.43021 0 0

70e74 72 0.31962 0 0

75e79 77 0.20198 0 0

80e84 82 0.09824 0 0

85e89 87 0.03538 0 0

90e94 92 0.00754 0 0

95e99 97 0.00082 0 0

�100 102 0.00004 0 0

Total 1.37128
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populations (Burger et al., 2012). This pattern suggests that demographic transitions are occurring at
an increasing rate, perhaps because human niche construction is changing at an increasing rate. These
rapid demographic transitions also cause fitness transitions and represent an increasingly important
type of coarse-grained temporal heterogeneity in human evolution. Some of the implications of these
demographic transitions for past, current, and future human evolution will be considered in the next
chapter.
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HUMAN POPULATION
GENETICS/GENOMICS AND
SOCIETY

14
The subject of human population genetics and genomics is ourselves, so often these scientific studies
have impacts on our lives, particularly through medical advances, on our perception of ourselves and
others, on our place in nature, and on our desires for the present and future of humanity. The first part of
this book focused on human population structure and evolutionary history. This may seem far from
having any societal impact, but this is not the case. Our views and knowledge of human population
structure and history greatly influence our own personal identities and how we perceive others, which
in turn have strong social, economic, and political impacts on our lives. This book next investigated the
relationship of genotype to phenotype. Our tools for studying this relationship in humans largely stem
from population genetics and genomics, and our discoveries in this area often have practical medical
and lifestyle applications and also serve to counteract genetic determinism. Finally, this book had
several chapters on natural selection and its interaction with other evolutionary forces that shaped
human adaptation. Research in this area leads to many large questions: where did we come from, what
are we now, and what will we become? In some cases, population genetics and genomics can provide
specific answers, in other cases only possibilities, and yet in other instances only more questions.

DO HUMAN RACES EXIST?
A “white” Brazilian gets on a plane in São Paulo, Brazil, and lands in New York, where she is now
transformed into a “black.” A “black” American gets on an airplane in New York and lands in São
Paulo, where she is now transformed into a “white”. This scenario is not science fiction, but reality
(Fish, 2002). The skin color and physical attributes of these people have not been transformed, nor
their genomes; rather, the transformation was induced by travelling from one culture to another. Both
of these travellers may have a strong self-identity of their “race,” and both may be confident in their
abilities to classify others into “races,” often with just a glance. Both may therefore believe that “race”
is an intrinsic, biological property of being human. The experience of this cultural transformation is
often quite jarring to such travellers as it undermines the belief that race is an innate biological
property; instead, “race” obviously depends upon cultural context. “Race” as a cultural construct is
certainly real, as is racism that has a major impact on many livesdsocially, economically, and
politically. Cultural definitions of race also have population genetic consequences. For example, the
United States and Brazil have many parallels in their histories. Both countries brought together peoples
from three geographically distant regions: western Europeans as colonists, sub-Saharan Africans as
slaves, and Native Americans. The European colonists had the greatest political and economic power,
but there were cultural differences between the English, the primary colonists of what became the
United States, and the Portuguese, the primary colonists of what became Brazil. Different ways of
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classifying people coupled with nonrandom mating by these cultural classifications resulted in the
current populations of these countries having very different genetic compositions despite their similar
initial conditions. Fig. 6.2 shows the estimated admixture with genetic markers of self-identified
“whites” and “blacks” in the United States and two Brazilian populations, one from Natal in the
northeast of Brazil where individuals were self-identified into “whites” and “nonwhites” (the racial
classifications in Brazil do not correspond well to the US classification of two major “races,” Fish,
2002) and the other from Rio de Janeiro, far to the south of Natal, using the self-identified classifi-
cations of “white,” “brown,” and “black.” As can be seen, the US races are quite divergent in their
percentages of ancestry from the various source populations, but the Brazilian “races” are far more
similar to one another, particular the “whites” and “nonwhites” from Natal. Moreover, all the Brazilian
populations, even the “whites,” have much more African ancestry than US “whites.”

Santos et al. (2009) also used the program STRUCTURE (Chapter 6) to estimate the degree of
admixture for each individual in the Rio population. From these estimates they created an individual
African Ancestry Index (AAI) such that the larger the value of AAI, the more the percent of African
ancestry for that individual, and conversely, the smaller the AAI, the more the percent of European
ancestry. Fig. 14.1 shows a plot of these individual values for the three self-described “races” in the
samples from Rio de Janeiro. As can be seen, individuals within each “race” display a wide range of
African ancestry. Indeed, the majority of all individuals within each race were found in the range that
overlaps all three “races.” Whatever these cultural “races” mean, they are not well defined by European
or African ancestry. Moreover, racial divides change with time within a culture; for example, the “color
line” has changed considerably throughout US history (Bean et al., 2013). These temporal changes
further undercut the idea that cultural classifications are true biological entities.

It is patent from the contrast between “race” in Brazil versus the United States that our concept of
race is highly influenced by cultural factors, but biological races could still exist in humans. Obviously,
what is needed is a biological definition of race rather than a cultural one. In the 18th century many
naturalists, such as Carl Linnaeus, sought to bring order to nature by classifying the living world,

FIGURE 14.1

A plot of the individual African Ancestry Indices (AAIs) for the people sampled from Rio de Janeiro, as separated

by their self-declared “race”/color.

From Santos, R.V., Fry, P.H., Monteiro, S., Maio, M.C., Rodrigues, J.C., Bastos-Rodrigues, L., et al., 2009. Color, race, and

genomic ancestry in Brazil dialogues between anthropology and genetics. Current Anthropology 50, 787e819.
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including races or subspecies within species. These initial classifications were based mostly on
morphology, with a race or subspecies being a geographically contiguous population with sharp
geographic boundaries that has features that distinguish its members from the remainder of the species.
Hence, subspecies were a formal means of documenting geographic variation within species based on
morphological characters (Braby et al., 2012). Due to a lack of objective criteria to delimit their
boundaries and the boundary sharpness, the number of races or subspecies within a given species could
vary considerably. In humans, the number of races or subspecies varied from two into the hundreds
(Dobzhansky, 1944). As better sampling of human populations accumulated, it became evident that the
sharp geographic boundaries between morphological variants required for race or subspecies status
largely did not exist in humans (Dobzhansky, 1944). For example, Fig. 11.1 shows the clinal nature of
skin color variation, one of the primary morphological traits used in human racial classifications. The
clinal nature of this “racial trait” does not fall into discrete categories with sharp boundaries
(Relethford, 2009) unless populations have been brought together relatively recently from diverse
areas that are well separated by latitude, as occurred in the United States. Armed with this knowledge,
UNESCO issued a statement in 1950 asserting that all humans belong to the same species and that
“race” is not a biological reality but a myth (Sussman et al., 2017).

The UNESCO statement did not mark the end of race in biological science. As genetic survey tools
became more and more improved at finding polymorphisms in humans, human races shifted from
morphological variation to geographic patterns of genetic variation (Jackson, 2014). As more and more
genetic markers became available, it becomes possible to define AIMS (Chapter 6) that could infer the
geographic origins of an individual’s ancestry (Paschou et al., 2010) and to use Bayesian classification
programs such as STRUCTURE (Chapter 6) to place individuals or portions of their genomes into a
finite number of discrete ancestral populations. The analysis of human populations by Rosenberg et al.
(2002) using STRUCTURE was particularly influential, as the results with K ¼ 5 (the number of
assumed, discrete, panmictic ancestral populations) corresponded to the racial categories favored in
the United States (Fig. 6.10). This paper is the most highly cited paper in Science from 2002. Although
the authors did not interpret their results in terms of human races, many of the citations regarded these
results as supporting the concept of human races (e.g., Burchard et al., 2003; Mountain and Risch,
2004; Risch et al., 2002; Tibayrenc, 2017). The interpretation of the reality of human races was
certainly made in publications geared for the general public (e.g., Wade, 2015). In a Q&A section on
the website for his 2015 book (https://www.penguinrandomhouse.com/books/308785/a-troublesome-
inheritance-by-nicholas-wade/9780143127161/), Wade states that although many scientists no longer
use the word race “as a matter of political fashion,” “the concept is scientifically essential, so they refer
to race in coded terms such as ‘population structure,’ which means simply that a population consists of
two or more races.” However, “race” and “population structure” are not synonymous, as shown by the
definition of population structure given in Chapter 3 and the subsequent material found in Chapters 3,
4, 5, 6, 7, and 13 that all deal with different aspects of population structure. Moreover, recall from
Chapter 6 that one of the dominant features of human population structure is isolation by distance
(Figs. 6.6e6.8). Serre and Paabo (2004) pointed out that the sample used by Rosenberg et al. (2002)
consisted of geographically clustered individuals, which under an isolation-by-distance model would
yield geographically clustered populations as an artifact (Fig. 6.12). The impact of finer sampling is
shown in Fig. 6.13 in which the relatively “pure” cluster in Fig. 6.10 found in Europe, the Middle East,
Central and Southern Asia (the “Caucasian race” in many cultures) became a population in which
every individual was highly admixed in ancestry. The “pure Caucasian race” simply disappeared with
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finer sampling. When individuals are sampled homogeneously from around the globe, the dominant
pattern seen is one of gradients of allele frequencies that extend over the entire world, rather than
discrete clusters. Frantz et al. (2009) and Safner et al. (2011) showed using empirical and simulated
datasets that Bayesian clustering algorithms incorrectly detected population boundaries in the pres-
ence of isolation by distance, as occurs in humans (Chapter 6). Barbujani and Belle (2006) analyzed
the same dataset as Rosenberg et al. (2002) by a numerical method designed to detect genomic
boundaries (zones of increased change in maps of genomic variation). Although they found statisti-
cally significant boundaries that could be used to distinguish between some populations, they also
found that the identified populations depended upon the assumptions of the exact model used and that
none of the partitions corresponded to the clusters inferred by Rosenberg et al. (2002). Thus, even with
geographically clustered sampling, it was still impossible to identify consistently five major genetic
subdivisions of humanity.

The fundamental problem with interpreting the results of Rosenberg et al. (2002) as being
supportive of human races is equating typological classification to race (Weiss and Long, 2009).
With the genetic markers available now, it is possible to classify every individual into their nuclear
family. This ability to classify individuals into distinct families does not mean that every nuclear
family is a race. Classification, either through morphological differentiation (the classic “race”) or
through genetic differentiation, is necessary but not sufficient to infer race. Classification can occur
at many levels from individuals to the entire species, and race requires a geographic- and population-
level classification within a species in addition to genetic or morphological differences among
individuals. Obviously, some other criteria besides just the ability to classify (the purpose of AIMs
and Bayesian classification programs) are needed to infer the existence of races. Because race is also
such a strong cultural concept, one should minimize cultural biases in defining what these additional
criteria should be by using the criteria developed for nonhuman organisms. The word “race” is rarely
used in the nonhuman evolutionary genetic literature, and the word typically used to describe major
geographic subdivisions or subtypes within a species is ‘‘subspecies’’ (Futuyma, 1986, pp.
107e109). Because of this well-established usage in the evolutionary literature, ‘‘race’’ and ‘‘sub-
species’’ will be regarded as synonyms from a biological perspective. In this manner, human ‘‘race’’
can be placed into a broader evolutionary context that is no longer human-specific or culturally
dependent (Templeton, 2013).

Almost all modern concepts of subspecies include the following features: the subspecies consists of
a population of geographically contiguous individuals that is genetically differentiated from the
remainder of the species, and the geographic boundary of this population is sharp and represents a
discontinuity in how the variation underlying its differentiation is distributed across space. Classically,
genetic differentiation was measured indirectly through morphological differentiation, but increas-
ingly it is measured directly through genetic or genomic surveys. There still remains much ambiguity
in the definition of subspecies: which variation is most relevantdadaptive, neutral, or both; how many
traits need to be differentiateddone or several; how is differentiation to be measureddqualitatively or
quantitatively; if differentiation is measured quantitatively, what measure should be used; if quanti-
tative, what level of differentiation is needed to go beyond local demes to subspecies? Many people
have answered these questions differently, so there is no consensus on what is or is not a subspecies
(Andreasen, 2004; Braby et al., 2012; Crandall et al., 2000; Pigliucci and Kaplan, 2003; Smith et al.,
1997; Walsh et al., 2017). We will only consider one quantitative and two qualitative concepts of
subspecies that tend to dominate the literature.
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One popular quantitative definition is to regard populations as subspecies if their level of
differentiation is in the range of 25%e30% (Smith et al., 1997). When differentiation is measured
genetically, the commonly used quantifier is fst (Chapter 6); that is, fst should be greater than 0.25 or
0.30. Lewontin (1972) was the first to apply fst to human races and showed that the fst estimates
available at the time were well below that thresholdda conclusion that has been supported by every
subsequent study (Templeton, 1998b, 2013, 2016a). Lewontin therefore concluded that biological
races do not exist in humans. This definition of race is easy to test with genetic data but does have some
serious deficiencies. First, there are many measures of genetic differentiation in addition to fst, a
measure that can sometimes result in much less apparent differentiation than other measures (Edwards,
2003; Long and Kittles, 2009). However, even other measures also lead to the conclusion of the
nonexistence of races in humans (Long, 2009; Long and Kittles, 2009). A second serious difficulty is
that the threshold is arbitrary (Templeton, 2013). Why 25%e30%; why not 20% or 40%? About the
only rationale for an fst threshold is Wright’s result showing that fst ¼ 0.20 is an important transition
point under an island model (Fig. 6.1), but the island model is not a realistic model for humans.

Because of the arbitrariness of quantitative thresholds, most modern users of the subspecies
concept use qualitative criteria. One qualitative criterion is the ecotype. Ecotype refers to a group of
individuals sharing one or more adaptations to an environment. Sometimes the defining environmental
variable is widespread, so an ecotype can refer to a large geographic population. However, sometimes
the environmental heterogeneity can exist on a small geographic scale. In such circumstances, a single
local area with no significant genetic subdivision for almost all genes can contain more than one
ecotype (e.g., Oberle and Schaal, 2011). Ecotypes are therefore not universally a major subdivision or
type within a species, but sometimes merely a local polymorphism and are often not a geographically
contiguous population with well-defined geographic borders. For this reason, ecotypes have rarely
been used to define ‘‘race,’’ but Pigliucci and Kaplan (2003) have argued that human races are best
regarded as ecotypes. They do caution that human ecotypic races do not in general correspond with
“folk” racial categories. There are many problems with using ecotypes as the defining quality of a race.
For example, consider human adaptations to malaria (Chapter 9). Such adaptive polymorphisms exist
in humans living in Africa, Europe, the Near and Middle East, and Asia in a geographically
noncontiguous fashion (e.g., sickle cell, Fig. 14.2). A noncontiguous distribution violates one of the
most fundamental properties of a subspecies, yet this criterion would pool people from India and sub-
Saharan Africa together. Moreover, the various human populations shown in Fig. 14.2 show genetic
differentiation from one another at other loci even though they share some, but not all, of the alleles
associated with malarial adaptation (Chapters 9, 11 and 12). These malarial polymorphisms do not
define a meaningful subdivision of humanity, either genetically or geographically.

There are also many other adaptations that could define ecotypes, but they do not display
concordant distributions. Recall from Chapter 8 that nondiabetic end-stage kidney disease (ESKD) is
much more common in some African populations than in European-American populations (Shlush
et al., 2010), and hence has sometimes been called a “black disease” (Grams et al., 2016; Parsa et al.,
2013), much like sickle-cell anemia has been characterized as a “black disease” despite having high
frequencies in some European, Arabian, and Indian populations (Fig. 14.2). Like sickle cell, these
ApoL1 risk variants have also been associated with resistance to an infectious disease, in this case
sleeping sickness caused by certain trypanosomes (Kruzel-Davila et al., 2017). Not surprisingly, these
risk variants show a signature of recent positive selection (Wang et al., 2014) and are therefore likely
adaptive. Fig. 14.3 shows the distributions of the two risk variants in Africa. These risk variants are
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FIGURE 14.2

The global distribution of the sickle-cell allele.

From Piel, F.B., Patil, A.P., Howes, R.E., Nyangiri, O.A., Gething, P.W., Williams, T.N., et al., 2010. Global distribution of the

sickle cell gene and geographical confirmation of the malaria hypothesis. Nature Communications 1, 104e104.

FIGURE 14.3

The geographic distribution of the ApoL1 G1 and G2 allele frequencies across sub-Saharan Africa. Panel A shows

the frequency map of the ApoL1 G1 variant, and panel B the frequency map of the ApoL1 G2 variant. Color

gradients show the predicted allele frequencies across Africa as extrapolated from available data using the Surfer

software version 8 (Golden Software Inc., Golden, CO). The approximate locations of data points are indicated by

filled black circles, a filled red triangle (Guinea study), or an inverted filled red triangle (Uganda study) next to the

relative allele frequency, in percentages.

Modified from Kruzel-Davila, E., Wasser, W.G., Skorecki, K., 2017. ApoL1 nephropathy: a population genetics and evolutionary

medicine detective story. Seminars in Nephrology 37, 490e507.
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virtually absent outside of sub-Saharan Africa (except in recent immigrant and admixed populations
involving West Africans), so their distribution overlaps only partially with sickle cell (Fig. 14.2) and
other malarial adaptations that exist outside of Africa. Moreover, even within Africa, many sub-
Saharan populations where sleeping sickness is rare do not have these alleles, such as Ethiopians
(Fig. 14.3). The Ethiopians are virtually identical to Europeans for their frequency of these alleles.
Thus, neither the ApoL1 risk variants nor the sickle-cell allele are “black” diseases because many
“black” populations do not have these alleles, and in the case of sickle cell many “nonblack” pop-
ulations do have the allele (Fig. 14.2). To regard these adaptive alleles as racial variants obscures, not
illuminates, their evolutionary and medical significance. Both are adaptations to infectious diseases,
and their distributions reflect the distributions of the underlying diseases, not “race.”

A newspaper article written by the geneticist David Reich (“How Genetics is Changing Our
Understanding of ‘Race,’” New York Times, March 23, 2018) provides an example of how using such
allele frequency differences to define “races” as disease risk categories obscures their medical and
evolutionary significance. Reich correctly notes that ESKD is less common in “European-Americans
than in African-Americans.” Although true, his statement is imprecise at the population level and often
false at the individual level. African-Americans whose ancestry is from regions of Africa where these
risk alleles are absent or rare (e.g., Ethiopia, Fig. 14.3) should be in the same risk category as
“European-Americans,” so Reich’s two risk categories based on “race” as defined by US culture are
imprecise. It is also simply false to tell African-Americans that they are at a high risk for ESKD if their
African ancestry is from countries like Ethiopia. In addition, even individuals with ancestry from
countries that have a high frequency of the risk alleles may not be carriers of these risk alleles because
these alleles are polymorphic, not fixed, in those countries (Fig. 14.3). Overall, most “African-
American” individuals are not at higher risk for ESKD. These risk alleles can be easily scored, and
much better medical advice could be given by abandoning Reich’s racial categories and instead using
information about geographic ancestry to identify individuals who would benefit from individual
genetic screening. What is most telling about Reich’s statement is his choice to use two US cultural
racial categories for assessing kidney disease risk when we already have the knowledge to make much
better risk assessments at both the population and individual levels by abandoning these cultural
categories (Yudell et al., 2016).

What is found for ApoL1 and sickle cell is what is typically found for most adaptive polymorphisms
in humans: they follow the relevant environmental variables and do not define contiguous populations
(like malarial adaptations or skin color) nor concordant populations across different adaptations. In the
case of high altitude adaptation, the Tibetans appear to be a well-defined geographic ecotype, with an
ecotone separating them from lowland populations due to isolation by resistance (Fig. 12.1). However,
the high-altitude human ecotype is found in Tibet, Ethiopia, and the Andes, and these three disjoint
populations represent parallel adaptations involving some of the same genes (Azad et al., 2017), but
otherwise these are three well-differentiated populations with discordant adaptations for other traits
(e.g., skin color). This is the fundamental flaw of Reich’s defense of race based on “substantial
differences among human populations.” Who determines what differences are “substantial” and what
differences are not, given the universal pattern of discordance among locally adaptive (and often
medically important) traits? Basing “race” on “substantial differences” is nonscientific as there are no
objective criteria given that apply to all species. As a result, the question of what is a “substantial”
difference is typically not answered by science but by cultural bias that applies only to humans. Further
complicating this approach to “race” is that these local adaptations are often not fixed locally but are
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rather polymorphic (Figs. 14.2 and 14.3). Thus, many individualsdoften a majoritydin a “racial”
class defined by a “substantial” allele frequency difference, as illustrated by the examples given by
Reich, will not be carriers of the allele that defines their “race.” How can one be a member of “race” yet
not bear the genetic variants that defines that “race”? These are difficult questions to answer without
resort to human cultural-specific biases. Ecotypes do not define biological races based on objective
criteria but rather only identify locally adaptive polymorphisms.

A more commonly used qualitative criterion to define a race or subspecies in the general
evolutionary literature is the idea of an evolutionary lineage; that is, subspecies are distinct popu-
lation evolutionary lineages within a species (Templeton, 2013). Fragmentation occurs when an
ancestral population is split into two or more subpopulations that experience little to no subsequent
gene flow or admixture, allowing them to diverge as evolutionary lineages. When dealing with
subspecies, it is best to use statistical criteria for inferring an evolutionary lineage so as to allow
some gene flow among the subpopulations rather than an absolute cessation of all genetic contact.
Fortunately, such statistical tests exist, so the inference of a subspecies as an evolutionary lineage is a
testable hypothesis with modern genetic data. Two such tests are based on multilocus nested clade
phylogeographic analysis (multilocus NCPA, discussed in Chapter 7). A direct test regards no
fragmentation as the null hypothesis; that is, the null hypothesis is that there is only one evolutionary
lineage in the sample. In this case, the inference of multiple lineages requires a sufficiently strong
signal of fragmentation in the data in order to reject the null of hypothesis of no fragmentation.
Computer simulations indicate that multilocus NCPA is an excellent test of this null hypothesis.
Knowles and Maddison (2002) simulated an ancestral population that undergoes a series of frag-
mentation events, with large population sizes throughout and short times between fragmentation
events. This creates a very difficult situation for phylogeographic inference as there should be
extensive retention of ancestral polymorphism and much lineage sorting across the fragmentation
events (Fig. 5.8), which could obscure the signal for fragmentation. Indeed, Knowles and Maddison
(2002) found that their own methods of inference did poorly in this situation. In contrast, multilocus
NCPAwas able to reconstruct these simulated fragmentation events with 100% accuracy, indicating
that multilocus NCPA has great statistical power for inferring even recent fragmentation events
obscured by retention of ancestral polymorphism and lineage sorting (Templeton, 2009). Panchal
and Beaumont (2010) simulated populations with gene flow and no fragmentation in order to
evaluate the false-positive error rate of multilocus NCPA. The false-positive rates for fragmentation
depended upon the model of gene flow assumed, varying from 0.0000 (panmixia) to 0.0028 (stepping
stone, isolation by distance). These simulations indicate that multilocus NCPA is not prone to false
positives for fragmentation over a wide range of gene flow regimes. Fig. 7.4 shows all the significant
results obtained with multilocus NCPAwhen applied to global human data. What is conspicuous by
its absence is any significant inference of fragmentation since the mid-Pleistocene. As explained in
Chapter 7, the information in haplotype trees about our evolutionary past also depends upon having
mutations to mark the events, and this becomes unlikely in fragmentation events lasting less than
about 10,000 to 15,000 years for humans. Indeed, there was some evidence in this analysis for a
fragmentation event involving Native Americans, but it was not significant. Hence, the results shown
in Fig. 7.4 are best interpreted as showing that there has been no significant fragmentation of any
human population lasting more than about 15,000 years in the recent evolutionary history of current
humanity. The null hypothesis of a single human evolutionary lineage (no races or subspecies)
cannot be rejected.

444 CHAPTER 14 HUMAN POPULATION GENETICS/GENOMICS AND SOCIETY



Multilocus NCPA can also test the null hypothesis of isolation (little to no gene flow or admixture)
between different geographic regions (Chapter 7). Note that this reverses the null hypothesis relative to
the test described in the previous section. Now, the failure to reject the null hypothesis of isolation
indicates the acceptance of more than one evolutionary lineage. Despite 7 out of 24 loci indicating
gene flow among early Pleistocene populations, the null hypothesis of isolation could not be rejected
for that early phase of human evolution after humans first expanded out of Africa at 1.9 MYA
(Fig. 7.4). Hence, there is no statistically significant evidence to reject the hypothesis that there may
have been multiple human lineages/subspecies during the early Pleistocene. However, after the mid-
Pleistocene Acheulean expansion and admixture event, the null hypothesis of isolation is consistently
rejected for all major geographic regions (Chapter 7 and Fig. 7.4), indicating that there has been only
one human lineage since at least the mid-Pleistocene (Fig. 7.4). However, there was also significant
evidence for isolation by distance throughout this period, so human populations would show local
genetic differentiation even with recurrent gene flow. Recall that genetic differentiation is necessary
but not sufficient to infer a subspecies, and the results of hypothesis testing (Fig. 7.4) clearly indicate
that the level and pattern of genetic differentiation was insufficient to infer separate evolutionary
lineages. Moreover, the fact that the dominant form of gene flow was isolation by distance also falsifies
the inference of subspecies because isolation by distance does not yield the sharp geographic
boundaries or discontinuities (e.g., Fig. 6.6) that are a necessary requirement for distinct evolutionary
lineages and subspecies. Ancient DNA studies (Chapter 7) strongly confirm these inferences first made
from multilocus NCPA by showing that there was much admixture, dispersal, and gene flow among
ancient human populations (Ackermann et al., 2015). Moreover, an analysis of genomic linkage
disequilibrium patterns also indicates that there was substantial ancient gene flow (McEvoy et al.,
2011). Hence, the absence of any significant fragmentation events, the significant inference of gene
flow among all major geographical regions in the Old World, the significant inferences of isolation by
distance since the mid-Pleistocene, and the inferences of ancient DNA studies on admixture and
dispersal all converge on the strong inference that all of modern humanity represents a single
evolutionary lineage. Therefore, there are no human races using the evolutionary lineage criterion.

Another way of testing the null hypothesis of multiple human lineages/races is to test population
genetic distance data for treeness (Chapter 7) since each branch in an evolutionary tree is by definition
an evolutionary lineage. The fit of human population genetic distance data to a population tree can only
be described as abysmal (e.g., Fig. 7.5, Table 7.2). This abysmal fit is not at all surprising given the
almost universal absence of discontinuities in genetic distances between human populations over space
(Fig. 6.6). Recall that such discontinuities are fundamental and necessary to the definition of race. This
lack of sharp boundaries also occurs even for traditional “racial” traits in Western culture, such as skin
color (Fig. 11.1) and the multilocus genetic complexes underlying skin color (Figs. 11.3 and 11.4).
There are indeed minor barriers to gene flow, such as the English Channel and the Alps in Europe
(Fig. 6.9), but these barriers are insufficient to cause major breaks or destroy the overall pattern of
isolation by distance/resistance in Europe (Fig. 6.8) or globally (Fig. 6.6). There are simply no discrete
branches in the human species to cause major discontinuities, and this is a necessary requirement for
valid population trees of “races.”

Sesardic (2010) has argued that the invalidations of human race given in the earlier sections are
suspect because they burden the concept of subspecies/race with implausible conditions that make it
easy to reject race. However, the quantitative and qualitative criteria discussed earlier have been
successfully used to infer subspecies or races in nonhuman species. For example, both the fst threshold
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and the evolutionary lineage definitions yield the inference of three subspecies in common
chimpanzeesdour evolutionary sister speciesdand both the threshold and lineage criteria identify
exactly the same chimpanzee subspecies (Templeton, 2013). DNA bar coding is a technique used
extensively in conservation biology to make taxonomic decisions, including subspecies, and once
again, humans have only a single bar code cluster in contrast to chimpanzees that have subspecies
(Fig. 7.9). Indeed, as pointed out in Chapter 7, the chimpanzee subspecies are far more differentiated
from one another by DNA bar coding than either Neanderthals or the Denosovian individual are to
modern humans. Moreover, there is remarkable homogeneity within modern humans even at the global
level (Fig. 7.9). The claim that these criteria are “implausible” and difficult to satisfy is patently false.
The failure of these criteria to be satisfied in humans simply stems from the fact that we are one of the
most genetically homogeneous species on the face of the Earth and do not display major genetic or
phenotypic discontinuities over space (Templeton, 1998b, 2013) despite some local adaptations
(Chapter 12), and 97.3% of human individuals on a global basis have mixed ancestries (Baker et al.,
2017). Races do not exist in humans although they do exist in other species when the same criteria are
used for all taxa.

Although the scientific method of hypothesis testing clearly falsifies the concepts of race, subspe-
cies, multiple evolutionary lineages, and distinct branches of a human population tree, onewould hardly
know this from the scientific literature on human evolution and its portrayal to the general public. For
example, population trees with their discrete branches are the norm in publications geared both for
scientists and the general public. Vitti et al. (2012) addressed the ethical issues involved in human
evolutionary genomics, and pointed out (p. 143) that “Particularly problematic for evolutionary
genomicists is the concept of ancestry, because of its racial implications” and that (p. 140) “evolutionary
genomicists must help audiences to avoid the pitfalls of common misconceptions of genetics, such as
genetic reductionism, essentialism or determinism.” Placing humans into a few, discrete categories
called “races” is an example of essentialism (Jackson, 2014). Despite their stated intentions, Vitti et al.
(2012) portray human evolution in an essentialist manner that places humans into a few discrete
evolutionary branches with no indication of gene flow or admixture (Fig. 14.4). Note that the upper part
of their figure gives an interspecific tree that is continuous with and qualitatively similar to the human
population tree. In this manner, the human populations, which correspond to three major races in US
culture, are visually equated to species. The equivalence of human populations to different species is
reinforced by the text in their figure; namely, the column that gives the names for the terminal taxa gives
the names of two different species of chimpanzees, and just below these species names are the names
of three human populations. No gene flow or admixture is indicated between any of the human pop-
ulations, exactly as the species are portrayed. Compare this portrayal to Fig. 7.4, which shows human
populations in a trellis due to admixture and recurrent gene flow. All of the elements shown in Fig. 7.4
are supported by hypothesis testing; in contrast, Fig. 14.4 is simply invoked by the authors and ignores
the results of hypothesis testing and much other available data that unambiguously establishes gene flow
and admixture among these human populations. Fig. 14.4 presents an essentialist view of human
populations that is indefensible under the scientific method of hypothesis testing.

So deep is the nonscientific commitment to human population trees that it even exists in articles
whose primary conclusion is one of gene flow or admixture. For example, Fig. 14.5 is from a paper
using some previously obtained modern and ancient genome sequences with some new complete
genome sequences from Sunghir, a site dated to w34,000 years before present that contains multiple
anatomically modern human individuals (Sikora et al., 2017). The Sunghir genomes showed little
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relatedness to one another and shared only small identity-by-descent tracts in the genome, indicating
that the Sunghir population experienced much gene flow and dispersal with other Paleolithic pop-
ulations. Despite this observation, a default population tree was used as the basis of their analysis. They
added to this tree two admixture events from Neanderthals into modern Eurasians and into the Sunghir
population, as shown in Fig. 14.5. The estimates were obtained by coalescent simulations to fit the
observed site-frequency spectra (SFS, Chapter 5) through maximum likelihood. Because of the
obsession with keeping a treelike structure as much as possible and identifying a finite number of
discrete ancestral populations, two ancestral “ghost” populations were manufactured: N.R.E.
(Neanderthal-related Eurasians) and N.R.A. (Neanderthal-related ancient). With these manufactured
ghost populations, a good fit to the marginal SFS could be obtained. Given the assumed tree, the two
manufactured ghost populations, and the two assumed admixture events, times for the “splits” among
the populations in the “tree” and the admixture events could also be estimated, as shown in Fig. 14.5.
A major statistical issue is whether or not there is sufficient data (recall the definition of statistical
sufficiency from Chapter 1) to estimate all the features of the complex simulated model or if this model

FIGURE 14.4

A portrayal of human evolution in a combined species and intraspecific population phylogenetic tree. Various

points on the human “branches” indicate the estimated times at which various positively selected human adap-

tations arose.

From Vitti, J.J., Cho, M.K., Tishkoff, S.A., Sabeti, P.C., 2012. Human evolutionary genomics: ethical and interpretive issues.

Trends in Genetics 28, 137e145.
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is overdetermined, in which case a good fit is meaningless. In this regard, it is known that four taxa are
sufficient to test the null hypothesis of treeness and to infer onedand no more than onedgenetic
introgression (admixture and/or gene flow) between two of the four taxa (Pease and Hahn, 2015). To
infer additional genetic introgressions requires data on five or more taxa (Pease and Hahn, 2015). Note
that Fig. 14.5 is based on actual data from just four taxa (Neanderthal, Sunghir, Europeans, and East
Asians), yet inference is made on two admixture events plus European/Asian gene flow. The ghost
populations create the artifact of seemingly being able to estimate additional admixture events with
manufactured taxa even though the underlying actual data are statistically insufficient (Chapter 1) for
such inference. The only inference that is justifiable from their statistics is that the four populations
sampled do not have a treelike relationship, with the admixture proportions, gene flow amount, and
timing of events and “splits” all suspect as they are based on insufficient statistics.

The assumed tree, assumed discrete ancestral populations, and assumed admixture events in
Fig. 14.5 are not necessary for data analysis. Network models allow the investigation of evolutionary
relationships that may or may not fit a tree model (Solı́s-Lemus et al., 2017). Indeed, network models
do not need to make the assumption of a finite number of discrete ancestral populations or indeed any
discrete set of populations at all (Chapter 6). Moreover, an evolutionary tree is a special case of a
network. Therefore, if a tree is truly justified, network-based methods can infer a tree, but methods
based on an assumed treelike structure cannot accurately infer networks. Finally, when gene flow and
admixture events are overlaid upon a tree (as was done in Fig. 14.5), the resulting estimates are

FIGURE 14.5

The best fitting model of early Eurasian population history under an assumed population tree (dark blue lines),

two manufactured ghost ancestral populations (N.R.E. and N.R.A.), and two assumed admixture events involving

the ghost populations and modern Eurasians and the ancient Sunghir population. Gene flow (m) is allowed

between modern Europeans and East Asians. Estimated times are given on the right in thousands of years ago

(kya). N.R.E., Neanderthal-related Eurasian; N.R.A., Neanderthal-related ancient.

From Sikora, M., Seguin-Orlando, A., Sousa, V.C., Albrechtsen, A., Korneliussen, T., Ko, A., et al., 2017. Ancient genomes show

social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659e662.
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different both quantitatively and qualitatively from those obtained by network analysis, and the tree
approach is inconsistent (that is, the estimators do not converge to the true answer with increasing
amounts of data, Chapter 1) when gene flow occurs (Solı́s-Lemus et al., 2016; Wen and Nakhleh,
2018). Given all that we know about human dispersal capabilities and the commonness of reproductive
exchange, it is statistically unwise to use population trees as the default in estimating human
demography, both past and present. Networks represent a far more accurate and robust default for
human demography by allowing the extensive interconnections between individuals in our species
(e.g., Figs. 6.14 and 7.4) without assuming or excluding population trees.

Does how we portray human evolution really make a difference in influencing racial attitudes? To
address this question, a large sample of American adults read either an essay that emphasized genetic
differences in geographic ancestry (such as Fig. 14.4) or an essay that emphasized that gene flow and
admixture have made humans into a single lineage with only minor genetic differences among pop-
ulations (such as Fig. 7.4) (Heine, 2017). The two groups were then asked questions about a long list of
racial stereotypes. The group exposed to a story consistent with Fig. 14.4 were more likely to regard
these stereotypes as the result of genetic differences between “races,” whereas the group exposed to a
story consistent with Fig. 7.4 regarded these stereotypes arising from people’s experiences rather than
their genes (Heine, 2017). This study and others (Keller, 2005) indicate that it does indeed make a
difference for racial attitudes as to how scientists portray their conclusions about human evolution.
This portrayal needs to be based on hypothesis testing, such as Fig. 7.4, and not simply by invoking a
culturally popular portrayal that ignores the results of scientific hypothesis testing, such as Fig. 14.4.
We should not forget the words of the great American intellectual Frederick Douglass who said in an
1854 lecture rebutting the science of race of his day (quoted from an article by Eric Herschthal,
“Frederick Douglass’s Fight Against Scientific Racism”, New York Times, February 22, 2018):
“Scientific writers, not less than others, write to please, as well as to instruct, and even unconsciously
to themselves (sometimes) sacrifice what is true to what is popular.”

MEDICINE
Population genetics and genomics have many medical applications. Indeed, the earliest population
genetic model, the HardyeWeinberg law, was derived by both Hardy and Weinberg to convince a
skeptical audience that Mendelian traits, and in particular Mendelian genetic diseases, existed in
humans by eliminating the confusion between Mendelian ratios in specific crosses versus genotype
frequencies in populations (Chapter 3). Population genetics continued playing an important role in the
discovery and identification of many Mendelian genetic diseases, particularly by identifying founder
populations in which genetic drift caused some otherwise rare diseases to be relatively common and/or
inbred populations in which recessive diseases would be more likely to be expressed. The importance
and utility of founder and inbreeding populations in medical genetics has increased greatly as mo-
lecular genetic technology has advanced. Indeed, the first cloning of a disease gene, Huntington’s
disease, was made possible by the identification of a founder population on the shores of Lake
Maracaibo in Venezuela (Wexler, 1992). This population was relatively isolated and one of the original
founders, Maria Concepción, carried the disease allele and was highly fecund. When surveyed in 1979,
this population had the largest known population of Huntington’s disease carriers in the world. The
extensive and deep pedigrees made possible by this founder effect allowed the gene to be mapped
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accurately onto chromosome 4, which was necessary for the cloning technology available at the time.
Basically, the Huntington’s study depended upon using the population genetic concepts of a founder
effect and identity by descent to localize and eventually clone the disease gene. With the dense genetic
surveys that are now possible at the genome level, identifying regions that are identical by descent,
even in more distantly related individuals, has improved by orders of magnitude, allowing the accurate
localization and cloning of Mendelian disease genes (Belbin et al., 2017).

The genomics era has allowed other population genetic principles to be used to identify or predict
genetic disease variants. Genomic screens for natural selection (Chapter 10) often identify genetically
conserved sites and regions of homozygosity that have little or no variation. Such sites and regions
indicate the presence of negative selection, and this in turn implies that mutations at such sites and
regions are generally deleterious. These conserved sites and regions of homozygosity are therefore
candidate genomic regions for genetic disease mutations, and this has turned out to be the case both in
coding and noncoding regions (Dudley et al., 2012; Gussow et al., 2017). Negative selection should
also keep the allele frequencies of these disease-causing mutations low, so population genetics predicts
that disease alleles should be enriched in the class of rare variants. In particular, rare variants that are
negatively selected often have a shared recent ancestry, so they are amenable to detection by identity-
by-descent methods (Browning and Thompson, 2012).

Positive selection can also be associated with genetic disease. One mechanism is through hitch-
hiking of deleterious mutations that are in linkage disequilibrium with a nearby variant increasing in
frequency due to positive selection, causing an excess of human genetic disease alleles in hitchhiking
regions compared to nonhitchhiking regions of the genome (Chun and Fay, 2011). More commonly,
genetic disease is increased in human populations as a pleiotropic effect of an allele under positive
selection (Crespi, 2011). Humans have adapted to a variety of environments as they spread across the
world (Chapter 12), leading to positive selection for climatic variables, diet, pathogens, etc. In
particular, positive selection for pathogen resistance has been a primary driver of the high frequency of
many genetic diseases (Fumagalli et al., 2011), as we have already seen with the malarial adaptations
of sickle-cell, G-6-PD deficiency, and the thalassemias (Chapter 9). About 10,000 so-called mono-
genic genetic diseases have been identified so far. Although the global prevalence of these monogenic
diseases is collectively only 1% of all births, these single-gene diseases account for up to 40% of the
work of hospital-based pediatric practice (WHO Genomic Resource Center, http://www.who.int/
genomics/public/geneticdiseases/en/index2.html). The genetic diseases that account for a majority
of these cases have been implicated in adaptations to pathogens or other environmental factors with the
genetic disease being an antagonistic pleiotropic effect, with the thalassemias being the most common
inherited single-gene disorders in the world (WHO Genomic Resource Center, Crespi, 2011). Even
diseases that are not simple Mendelian disorders have been associated with positive selection. For
example, Morgan et al. (2012) found that 22 genes with germline mutations associated with colon
cancer revealed significant levels of positive selection. Hence, positive selection has played an
important role in human genetic disease and genetic risk.

Because of the importance of local adaptation in determining the prevalence of genetic
diseases, geographic ancestry is important in genetic disease screening programs and in genetic
counseling, including polygenic diseases such as Crohn’s disease (Cagliani et al., 2013) and others
that have been influenced by both local negative and positive selection (Jin et al., 2012). Unfortu-
nately, “race” is still often used as a proxy for geographic ancestry, but screening and counseling can
be done far more effectively and accurately by using geographic ancestry and information on
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environmental agent disease associations, which is abundant for the most common genetic diseases
(Yudell et al., 2016).

Population surveys have also revealed that almost all single-gene Mendelian genetic diseases are in
reality far more complex due to interactions with other genes and environmental factors. For example,
sickle-cell disease can influence many clinically relevant traits (Fig. 1.8), and which traitsdif
anydare influenced vary considerably from patient to patient (Chapter 11). Indeed, the clinical
symptoms of sickle-cell homozygotes can vary from none to early death, and a large number of
epistatic loci have been implicated in this tremendous range of clinical severity (Lettre et al., 2008;
Templeton, 2000). Phenotypic heterogeneity is common for all the “simple” Mendelian diseases that
have been investigated in detail, including the first cloned disease of Huntington’s disease that has
many epistatic modifiers of its age of onset, and hence its clinical impact (Holmans et al., 2017). The
mutation originally identified as the basis of the genetic disease often seems to be necessary but not
sufficient for clinical symptoms. Hence, one therapeutic approach is gene therapy in which the un-
derlying necessary genetic mutation is restored to the nondisease state through some molecular genetic
manipulation of somatic cells. The gene therapy approach has not had much success, but progress is
being made for a few Mendelian diseases (Kaiser, 2017). The existence of individuals who genetically
should have a Mendelian disease but have mild to no clinical symptoms suggests another therapeutic
alternative. Such individuals have mild to no symptoms presumably due to interactions with other
genes or environmental factors, so studying how these individuals remain healthy (“resilient” to
disease) may provide insights into disease pathogenesis and new treatments (Friend and Schadt, 2014).

The greater resolution of modern genetic surveys has also allowed the detection of many disease-
associated genes that do not display a simple Mendelian inheritance pattern but for which single loci
still have relatively large marginal effects, such as the ApoE ε4 allele on late-onset Alzheimer’s disease
and coronary artery disease (CAD) (Chapter 13). Other examples are the tumor suppressor genes
BRCA1 and BRCA2 found in high frequency in Ashkenazi Jewish populations (King et al., 2003).
These two genes have variants that are associated with breast and ovarian cancer in this Ashkenazi
population. The lifetime risk of breast cancer among female mutation carriers in this population was
82% for the risk variants combined, and ovarian cancer risk was 54% for the BRCA1 risk variants and
23% for the BRCA2 risk variants. The study of King et al. (2003) also revealed that other factors were
important in modulating this risk. For example, the breast cancer risks by age 50 among mutation
carriers born before 1940 was 24%, but among those born after 1940 was 67%. Physical exercise and
lack of obesity in adolescence were also associated with significantly delayed breast cancer onset.

Although the conditional probability of breast cancer given the risk variants at the BRCA loci is
high, the conditional probability that a woman with breast cancer has the risk variants at the BRCA loci
is lowdonly about 5% (Campeau et al., 2008). Obviously, the majority of breast cancer cases are not
due to these loci. Nevertheless, once these loci had been identified, it had a bigger impact on cancer
treatment than just the 5% of breast cancer cases associated with these two loci. The two BRCA loci
encode proteins that repair double-strand breaks in DNA. Such breaks can be lethal in a somatic cell.
Because of the lethality of such breaks, it is not surprising that redundant mechanisms of double-strand
repair have evolved, which would delay the age of onset of the deleterious effects of such breaks
through the selective mechanisms discussed in Chapter 13. The backup mechanism for repairing these
breaks in many cells is DNA repair mediated by poly(ADP) ribose polymerase 1 (encoded by the
PARP1 locus). Using the population genetic concept of synthetic lethality in which two genotypes at
different loci are both individually viable but when put together are lethal (Dobzhansky, 1946), it was
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reasoned that if this backup pathway could be blocked, tumor cell lethality would result. PARP
inhibitors were used to produce a drug-induced synthetic lethality, and this proved to be an effective
treatment in many patients with BRCA-associated cancers (Chen et al., 2017; Du et al., 2017).
Moreover, other tumors have BRCA-like molecular properties but normal BRCA alleles, and some of
these tumors also are responsive to PARP inhibitors (Basourakos et al., 2017). Some cancers other than
breast and ovarian also have DNA repair defects and are responsive to PARP inhibitors (Lim and Tan,
2017), such as some types of pancreatic cancer (Golan and Javle, 2017), many noneBRCA-associated
ovarian cancers (Machado and Gaillard, 2017), and some types of leukemia (Nieborowska-Skorska
et al., 2017). These successes beyond just BRCA-associated tumors have also opened up research
into drug-induced synthetic lethality for both DNA repair pathways and other biochemical pathways to
kill cancer cells (Bueno and Mar, 2017; Higgins and Boulton, 2018; Jdey et al., 2017). Thus, iden-
tifying and characterizing the BRCA genes in one population in which they had high frequency has
lead to understandings and research paths for treatments of a wide range of cancer patients, most of
whom do not have these risk alleles.

With the BRCA risk markers, the conditional probability of the disease given the markers is high,
but the conditional probability of the markers given the disease is low; that is, these markers only
explain a small fraction of the disease cases. For the ApoL1 risk variants for nondiabetic end-stage
kidney failure (Chapter 8), the opposite is true. Individuals with end-stage kidney failure have a
high probability of bearing one or both of the two risk alleles (Tzur et al., 2010), so the conditional
probability of the markers given the disease is high. Indeed, these genetic factors are such a common
factor given the disease that kidney failure associated with these alleles is now recognized as a major
subtype of end-stage kidney failure (Kruzel-Davila et al., 2017). However, the conditional probability
of the disease given the markers is only about 12%, so most people with genomic risk never have end-
stage kidney failure. Obviously, other factors must interact with ApoL1 to lead to end-stage kidney
failure. As discussed previously, the risk alleles are found in African populations that have a history of
exposure to sleeping sickness (Fig. 14.3), but these alleles have been introduced into other populations
due to gene flow and/or admixture. The risk of end-stage kidney failure in populations with more
admixture with populations with no evolutionary exposure to sleeping sickness is greater than in
populations with an evolutionary exposure to sleeping sickness, indicating that some epistatic modifier
loci might exist elsewhere in the genome (Kruzel-Davila et al., 2017). An interaction already
discovered is infection by HIV, which greatly increases the risk by 29e89-fold (Kruzel-Davila et al.,
2017). As a result of this discovery, research is underway to find other viral infections that may trigger
end-stage kidney failure in ApoL1 risk individuals, as well as identifying drug targets as the molecular
role of these risk variants becomes better known.

Population genetics and genomics are essential to modern studies on susceptibility to infectious
diseases and on systemic diseases such as type 2 diabetes, coronary artery disease, hypertension,
Alzheimer’s disease, etc.,the most common causes of death and disease in the developed world.
Population genetic concepts such as linkage disequilibrium and admixture are the main tools for
identifying genetic susceptibility and risk factors for these diseases through genome-wide association
study (GWAS) and admixture mapping (Chapter 8). Although such studies have identified large
numbers of genes, the results have often been disappointing to clinicians because most of the genes
explain only a minuscule proportion of the variation in disease status, unlike the ApoL1 risk variants
for end-stage kidney failure. Even the “major genes” that emerge from these studies, such as the ApoE
ε4 allele associated with risk to Alzheimer’s and coronary artery disease, still explain only a small
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portion of the variation. One possible reason for this disappointing outcome is that humans have a
unique gene pool in which rare variants are collectively quite common because of our demographic
history (Chapter 5). Rare variants could contribute to disease with strong effects (Fig. 8.2) but are still
difficult to detect with most GWAS methods because of their rarity (Asimit and Zeggini, 2010). A few
studies have used designs and large sample sizes that allow the impact of rare variants to be measured,
and indeed rare variants are found to make a significant contribution to polygenic diseases (Bomba
et al., 2017).

Another possible problem is that most of the GWAS and other mapping methods ignore pleiotropy
and interactions, both between genes (epistasis) and between genes and environments. Fortunately, the
single-marker/single-trait focus of traditional GWAS is beginning to change. For example, a multi-
locus predictor explained the risk of Crohn’s disease significantly better than using individual SNPs as
predictors with the same data (Kang et al., 2011). Prior knowledge based on gene function and
metabolic roles has been used to limit the number of interactions incorporated into a GWAS, thereby
enhancing statistical power for detecting epistasis. Such a prior knowledge approach found significant
interactions that explained a greater proportion of the variance in some cholesterol-related phenotypes
(Ma et al., 2012). Graham et al. (2017) incorporated pleiotropy into a GWAS of type 2 diabetes and
cardiovascular disease, as these two diseases have long been known to be clinically related. They
created phenotype networks based on prior knowledge of shared biology and coupled this with a
method called evolutionary triangulation that utilizes information on allele frequencies among pop-
ulations related to phenotype prevalence under the hypothesis that alleles affecting disease risk in
multiple populations are distributed consistently with differences in disease prevalence. Phenotype
networks coupled with evolutionary triangulation explained more variance in disease risk than could
be explained by only one of these enhancements and identified phenotypes that are distributed in
parallel across populations.

Studies have also revealed the importance of environmental interactions. For example, Schmidt
et al. (2006) studied risk of age-related macular degeneration, the most common cause of vision loss in
individuals 50 years or older in developed countries that is associated with many loci and with
smoking (Ratnapriya and Chew, 2013). Schmidt et al. (2006) performed a family-based linkage
mapping for a quantitative trait locus (QTL) on a sample of 90 families, and then only on a subset of 40
families with a history of strong smoking. Excluding most of the families in the subset study should
greatly reduce statistical power, but this turned out to be more than compensated by the biological
importance of a strong genotype-by-environment interaction (Fig. 14.6). They could find no statisti-
cally significant signal in a region of chromosome 10 when all 90 families were used, but discovered a
highly significant signal in the LOC387715 locus in this chromosomal region in the families with a
history of heavy smoking (Fig. 14.6). They also showed that this locus, another locus on a different
chromosome, and cigarette smoking explained 61% of the risk for age-related macular degeneration,
making this a finding with immediate clinical applications. Subsequent studies have confirmed this
strong gene-by-smoking interaction with this and other loci for risk of age-related macular degener-
ation (Bonyadi et al., 2017; Stanislovaitiene et al., 2017).

Candidate gene studies are typically more amenable to studying interaction effects simply because
they investigate the effects of only a small number of loci, thereby greatly reducing the dimensionality
of the interaction problem, as shown previously in Table 8.5 and Fig. 8.1. Gai et al. (2015) investigated
the impact of 15 loci and various combinations of them on several diseases and found that combi-
nations of loci were superior to single-gene statistics in revealing significant disease associations.
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Maxwell et al. (2013) combined a candidate locus approach focusing on ApoE with a GWAS to look
specifically at epistatic interactions with ApoE to identify what are called relationship QTLs (rQTLs).
They not only discovered some significant rQTLs and epistasis but also found much significant
pleiotropy among several lipid phenotypes.

The important role of gene-by-environment interactions shown by studies such as that illustrated
by Fig. 14.6 serves as an antidote to one of the main problems that has plagued the application of
genetics to medicinedgenetic determinism. Recall premise two from Chapter 1: phenotypes emerge
from the interaction of genotypes with the environment. Unfortunately, the medical genetics liter-
ature is filled with the phrase “the gene for X” where “X” can be a disease of interest, such as heart
disease, diabetes, obesity, etc (Bates et al., 2002). Such genetic determinism is found not only in the
scientific literature but especially in articles or books geared to the general public. For example, The
New York Times reported on the results of a GWAS that showed that some genes are associated with
obesity with the headline “Americans Blame Obesity on Willpower, Despite Evidence It’s Genetic”
(https://www.nytimes.com/2016/11/01/health/americans-obesity-willpower-genetics-study.html).

FIGURE 14.6

Results of a QTL mapping study for chromosome 10q26 on risk for age-related macular degeneration in 90

families and in a subset of 40 families with a history of heavy smoking.

From Schmidt, S., Hauser, M.A., Scott, W.K., Postel, E.A., Agarwal, A., Gallins, P., et al., 2006. Cigarette smoking strongly

modifies the association of LOC387715 and age-related macular degeneration. The American Journal of Human Genetics 78,

852e864.
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This article related a GWAS study to the obesity epidemic that has occurred in the United States in
recent decades. The people involved in this obesity epidemic were adults, and therefore alive (with a
fixed genotype) before this “epidemic” occurred. Obviously, genes cannot explain this rapid change
in the amount of obesity. Instead, as concluded by Qasim et al. (2018, p. 122): “The modern obesity
epidemic is largely explained by environment factors, with excess energy intake and physical
inactivity pinned as the main culprits.” The GWAS only shows that some genotypes are more
responsive to these environmental factors than others. One interesting quotation from this article is
“Researchers say obesity, which affects one-third of Americans, is caused by interactions between
the environment and genetics and has little to do with sloth or gluttony.” However, the relevant
environment is activity levels and diet, so this sentence is internally self-contradictory and steers
readers away from the environmental factors mentioned as important in the first half of the sentence
by describing them in highly negative terms (“sloth” instead of “activity levels”; “gluttony” instead
of “diet”). Does such miscommunication about genetic determinism have any health effects? A study
on Canadian university students (Dar-Nimrod et al., 2014) had all of them read articles irrelevant to
genetics and obesity and then subdivided them into three groups: one group read an article about
genes for obesity, a second group read an article about research showing that the weight of one’s
friends affected one’s own weight, and the third group read an article about corn production unre-
lated to obesity. All articles were based on published scientific research. Later on the students were
told they would be participating in a second study on food preferences and were provided with a
bowl of cookies that they were asked to evaluate. This evaluation was a ruse, and the real metric of
the study was the number of cookies the students ate. The students who read the article about obesity
genes ate a third more cookies than the other two groups. Only the article on genetics affected
behavior, but learning about obesity genes led people to act in a manner that was more likely to lead
to obesity. Just as scientists should be careful about how they communicate information on human
evolution that relates to race, scientists likewise, need to be careful about how they report genee
phenotype associations and avoid phrases that promote genetic determinism. This is particularly
important as more and more people are becoming consumers of personal genetic data provided by
private companies with no or superficial counseling about the meaning of the results.

Evolutionary medicine illustrates another impact of population genetics and genomics upon
medicinedthe use of evolutionary approaches to better understand human health and improve
disease treatment (Turner, 2016). The central question of this field is why has natural selection left us
vulnerable to disease? We have in past chapters and earlier in this chapter discussed the inability of
natural selection to eliminate many genetic diseases because of pleiotropy, to fail to eliminate or
even favor late-onset systemic diseases, and limitations to overcoming infectious diseases due to
coevolution with pathogens (recall the Red Queen hypothesis from Chapter 12, Siddle and Quintana-
Murci, 2014)dall aspects of evolutionary medicine. Gluckman et al. (2011) describe the key
principles of evolutionary medicine as “. that selection acts on fitness, not health or longevity; that
our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular
environments; and that we are now living in novel environments compared to those in which we
evolved.” The last principle has attracted much attention and is called “mismatch to modernity.”
Recall the thrifty genotype hypothesis from Chapter 12. This hypothesis posits that the predispo-
sition of certain populations to type 2 diabetes under modern dietary and exercise environments is
due to past selection under famines or extreme hunger. This has lead to such proposals as the “paleo
diet” to alleviate some chronic diseases, which has indeed had some success (Lindeberg, 2010).
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Mismatch is made likely because of the important role of niche construction in human evolution that
leads to coarse-grained temporal variation with time lags (Chapter 12) and alterations in demography
(Chapter 13).

Natural selection can also cause the evolution of maladaptive traits through pleiotropy. For
example, all apes and humans share certain developmental constraints that produce correlations
between skull, jaw, and tooth growth. One early aspect of niche construction was the adoption of stone
tools and later fire for food processing, both of which appear to have been in place by the time ofHomo
erectus (Alperson-Afil, 2017; Hlubik et al., 2017; Organ et al., 2011). A diet rich in cooked and
nonthermally processed food can reduce by an order of magnitude the time required for feeding (Organ
et al., 2011) and would help to allow brain growth, as brains are metabolically expensive. Cooked and
processed foods also reduce or eliminate selection on teeth and jaws as an adaptation to diet
(Wrangham, 2017). Ackermann and Cheverud (2004) examined selection on teeth and jaws in the
fossil record by using modern humans, chimpanzees, and gorillas as models for the developmental
constraints governing head and facial evolution. Brain size (and hence the cranial portions of the skull)
greatly increased in size since the early Pleistocene, and if teeth and jaws were neutral during this time
period, their morphological evolution as measured by fossils should be predicted well just from the
ape/human growth models. Significant deviations from these predictions would indicate selection.
Their results for the lower cranial-facial areas are summarized in Fig. 14.7, which did not depend upon
which modern species was used as a growth model. The bottom split in that figure is between the
gracile versus robust australopiths, indicating strong selection on teeth and jaws. Hence, the
Australopithecus lineages adapted to diet at least in part through natural selection on their teeth and
jaws. However, selection in the Homo lineage became progressively weaker with time and was
effectively neutral by around 1.5 MYA. This does not mean that teeth and jaws in the human lineage
were not evolving after 1.5 MYA; rather, as natural selection was driving increases in brain size and the
upper crania under the higher dietary energy environment created by food processing, the pleiotropic
neutral response was to reduce the relative size of the lower facial area, and in particular teeth and jaws.
Moreover, the jaws tend to become more reduced in size than the teeth, leading to our jaws tending to
be too small for our teeth. This in turn leads to such maladaptive traits as wisdom teeth, tooth
crowding, and crooked teethdand ultimately to the profession of orthodontics.

HAS HUMAN EVOLUTION STOPPED?
As shown in the last section, the human ability of niche construction has induced much selection in the
past. However, some evolutionary biologists feel that our ability to modify our environment to meet
our needs has become so extreme that human evolution has stopped. For example, the distinguished
paleontologist Stephen J. Gould (2000) stated:

There’s been no biological change in humans in 40,000 or 50,000 years. Everything we call culture

and civilization we’ve built with the same body and brain.

The basic rationale behind the conclusion that human evolution has stopped is that once the human
lineage had achieved a sufficiently large brain and had developed a sufficiently sophisticated culture
(sometime around 40,000e50,000 years ago according to Gould, but more commonly placed at
10,000 years ago with the widespread development of agriculture), cultural evolution supplanted
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biological evolution. However, many evolutionary biologists have not accepted this argument, and
indeed some have come to exactly the opposite conclusion (Templeton, 2010, 2016b). For example,
Cochran and Harpending (2009) argue that “human evolution has accelerated in the past 10,000 years,
rather than slowing or stopping, and is now happening about 100 times faster than its long-term
average over the 6 million years of our existence.”

There are four fundamental flaws in the rationale for the cessation of human evolution. First is the
premise that cultural evolution eliminates adaptive evolution via natural selection. All organisms adapt
to their environment, and in humans much of our environment is defined by our culture and its
attendant niche construction. Hence, cultural change, even recent changes, can actually spur on
adaptive evolution in humans. We have already seen examples of this: the cultural transition to the
Malaysian agricultural complex inducing strong natural selection for malarial resistance in sub-
Saharan Africa (Chapter 9), the use of milk from cattle and the evolution of lactase persistence
(Chapter 12), the sensitivity to crop failure in many agricultural societies and selection favoring thrifty
genotypes (Chapter 12), the cultural innovations that allowed humans to live in high latitude and high
altitude areas with its attendant strong selective forces favoring adaptation to these extreme envi-
ronments (Chapter 11 for skin color; Chapter 12 for high altitude adaptation). All of these examples are

FIGURE 14.7

The strength of natural selection on the lower cranial facial portions of fossils in early human evolution. Strong

selection is indicated in black, undetectable selection is indicated in white.

From Ackermann, R.R., Cheverud, J.M., 2004. Detecting genetic drift versus selection in human evolution. Proceedings of the

National Academy of Sciences of the United States of America 101, 17947e17951.
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of adaptive evolution spurred on by cultural evolution within the last 10,000 years. Hence, natural
selection has not stopped influencing human evolution in the last 40,000 or even 10,000 years. Stearns
et al. (2010) estimated selection occurring in contemporary and recent human populations for a large
number of life history traits and health measures and found significant selection on many traits
(Table 14.1). All of these studies falsify the hypothesis that natural selection no longer operates on
humans and has not for 10,000 years or more.

Table 14.1 Results for Tests of Selection on Several Traits in Recent and Contemporary Human
Populations

Trait Sex Selection p n Population (Century)

Age at first birth F � ��� 306 Finland (17the19th)

F � ��� 395 Finland (18the19th)

F � ��� 2227 United States (20th)

F � �� 314 Finland (20th)

F � ��� 1459 Australia (20th)

F � �� 2443 United States (20th)

M � �� 395 Finland (18the19th)

M � �� 2443 United States (20th)

Interbirth interval F � ��� 306 Finland (17the19th)

Age at last birth F þ ��� 306 Finland (17the19th)

F þ � 314 Finland (20th)

Age at menopause F þ/s �� 2227 United States (20th)

F þ �� 1459 Australia (20th)

Age at death M þ ��� 746 United States (19th)

Weight F þ �� 1278 United States (20th)

F þ/s ��� 2227 United States (20th)

M s ��� 2616 United States (19the20th)

Height F þ � 216 Gambia (20th)

F e/s �� 3552 Great Britain (20th)

F � ��� 2227 United States (20th)

M s ��� 2616 United States (19the20th)

M þ � 322 United States (20th)

M þ ��� 3201 Poland (20th)

Cholesterol F � �� 2227 United States (20th)

Systolic blood pressure F � � 2227 United States (20th)

Blood glucose F s �� 2227 United States (20th)

Sex is indicated by F for females and M for males. The type of selection detected is � for negative selection, þ for positive
directional selection, and s for stabilizing selection. the p value of a trait is for the null hypothesis of no selection, with
�p < .05;��p < .01;���p < .001. The Sample Size is n.
Modified from Stearns, S.C., Byars, S.G., Govindaraju, D.R., Ewbank, D., 2010. Measuring selection in contemporary human
populations. Nature Reviews Genetics 11, 611e622.
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The second flaw is the misconception that natural selection no longer influences a trait rendered
neutral by cultural evolution. Because natural selection works on traits, and pleiotropy is rampant
(Chesmore et al., 2017), any alteration of either positive or negative selection on one trait will alter the
selective balance on all the other traits linked by pleiotropy, even for traits rendered neutral. Consider,
for example, the case of the sickle-cell allele and other malarial adaptations in African-Americans.
These alleles were selected to increase in frequency in much of sub-Saharan Africa because of the trait
of malarial resistance, but when taken to a nonmalarial part of the world where that trait was
neutralized as a contributor to fitness, natural selection still operated on these loci to decrease their
frequency because of the pleiotropic trait of genetic disease (Table 12.1). Another example was
provided earlier concerning the human face. As shown in Fig. 14.7, cultural innovations have made the
lower human face mostly neutral, but selection has still driven jaw and tooth size evolution through
pleiotropy, resulting in the modern human face of a large forehead coupled with a flat face due to
relatively small jaws and teeth.

The third flaw in the argument is the false premise that evolution is the same as adaptive evolution.
Natural selection is a powerful mechanism for causing evolution, but patterns of dispersal, system of
mating, population size, and other factors can also lead to evolutionary change in humans. In
particular, our population structure has changed considerably over the past 10,000 years, and this by
itself has caused much human evolution and altered the human gene pool in unique ways. As pointed
out in Chapter 5, humans have undergone an extreme expansion in population size over the last
10,000 years, and this in turn has resulted in rare genetic variants that have arisen by mutation in this
time period of being abundant collectively. Many of these rare variants have strong phenotypic
associations, as discussed earlier. Although most of these rare variants are probably neutral or dele-
terious under most environmental circumstances, this is unlikely to be true for all these variants and all
environments. Because the human population can cover such a large mutational space due its popu-
lation size and mutational accumulation due to population growth, the selective potential of the current
human population is at a mutational maximum.

The last 10,000 years of human history have also been characterized by a tremendous increase in
our ability to disperse. As with past dispersals, when humans disperse they tend to interbreed.
Moreover, there has been a decline in the strength of assortative mating by ethnicity (Sebastiani et al.,
2017). All these changes in population structure lead to a diminishment of genetic differentiation
between local populations, a more equal sharing of genetic diversity across all of humanity, and an
increase in overall individual heterozygosity. These changes in population structure do not only affect
neutral alleles. Just changing the relationship between gamete frequencies and genotype frequencies
directly alters selective forces through their effect on average excesses (Eq. 9.3), so any system that
had been under a selective equilibrium (average excesses at or very near zero) would come under
stronger selection due to these changes in population structure. Inbreeding systems of mating are on
the decline due to cultural and economic shifts, and this in turn reduces inbreeding depression and
alters selection on loci by weighting heterozygous effects more strongly (Bittles and Black, 2010).
Some populations have experienced much of this change in population structure toward more
dispersal, admixture, and outbreeding since the mid-20th century and some have not yet experienced
this shift, making it amenable to study. A comparison of populations in Dalmatia and Croatia revealed
beneficial effects for several health-related traits in those populations that had made the transition to
increased outbreeding and heterozygosity compared with otherwise similar populations that had not
yet made that transition (Campbell et al., 2007). Other studies indicate beneficial effects of increased
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heterozygosity (or decreased homozygosity) on stature, cognitive function, and several disease phe-
notypes (Joshi et al., 2015; Samuels et al., 2016). A study in Poland found that the intermarital distance
(the distance between the birth places of the spouses) was an independent and important factor
influencing offspring height, indicating that there will have beneficial health effects as greater
distances become required for the same degree of isolation under isolation-by-distance (Kozieł et al.,
2011). Because changes in population structure can result in dramatic changes in genotype frequencies
even in a single generation, these studies all indicate that beneficial health effects have already accrued
genetically by these recent changes in human evolution mediated by population structure changes.

Fourth, one common hypothesis about recent human evolution is that our recent demographic
transition to lowered fertility and mortality rates has reduced the opportunity for selection to operate in
the human populationdan idea that goes all the way back to Darwin (1871). This idea is based on the
premise that the transition to demographic modernity should reduce heritability of fitness-related traits
and hence the ability to respond to selection (Chapters 8 and 9). However, demographic transitions
should also alter fitnesses directly (Chapter 13), and such an alteration should increase heritability
from a previous selective equilibrium state by converting nonadditive variance in the previous equi-
librium state into additive variance in the nonequilibrium statedan inevitable side effect of altering
fitnesses from an equilibrium state (Chapters 8 and 9). These differing predictions can be tested by
directly monitoring the transition to a modern demography. Bolund et al. (2015) studied several
Finnish populations with over 300 years (1705e2011 CE) of complete genealogical data and multiple
fitness-related traits. A major demographic transition to modernity occurred in these populations
centered around 1880 CE. Fig. 14.8 shows a three-dimensional summary of their results on the additive
variances and covariances of their traits. As can be seen, there was increased variance and covariance
after the transition to a modern demography characterized by high survivorship and fewer births.
Similarly, studies on a Utah population with detailed genealogical measurements and measurements
on multiple life history traits also revealed an increase in the opportunity for selection after the
demographic transition to modernity (Moorad, 2013). Hence, the frequent prediction that current
human demography diminishes the opportunity for natural selection is not borne out when the actual
transition to modernity is documented and multiple fitness traits are studied; rather, the potential
human responsiveness to natural selection increases under modern demographic conditions.
Combining this observation with the previous observation that our mutational potential for responding
to natural selection has never been higher, it is patent that the declaration of the end of natural selection
as a force in human evolution is premature.

One unique aspect of human niche construction is our ability to alter deliberately our own gene
pool. Many people over the centuries have advocated selective breeding, but the modern idea of
deliberately altering human evolution by selective breeding is attributed to Sir Francis Galton, a
distinguished statistician and cousin of Charles Darwin. Galton coined the term eugenics, meaning
“well-born,” in 1883 to describe plans to improve human populations over the generations by selective
breeding (Allen, 2011; Zampieri, 2017). Eugenics had a surge of popularity in North America and
Europe after the rediscovery of Mendelism in the early 20th century. This early eugenics was divided
into two major categories: negative eugenics that discouraged reproduction, sometimes in a
compulsory manner, of people with “undesirable” traits; and positive eugenics that encouraged
reproduction in people with “desirable” traits. The eugenics movement embraced the idea of genetic
determinism for both undesirable and desirable traits, leading to the belief that their selective breeding
schemes would have strong effects on the human gene pool. The eugenics movement had many
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political victories in several countries. For example, in the United States, laws were passed for the
involuntary sterilization of people with undesirable traits such as “criminality” and “feebleminded-
ness,” and immigration laws were passed to prevent people from “races” or ethnic groups that were
regarded as displaying undesirable traits from immigrating into the United States. The connection
between eugenics and racism reached its most extreme form in Nazi Germany. The genocidal excesses
by the Nazis discredited eugenics for many and marked the beginning of the eclipse of the political
power of the eugenics movement (Reilly, 2015).

As genetic knowledge and technology advanced, a “new eugenics” emerged that focuses directly
on specific individuals who bear alleles or genetic risk factors associated with specific phenotypes
rather than on ill-defined phenotypic groups like “criminals” or on “races” or ethnic groups (Allen,
2001). Moreover, some genetic technologies offer the possibility of directly altering “defective”
genes borne by specific individuals, such as the CRISPR-Cas9 system (Barrangou and Doudna,
2016), making the new eugenics more akin to a medical treatment of a diseased individual. Indeed, if
genetic modifications are made only to somatic cells, there is no direct eugenic practice. However,
these technologies can make germ-line modifications as well (Travis, 2015), thereby constituting a
eugenic tool. Moreover, germ-line modifications can be coupled with a meiotic drive system
(Chapter 11), called gene drive, which can rapidly make radical changes in a species’ gene pool
(Champer et al., 2016).

FIGURE 14.8

A three-dimensional plot of the genetic variance/covariance matrix for life history traits using the first three

principal components. The inner hull represents the matrix before 1880, and the expanded outer hull the genetic

matrix after the demographic transition.

From Bolund, E., Hayward, A., Pettay, J.E., Lummaa, V., 2015. Effects of the demographic transition on the genetic variances and

covariances of human life-history traits. Evolution 69, 747e755.
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The new eugenics with its focus on specific individuals and genotypes can be expanded to the
population level though genetic screens of populations. Genetic screens have a long history in human
genetics. The first genetic screening program of newborns was for the genetic disease phenylketonuria
(PKU), as described in Chapter 9. This program was made universal in the United States by 1963,
although it was extensive even before that in the United States and many other countries. This program
is regarded as successful, but the reason is that the genotypeephenotype relationship was understood
in this case (Berry et al., 2013). Because of this knowledge, the newborns identified as PKU homo-
zygotes could be treated by an environmental manipulation (a diet with low levels of phenylalanine,
see Chapter 9) that greatly ameliorates the symptoms in most individuals. Hence, this genetic screen
made the environment more important, not less, and the focus of medical treatment is on the
environment rather than on the gene. This environmental focus is generally lacking in the modern
proposals for genetic screens. Instead, what is emphasized is the enhanced power to identify disease-
associated genes. For example, a genetic screen using whole genome sequencing on 1696 infants
found that a majority of the infants carried one or more database-annotated pathogenic genetic variants
(Bodian et al., 2016). The eugenic potential of such whole genome genetic screens becomes vastly
enhanced when performed at the fetal or even preimplantation stages, making selective abortions or
implantations more likely (Zampieri, 2017). Indeed, abortions of fetuses with genetic diseases have
greatly increased since the development of early and accurate cell-free fetal screening that uses the
fetal DNA that leaks into the mother’s bloodstream (Heine, 2017). Lynch (2016) has calculated that
such genetic screens can be effective in lowering the incidence of a major genetic disease allele even if
not everyone is screened as long as “culling is continuous.”

Under the hypothesis that modern medicine has relaxed selection against deleterious mutations,
Lynch (2016) calculates a 1% decline per generation in human baseline physical and mental attributes
due to the accumulation of deleterious mutations, making it “difficult to escape the conclusion that
numerous physical and psychological attributes are likely to slowly deteriorate in technologically
advanced societies, with notable changes in average preintervention phenotypes expected on a
timescale of a few generations, i.e., 100 years, in societies where medical care is widely applied”
(p. 873, Lynch, 2016). The hypothesis of relaxed selection is not supported, as noted earlier. Moreover,
Lynch’s assumptions can now be directly tested using ancient DNA. Berens et al. (2017) made a direct
assessment of the mutational load of ancient and modern genomes and found that hereditary disease
risks are similar for ancient hominins and modern-day humans, with the only temporal trend being
toward healthier genomesdthe exact opposite of Lynch’s assumption. Roth and Wakeley (2016)
criticized many of Lynch’s other arguments and were most surprised by Lynch’s failure to consider the
environment. Unfortunately, the failure to consider the environment is not surprising. Genetic deter-
minism underlies much of the new eugenics as it did the old, leading to the environment frequently
being ignored in eugenic calculations and proposals.

Genetic determinism is first encountered by frequently equating association with genetic causation
in eugenic proposals. For example, the admixture mapping discussed in Chapter 8 clearly indicated a
small region of the human genome that was strongly associated with end stage kidney disease (ESKD).
This region contained two genes, MYH9 and ApoL1. One of the groups (Kopp et al., 2008) doing this
mapping identified the MYH9 as the causative locus because the marker associations were stronger
with that locus and because the protein product ofMHY9 is expressed in podocytes, the tissue affected
by ESKD, whereas ApoL1 is not normally expressed in podocytes (later studies revealed it is expressed
in podocytes in the presence of interferon). Koop et al. did acknowledge that the causative sequence in
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MHY9 had not been identified, but did feel confident that MHY9 was the causative locus. However,
subsequent studies (Tzur et al., 2010) revealed that there were two different missense variants at the
ApoL1 locus that contributed to the association with ESKD (Fig. 14.3), and this genetic heterogeneity
within the ApoL1 locus weakened the association signal to the disease with many of the SNPs at the
ApoL1 locus compared with some of the SNPs at the nearbyMYH9 locus. Once these missense variants
were directly examined, the strongest associations shifted to the ApoL1 locus (Tzur et al., 2010), and
many subsequent experimental studies using podocyte tissue culture and model organisms revealed
that the causative variants were these missense mutations in ApoL1, with no variation atMYH9 having
an effect on ESKD risk (Kruzel-Davila et al., 2017). This example shows that genes that have the
strongest associations with a disease in a GWAS or mapping study are not necessarily the causative
loci. The vast majority of the “genes for disease X” in the human genetic literature are based on
association studies without knowledge of causation. Causative studies on human genetic variants are
often difficult and expensive, so our actual knowledge of which genes are truly causative is much less
than assumed in the genome-wide genetic screens discussed in Lynch (2016). Regardless of the ethics,
“culling” is scientifically indefensible when based on association rather than known causation.

It was also noted earlier that there is a discrepancy between the remarkably high odds ratios and the
low lifetime risks of kidney disease for the two risk variants of ApoL1da pattern that indicated that
either other loci or environmental factors were interacting with the risk variants in the progression to
end-stage renal failure (Kruzel-Davila et al., 2016). One such environmental factor that has already
been identified is certain viral infections such as HIV-1 (Freedman and Skorecki, 2014). Accordingly,
the main focus of medical research for possible treatments that came from these genetic mapping
studies is now on possible environmental factors (Kruzel-Davila et al., 2017), just as environmental
intervention is the primary justification and the cause of success of the PKU genetic screening
program.

Interactions with other genes and/or with the environment are found when looked for in virtually all
gene-disease associations, even for the Mendelian, “single-locus” genetic diseases (Templeton, 2000).
Nevertheless, the importance of genetic and environmental context is often ignored in discussions of
eugenics (Roth and Wakeley, 2016). To see the importance of context, consider the ε4 allele at the
ApoE locus. This allele is associated with Alzheimer’s disease, decreased longevity, CAD (Chapter
13), and high cholesterol levels (Chapter 8). Despite all of these genetic associations being among the
strongest observed for these phenotypes, in all cases ε4 only explains a small portion of the total
phenotypic variance. Part of this is due to the fact that much of the apparent effect of ε4 is modulated
by epistasis with alleles at other loci (Xie et al., 2018), and ε4 only appears to be the “major” causative
allele because of a statistical artifact of the allele frequencies in an epistatic system (Fig. 8.1)da poor
basis for calling ε4 “the gene for coronary heart disease.” Epistasis is also a widely ignored interaction
in the eugenic literature, including Lynch (2016).

Ignoring for the moment the problem of epistasis, the phenotypes that are associated (caused?) by
ε4 seem to be “bad” from a medical perspective, so the ε4 allele appears to be a good candidate for
elimination from the human gene pool through eugenics. However, what happens when this allele is
examined not just by its marginal effect (the norm in GWAS and mapping studies) but is placed into a
broader context? Sing et al. (1995) performed a study on the odds of having a father that suffered from
CAD using information on adult children. The fathers were chosen as indicators of CAD because CAD
is primarily a disease of older individuals and is the number one killer in the United States. Several
types of information were gathered, but Fig. 14.9 summarizes some of their results obtained with
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information on ApoE genotype, using only the three most common genotypes (ε3/ε3, ε3/ε2, and
ε3/ε4), and cholesterol level, split into tertiles (Templeton, 1998a). In this population, half of the
fathers had CAD, so the overall population odds of CAD is 1, and the normal range is considered to be
twofold differences from the overall population odds (that is, the fourfold range of 0.5e2 on the
logarithmic odds scale of Fig. 14.9).

Pooling the subjects into tertiles by cholesterol level, the left part of Fig. 14.9 shows that the range
of the CAD odds versus cholesterol level tertile slightly exceeds the fourfold normal range, with in-
dividuals in the highest cholesterol tertile having the odds of CAD slightly above 2, and the lowest
tertile being slightly below 0.5. The three ApoE genotype categories span a similar but slightly larger
range, with bearers of the ε4 allele having the highest odds of CAD. These results are not surprising,
and strengthen the idea that the ε4 allele is deleterious to human health. When people are advised by
medical doctors or private genetic screening companies about CAD risk, it is these single variable risks
that are typically given; namely, high cholesterol is “bad” and the ε4 allele is “bad”; that is, increases
risk of CAD. We have already seen in Chapter 8 that the ε4 allele is also associated with increased
cholesterol level, so these two marginal effects are somewhat correlated. Nevertheless, the genetic
variation at the ApoE locus only determines a small portion of the phenotypic variance in cholesterol
levels (Chapter 8), and many other loci and environmental effects (particularly diet and exercise) are
known to affect cholesterol level. As a result, the cholesterol level is measuring the overall genetic and
environmental backgrounds of these individuals. The right half of Fig. 14.9 places the ApoE genotypes
into the context of these genetic and environmental backgrounds as measured by cholesterol level

FIGURE 14.9

The odds of coronary artery disease (CAD) in the fathers of individuals screened for ApoE genotypes and serum

cholesterol levels. The sample was subdivided into tertiles for cholesterol level (H, high tertile; M, middle tertile;

L, low tertile), into the three most common ApoE genotypes (ε3/ε3, ε3/ε2, and ε3/ε4), and the pairwise combi-

nations of cholesterol tertiles and ApoE genotypes. The overall odds of CAD in the fathers were 1, and the solid

lines indicate the normal range that is twofold above and twofold below the population average.

Modified from Sing, C.F., Haviland, M.B., Templeton, A.R., Reilly, S.L., 1995. Alternative genetic strategies for predicting risk of

atherosclerosis. In: Woodford, F.P., Davignon, J., Sniderman, A.D. (Eds.), Atherosclerosis X. Excerpta Medica International

Congress Series. Elsevier Science Publishers B.V., Amsterdam, pp. 638e644.
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tertiles. The surprising result is that the odds range for CAD in this 2-variable space has been increased
by an order of magnitude in both directions over the single-variable risk factors and now has nearly a
100-fold range of variation. Hence, there is much more information about CAD in cholesterol level
and ApoE genotype when considered together than in either variable considered separately. More
importantly, it is no longer so clear which allele is the “bad” allele in this two-variable space. The
highest odds of CAD by far are now found with bearers of the “good” ε2 allele in the highest
cholesterol tertile. The ε4 allele is the “bad” allele only in the middle and low cholesterol tertiles, and
even then it is in the normal range. Hence, context matters. If a eugenic program increased the fre-
quency of the marginally “good” ε2 allele and got rid of the marginally “bad” ε4 allele, the result might
be an increase in CAD if the environment causes a shift toward higher cholesterol levels, as was
occurring in the United States (recall the obesity epidemic) prior to the use of statins to lower
cholesterol levels (this study was performed before the use of statins). That genetic and environmental
context matters is not limited to this system, and its existence seriously undermines simplistic genetic
determinism (Sackton and Hartl, 2016).

Pleiotropy further complicates the judgment about what is the “good” versus the “bad” allele.
Pleiotropy is another factor commonly ignored in the eugenic literature and specifically ignored in the
calculations of Lynch (2016). Despite the ubiquity of pleiotropy in genetic diseases and virtually all
well-studied genetic systems (Chesmore et al., 2017), a focus on one phenotype at a time is the norm in
the eugenic literature. Does pleiotropy matter? Consider again ApoE, for which there is rampant
pleiotropy for cholesterol-related phenotypes and CAD (Maxwell et al., 2013). Moreover, the pleio-
tropic effects are not limited just to CAD and cholesterol, but the genetic variants at the ApoE locus
also are differentially associated with susceptibility to certain pathogens and parasites (lipid transport
molecules are used as infection pathways by some parasites), immune responses, and cognitive
functions (Trotter et al., 2011). Concerning the later, although the ε4 allele is associated with
Alzheimer’s disease, a serious loss of cognitive function in older individuals, in younger individuals
the ε4 allele is associated with increased vocabulary and verbal fluency (Marioni et al., 2016)dtraits
that may be highly adaptive in a social species such as humans in which language ability can influence
fitness (Chapter 11). Moreover, the ε4 allele obtains its highest frequencies in populations with low
dietary fat and cholesterol intakes, suggesting that ε4 alleles might have helped maintain cholesterol
levels for generating steroid hormones during gestation, growth, development, and reproductive effort
under low cholesterol diets (Crews and Stewart, 2010).

Evolutionary considerations also warn us that we are often incapable of deciding what is “bad” or
“good” genetically. Haldane (1949) long ago pointed out the ubiquity of pleiotropy in Mendelian
disease genes and the fact that most bearers of genetic disease do so because the allele was positively
selected for infectious disease resistance. Haldane therefore pointed out that the primary eugenic effect
of modern medicine was to increase negative selection against genetic diseases by reducing infectious
disease as a selective agent, and this should lead to a decrease in the frequency of these alleles in
populations with access to modern medicine. This of course is the opposite of the assumption made by
Lynch (2016) that modern medicine relaxes selectiondan assumption that ignores the pleiotropic
effects long ago identified by Haldane. Complex diseases can also show the effects of positive
selection. For example, autism spectrum disorder has been associated with both rare and common
alleles, and an analysis of the genomic signatures around these alleles indicate that the rare alleles are
subject to negative selection but the more common alleles have been subject to positive selection and
are associated with beneficial effects on cognitive skills (Polimanti and Gelernter, 2017). Likewise, the
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genetic variants selected for adaptation to high altitude increase cancer risk as individuals age
(Voskarides, 2018)danother example of antagonistic pleiotropy playing an important evolutionary
role in human life history (Chapter 13).

Finally, recall the ubiquity of frequency-dependent selection in human populations because of the
importance of interactions with other organisms, relatives, and other members of the community
(Chapter 12). Under frequency-dependent selection, it is impossible to label a gene as “good” or “bad”
as its fitness effects can change drastically as its frequency changes. Frequency-dependent selection
also undermines another common flaw in much eugenic literature: the idea of a perfect type. Under
many models of frequency-dependent selection, diversity is the main outcome of natural selection, not
uniform “perfection.” It is this focus on a perfect type that led to the genocidal excesses of the old
eugenicsda mistake that should not be repeated. Yet, diversity is rarely, if ever, mentioned as a goal of
eugenics, either old or new.

Human evolution has not stopped and will not stop, with or without eugenics. The current human
population faces many challenges: a rapidly changing population structure, environmental degra-
dation due to large population sizes, global climate change induced by our own niche construction,
and an epidemiological transition characterized by the increasing prominence of chronic, systemic
diseases and the emergence of new infectious diseases. How humans will meet these challenges is
difficult to predict. As the baseball savant Yogi Berra (https://www.goodreads.com/quotes/261863-
it-s-tough-to-make-predictions-especially-about-the-future) said, “It’s tough to make predictions,
especially about the future.” What we can predict is that humans will respond to these challenges as a
single, highly genetically diverse lineage with great potential for both biological and cultural
evolution.
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